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Revisiting the Adversarial Robustness-Accuracy
Tradeoff in Robot Learning

Mathias Lechner , Alexander Amini , Member, IEEE, Daniela Rus , Fellow, IEEE, and Thomas A. Henzinger

Abstract—Adversarial training (i.e., training on adversarially
perturbed input data) is a well-studied method for making neural
networks robust to potential adversarial attacks during inference.
However, the improved robustness does not come for free but
rather is accompanied by a decrease in overall model accuracy
and performance. Recent work has shown that, in practical robot
learning applications, the effects of adversarial training do not pose
a fair trade-off but inflict a net loss when measured in holistic robot
performance. This work revisits the robustness-accuracy trade-off
in robot learning by systematically analyzing if recent advances in
robust training methods and theory in conjunction with adversarial
robot learning, are capable of making adversarial training suitable
for real-world robot applications. We evaluate three different robot
learning tasks ranging from autonomous driving in a high-fidelity
environment amenable to sim-to-real deployment to mobile robot
navigation and gesture recognition. Our results demonstrate that,
while these techniques make incremental improvements on the
trade-off on a relative scale, the negative impact on the nominal ac-
curacy caused by adversarial training still outweighs the improved
robustness by an order of magnitude. We conclude that although
progress is happening, further advances in robust learning meth-
ods are necessary before they can benefit robot learning tasks in
practice.

Index Terms—Deep learning methods, representation learning,
transfer learning, robot safety.

I. INTRODUCTION

THIS is the first sentence of my Introduction. Adversarial
attacks are well-studied vulnerabilities of deep neural net-

works [1], [2]. These norm-bounded input perturbations make
the network change its decision compared to the unaltered
input and can have catastrophic impact in practical robotics

Manuscript received 18 August 2022; accepted 17 January 2023. Date of
publication 31 January 2023; date of current version 8 February 2023. This letter
was recommended for publication by Associate Editor N. Figueroa and Editor J.
Kober upon evaluation of the reviewers comments. This work was supported in
part by the AI2050 Program at Schmidt Futures under Grant G-22-63172, in part
by Capgemini SE through Project ERC-2020-AdG under Grant 101020093, in
part by the National Science Foundation (NSF), in part by JP Morgan Graduate
Fellowships, and in part by the United States Air Force Research Laboratory
and the United States Air Force Artificial Intelligence Accelerator and was
accomplished under Grant FA8750-19-2-1000. (Corresponding author: Mathias
Lechner.)

Mathias Lechner, Alexander Amini, and Daniela Rus are with the Mas-
sachusetts Institute of Technology, Computer Science and Artificial Intelli-
gence Laboratory, Cambridge, MA 02139 USA (e-mail: mlechner@mit.edu;
amini@mit.edu; rus@csail.mit.edu).

Thomas A. Henzinger is with the Institute of Science and Technology Austria
(ISTA), 3400 Klosterneuburg, Austria (e-mail: thomas.henzinger@ist.ac.at).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2023.3240930, provided by the authors.

Digital Object Identifier 10.1109/LRA.2023.3240930

applications. Critically, the adversarially altered inputs are
barely distinguishable from the original input by humans. Most
realistic-sized computer vision networks can be fooled by per-
turbations that change each pixel by a maximum of 4% (i.e., a
l∞-norm less or equal to 8) while being barely noticeable by
humans.

Adversarial robustness is an important consideration in the
development of robotic applications, as it ensures that the robot’s
behavior remains consistent and predictable in the presence of
perturbations or attacks. In the real world, robots must be able to
operate in a variety of environments and under a wide range of
conditions, some of which may be outside of their training data
or beyond their control. Adversarial robustness allows robots to
continue functioning effectively even when faced with such chal-
lenges, improving their reliability and safety in real-world ap-
plications. Additionally, as robots become more integrated into
society and are given greater autonomy, it becomes increasingly
important to ensure that they are not susceptible to manipulation
or exploitation by malicious actors. Adversarial robustness helps
to protect against such threats and ensure that robots can be
trusted to behave in a predictable and responsible manner.

Robust learning aims to tackle the problem by training net-
works that are immune to adversarial or other types of attacks [3],
[4], [5], [6], [7], [8], [9], [10]. One of the most dominant ap-
proaches for training robust models is adversarial training which
adds adversarial perturbations to the training data online during
and throughout the learning procedure [3], [7]. Adversarial
training methods improve the test-time robustness on adversarial
examples at the critical cost of lower nominal accuracy [11],
[12], [13]. For instance, the advanced adversarial training algo-
rithm of [14], which won the NeurIPS 2018 Adversarial Vision
Challenge, yielded a robust network with an accuracy of 89% on
the CIFAR-10 dataset. In contrast, standard training algorithms
can easily produce non-robust networks with an accuracy above
96% on this dataset [15]. This dilemma of choosing between an
accurate but vulnerable and a robust but less accurate model is
known as the robustness-accuracy trade-off [11], [13], [14].

Recent work [16] has investigated this trade-off specifically
in the context of robot learning applications where both accu-
racy and robustness are critical as the system is ultimately de-
ployed into physical, safety-critical environments. The authors
observed that this trade-off is not fair trade but poses a net loss
when evaluating the robots’ overall performance and concluded
that adversarial training is not ready for robot learning. However,
recent work has shown that multiple factors (e.g., model size,
choice of the activation function, adversarial training procedure)
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Fig. 1. High-level summary of our results. Adversarial training improves
robustness at the cost of significantly reduced accuracy. We show that methods to
counteract this decrease in accuracy are most effective when multiple approaches
are combined, i.e., an overparametrized network, a vision transformer neural
architecture, and advanced adversarial training procedures. Further combined
improvements may close the robustness-accuracy gap entirely.

contribute to the reduction in accuracy of robot learning meth-
ods [17], [18], [19], [20], [21], [22]. In particular, these works
underline that larger models are necessary for robustly fitting
the training data [18], [23]. Moreover, they emphasize that a
more careful selection of the neural network architecture and
hyperparameters is needed when replacing standard training
with adversarial training methods [19], [21]. However, there
remains a critically important and open question on if these
recent advances are sufficient to quell the costs of adversarial
training for robotics.

In this work, we assess whether the conclusion of [16] that
adversarial training is not ready for robot learning remains true or
is challenged by these recent advances in the field. In particular,
we evaluate if overparametrized models [18], vision transform-
ers [19], [24], smooth curvature activation functions [20], more
careful hyperparameter selection [21], and advanced adversarial
training methods [22] can provide acceptable accuracy and
robustness on three robot learning and autonomous driving tasks.

Our results show that, although the techniques listed above
pose a significant improvement in the robustness-accuracy gap,
the negative impact on the nominal accuracy from adversar-
ial training still outweighs the benefits of the induced robust-
ness. Specifically, while the methods from the literature make
single digits improvements on the robustness-accuracy Pareto
front, i.e., improving both accuracy and robustness, the negative
side-effects of adversarial training methods still outweigh these
advances by an order of magnitude. Nonetheless, we observed
the trend that combining multiple individually introduced ro-
bustness enhancement methods provided the most promising
future path toward closing the robustness-accuracy gap, e.g., as
outlined in Fig. 1.

We summarize our contributions as:
� We evaluate five advancements in robust learning meth-

ods in three different real-world robotic applications (456
models tested in total) for their suitability in closing the
robustness-accuracy tradeoff gap in robot learning tasks in
practice.

� We provide strong empirical evidence that, while robust-
ness can be improved by the methods from literature, the
negative effect on the nominal accuracy of adversarial
training still outweighs the improvements of these methods
by an order of magnitude.

� Our results show that adversarial training is most effective
when multiple individual robust learning approaches are
combined. This suggests that the most promising path to
closing the robustness-accuracy gap entirely in the future
is the integration of multiple independent approaches for
enhancing robustness.

The remainder of this paper is structured as follows. In
Section II, we recapitulate robustness of neural networks, adver-
sarial training, and the robustness-accuracy trade-off. In Section
III, we describe related work on improving the robustness of
neural networks and avoiding the reduced clean accuracy of
adversarial training. Finally, in Section IV, we experimentally
evaluate these improvements on three robot learning tasks.

II. BACKGROUND AND RELATED WORK

A neural network is a function fθ : X → Y parameterized
by θ. In supervised learning, the training objective is to fit the
function to a given dataset in the form of {(x1, y1), . . . (xn, yn)}
assumed to be i.i.d. sampled from a probability distribution
over X × Y . This fitting process is done via empirical risk
minimization (ERM) that minimizes

1

n

n∑
i=1

L(fθ(xi), yi) (1)

via stochastic gradient descent. The differentiable loss function
L : Y × Y → R characterizes how well the network’s predic-
tion fθ(xi) matches the ground truth label yi.

An adversarial attack is a sample (xi, yi) from the data
distribution and a corresponding attack vector μ with ‖μ‖ ≤ ε
such that f(xi) �= f(xi + μ)with ε being a threshold. For image
data,L∞ thresholds δ ≤ 8 are usually not recognizable or appear
as noise for human observers. It has been shown that most
neural networks, irrespective of network types, input domains,
or learning setting, are susceptible to adversarial attacks [2],
[25], [26], [27], [28], [29], [30].

Typical norms used in adversarial attacks are the �1, �2, and
the �∞ norm. In this work, we focus on the �∞ norm. A network
is robust on a given sample if no such attack μ exists within
a threshold ε. The robust accuracy is the standard metric for
measuring the robustness of a network aggregated over an entire
dataset {(x1, y1), . . . (xn, yn)} by counting the ratio of correctly
classified samples that are also robust.

In practice, deciding whether a network is robust for a sample
is an NP-hard problem [31], [32], [33] and, therefore, cannot
be computed for typically sized networks in a reasonable time.
Instead, the robustness of networks is often studied with respect
to empirical gradient and black-box-based attack methods. The
fast gradient sign method (FGSM) [2] computes an attack by

μ = ε sign

(
∂L(fθ(xi), yi)

∂xi

)
. (2)
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Despite its simplicity, adversarial training often uses the FGSM
method due to its speed. The iterative fast gradient sign method
(I-FGSM) [34] is a more sophisticated generalization of the
FSGM. It computes an attack iteratively in k steps starting from
μ0 = 0 and updating it by

μi =
ε

k
sign

(
∂L(fθ(xi + μi−1), yi)

∂xi

)
. (3)

DeepFool [35], the C&W method [36], and projected gradient
descent [7] are other common iterative attack methods that
are used for evaluating robustness but are too computationally
expensive to incorporate in adversarial training. DeepFool [35]
linearizes the network in each iteration of updating μi. Projected
gradient descent [7] applies unconstrained gradient descent but
divides each μi by its norm and multiplies the results with ε to
project it back into the given threshold. The C&W method [36]
avoids such projection by parametrizing the attack vector μ by
another variable and a transformation that already normalizes the
attack to stay within a given threshold. It has been experimentally
shown that any network of non-trivial size is, at least in parts,
vulnerable to such attacks [7].

Robust learning methods aim to train networks that are ro-
bust [3], [4], [5], [6], [7], [8], [9]. One of the most common
robust learning methods is adversarial training which changes
the standard ERM objective to the min-max objective

1

n

n∑
i=1

max
μ:‖μ‖≤ε

L(fθ(xi + μ), yi), (4)

where ε > 0 is some attack budget controlling how much each
input can be perturbed. Due to the computation overhead by this
training objective, fast attack-generating methods are typically
used for computing the max in (4), e.g., the FGSM or I-FGSM.

Alternative approaches to adversarial training make minor
modifications to the objective term in (4). For instance, the
TRADES algorithm [14] replaces the label yi in (4) with the net-
work’s prediction of the original input, i.e.,fθ(xi), and optimizes
a joint objective of the standard ERM term and the robustness
term. The approach of [37] removes the overhead imposed by the
maximization step in (4) by pre-computingμ in the previous gra-
dient descent step. Although such pre-computed μ can become
inaccurate, i.e., stale, [37] showed that it improves robustness in
practice. Adversarial weight perturbation (AWP) [22] improves
the generalization of adversarially trained networks by injecting
adversarial noise into the weights of the network and smoothing
the loss surface. Data augmentation applied to adversarial train-
ing has also been shown to positively affect the robustness, and
the generalization of neural networks [17]. The work of [38]
has shown that the negative impact of adversarial training on
the clean accuracy of a network can be further reduced by
combining it with advanced data augmentation techniques such
as MixUp [39].

The major limitation of adversarial training methods is that
they negatively affect the network’s standard accuracy (or other
performance metrics). For example, medium-sized networks
achieve an accuracy of 96% on the CIFAR-10 dataset when

trained with standard ERM [15]. However, in [14] the best-
performing network trained with the TRADES algorithm could
only achieve a standard accuracy of 89% on this dataset. This
phenomenon of an antagonistic relation between accuracy and
robustness was first studied in [13] and is known as the accuracy-
robustness trade-off. The trade-off was studied in the context of
robot learning in [16] by investigating whether the gained robust-
ness is worth the reduction in nominal accuracy in real-world
robotic tasks. The authors observed that the adversarially trained
networks resulted in a worse robot performance than by using a
network trained in the standard way.

The concept of adversarial training and the min-max objective
of robust learning has been adopted for other task-specific types
of specifications, such as safety. For example, [16] has intro-
duced safety-domain training by replacing the norm-bounded
neighborhoods of labeled samples with arbitrary sets and corre-
sponding labels, i.e., a min-max training objective over labeled
sets. Some modifications of the min-max objective have been
studied in feedback systems with closed-loop safety and stability
specifications. For instance, [40], [41], [42] propose to learn
a safety certificate via a learner-verifier framework where the
maximization step is replaced by a verification module that
provides formal guarantees on the certificate.

Adversarial training has also been studied as a regularizer
for improving the generalization of neural networks. In partic-
ular, [43] used mild adversarial attacks based on a hierarchical
structure to improve the clean accuracy of vision transformer
models [44]. The work of [45] studied human adversaries
to improve the performance in robotic object manipulation
tasks.

III. METHODS

In this section we describe three directions from the litera-
ture that point to paths of how to improve robustness without
sacrificing standard accuracy.

A. Smooth Activations and Bag of Tricks

Recent work suggests that the common ReLU activation
function, i.e., max{0, x}, is not well suited for adversarial
training methods [20]. Instead, the authors observed that ac-
tivation functions with smooth curvatures provide better robust-
ness at roughly the same standard accuracy. Specifically, the
sigmoid-weighted linear unit (SiLU) activation function [46],
i.e., x · 1

1+exp(−x) , was highlighted as having a smooth second
derivative and observed to improve robustness compared to
alternative activations. We note that the SiLU activation was
concurrently proposed as swish activation function in [47].

The work of [21] investigated how hyperparameters of the
learning process affect adversarial training compared to standard
ERM. For example, the authors experiment with learning rate
schedules, early stopping, and batch size, among other settings.
The authors observed that adversarial training benefits from a
higher weight decay factor than standard training. Moreover, the
authors confirmed that a smooth activation function improves
robustness over the ReLU activation.
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B. Robustness Requires Overparametrization

Theoretical contributions to the robustness-accuracy tradeoff
recently discovered that overparametrization is necessary for
smoothly fitting the training data [23]. While empirical results
already suggested that the accuracy of larger models suffers
less from adversarial training than for small models, the critical
insight is that such large models are necessary. In particular, the
authors proved that for a dataset ofn samples withd-dimensional
features, a model with n parameters can fit the training samples
but cannot smoothly interpolate between them. Moreover, the
authors show that a model needs at least nd parameters to fit the
training data and interpolate them smoothly. The authors also
demonstrated that contemporary models for standard datasets
do not contain enough parameters with respect to their proven
results.

C. Vision Transformers are More Robust Than CNNs

The vision transformer (ViT) [44] is a powerful machine
learning architecture that represents an image as a sequence of
patches and processes this sequence using a self-attention mech-
anism [49]. Detailed experimental comparisons between vision
transformer and convolutional neural networks suggest that ViTs
are naturally more robust with respect to object occlusions and
distributions shifts [50]. Concurrent work on comparing ViTs to
CNNs with respect to adversarial attacks has found that vision
transformers seem to be naturally more robust to adversarial
attacks as well.

All advances on the robustness-accuracy tradeoff discussed
above are either theoretical or were evaluated on static im-
age classification tasks. Moreover, the methods are typically
evaluated on research datasets such as CIFAR and ImageNet.
While these datasets allow studying machine learning models’
general performance, they significantly differ from real-world
robot learning tasks. For example, the CIFAR datasets consist
of very low-resolution images, i.e., 32-by-32 pixel, whereas
robotic vision processing systems handle images with much
higher resolution, e.g., 256-by-256 pixels in [16]. Although
the samples of the ImageNet dataset have a realistic image
resolution, typical robot learning datasets consist of multiple
orders of magnitude fewer samples than the ImageNet dataset.
Moreover, experiments on research datasets often report static
test metrics, whereas learned robotic controllers are deployed in
a closed-loop on a robot.

The next section evaluates the methods described above on
multiple real-world robot learning tasks, including open-loop
training and closed-loop evaluation on an autonomous driving
task.

IV. EXPERIMENTS

In this section we study the advances in adversarial training
methods on three robot learning tasks.

A. End-to-End Driving

Our first experiment considers an autonomous driving task.
In particular, a network is trained to predict the curvature of

Fig. 2. Test conditions of our closed-loop driving experiment using a data-
driven simulation environment [48]. The training data are collected in summer
and winter conditions (separated from the testing data).

the road ahead of a car from images received at a camera
that is mounted on top of the vehicle. The training data is
collected by a human driver who maneuvers the car around
a test track. The networks are then trained on collected data
using supervised learning. Finally, we deploy the networks in a
closed-loop autonomous driving simulator. We use the VISTA
simulation environment [48] for this purpose.

We compare the performance of a baseline CNN with four
variations. First, we compare with an enlarged variant of the
baseline CNN to validate the necessity of overparametrization
for robustness empirically. Next, we equip the baseline with
the smoother SiLU activation and increase the weight decay
(wd+). We also test the CNN trained with adversarial weight
perturbation (AWP) [22] instead of training via the objective
in (4). Finally, we test a vision transformer model. The baseline
model (CNN) consists of 440 k, the enlarged model (CNN-large)
of 7.7 M, and the tested vision transformer (ViT) of 2.0 M
trainable parameters. The inputs of all architectures are 160-
by-48 RGB images that are normalized per-image to have zero
mean and unit standard deviation. The architecture details of
the two convolutional networks are listed in the Supplemen-
tary Materials. Our vision transforms splits the input image
into non-overlapping patches of 16-by-12 pixels, uses a latent
dimension of 256, with 4 attention heads, 384 feed-forward
dimensions, and 4 layers in total. For the training, we use the
Adam optimizer [51] with a learning rate of 0.0003 and a batch
size of 64. The weight decay is set to 10−5, except for the wd+
variant, which is trained with a decay factor of 5 · 10−5. We train
all networks for a total of 900,000 steps. We train all models with
standard and adversarial training with increasing attack budget
(ε = 0, 1, . . . 8) and I-FGSM as attack methods.

For each model and attack budget pair, we run a total of 400
simulations, split into 200 in-training distribution, and 200 out-
of-training distribution condition runs. The in-training data were
collected in summer and winter and were separated from the
training data, i.e., there is no overlap between the training data
and the evaluation data. The out-of-training data were collected
in autumn and during the night, with no such condition present
in the training data. The four conditions are visualized in Fig. 2.
As an evaluation metric, we report the number of crashes during
the simulation, i.e., when the vehicle leaves the road.
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TABLE I
ROBUST VALIDATION ACCURACY (UNDER I-FGSM WITH ε = 8) AND TEST

ACCURACY ON THE VISUAL GESTURE RECOGNITION DATASET OF VARIOUS

ADVERSARIALLY FINE-TUNED MODELS. BEST ROBUST VALIDATION

ACCURACY AND TEST ACCURACIES GREATER THAN 80% ARE HIGHLIGHTED

IN BOLD. BEST VALUES ARE UNDERLINED

Fig. 3. Number of crashes out of 100 simulation runs in each data setting
(summer, winter, fall, night) with respect to varying the adversarial training
budget. All models were trained in summer and winter conditions (on a different
data split than the evaluations). The large CNN and the ViT model perform best
under heavy adversarial training, but no adversarially trained model could handle
distribution shifts, i.e., fall and night conditions.

The top row in Fig. 3 shows the crashes during the summer and
winter simulations. The results show that the overparametrized
model and the vision transformer indeed provide better perfor-
mance at a larger adversarial training budget than the baseline.
An increased weight decay improved the performance only at

TABLE II
ROBUST VALIDATION ACCURACY (UNDER I-FGSM WITH ε = 8) AND TEST

ACCURACY ON THE VISUAL GESTURE RECOGNITION DATASET OF VARIOUS

ADVERSARIALLY FINE-TUNED MODELS. BEST ROBUST VALIDATION

ACCURACY AND TEST ACCURACIES GREATER THAN 80% ARE HIGHLIGHTED

IN BOLD. BEST VALUES ARE UNDERLINED

lower attack budget training, while the networks with SiLU
activation performed worse in the closed-loop tests. At larger
attack budgets, no model could drive the car safely, while most
models learned by standard ERM could drive all 200 runs
flawlessly.

The out-of-training distribution simulation results for autumn
and night conditions are shown in the middle and bottom row in
Fig. 3. We observe that adversarial training significantly hurt the
out-of-distribution performance of all models, i.e., especially in
the autumn data. A video demonstration of the simulated runs
is available at https://youtu.be/TQKP7l9PfNo. In summary, the
best driving performance across all four tested conditions was
observed with networks trained with standard ERM.

B. Visual Gesture Recognition

Our second experiment concerns training an image classifier
that controls the operating modes of a mobile robot as reported
in [16]. The dataset consists of 2029 sample 256-by-256 pixel
images corresponding to three classes, i.e., idle (905 samples),
enable (552 samples), and disable (572 samples), which are
split into a training and a validation set with a 90%:10% ratio.
The experiments on the physical robot in [16] suggest that a
validation accuracy of above 90% is necessary for acceptable
robot performance. Due to the small size of the dataset, we
resort to transfer learning of a pre-trained classifier using the
big-transfer (BiT) fine-tuning protocol of initializing the output
layer with all zeros and training all layers [52].

In this experiment, we test the theoretical necessity of over-
parametrization in practice. We train networks of different sizes

https://youtu.be/TQKP7l9PfNo
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TABLE III
VALIDATION ACCURACY ON THE ROBOT FOLLOW DATASET [16] OF 1D-CONVOLUTIONAL NNS WITH VARIOUS HYPERPARAMETERS AND TRAINED WITH

STANDARD AND SAFETY-DOMAIN TRAINING. VALUES GREATER THAN 80% ARE HIGHLIGHTED IN BOLD. SAFETY LEVEL 0 CORRESPONDS TO STANDARD

TRAINING, WHILE THE NETWORK TRAINED WITH SAFETY LEVEL 1 AND ABOVE PROVIDE FORMAL SAFETY GUARANTEES OF NEVER CRASHING THE ROBOT INTO

AN OBSTACLE. THE COLUMNS SHOW NETWORKS WITH DIFFERENT WIDENING FACTOR. THE NUMBER OF LEARNABLE PARAMETERS ARE SHOWN IN PARENTHESIS

using adversarial training with increasing attack budget (ε ∈
{0, 1, 2, 4, 8}) and report the robust validation accuracy under
I-FGSM attacks with a radius of ε = 8. We also evaluate models
trained with adversarial weight perturbation (AWP) [22] and
ε ∈ {4, 8}.

As a proxy for real-world test accuracy, we collect a new
dataset comprising 190 idle samples, 129 enable samples, and
140 disable samples. Particularly, the test set resembles a real-
world deployment of the model on the robot and ensures that
there is no spurious temporal or spatial correlation with the
original data source. We use the clean accuracy of the new set
as our test metric to estimate real-world performance.

For increasing the size of the model, we test a ResNet50
(24 M), ResNet101 (43 M), and ResNet152 (58 M) with the
number of trainable parameters reported in parenthesis [53]. We
also evaluate the vision transformer models ViT-Small (22 M),
ViT-Base (86 M), and ViT-Large (304 M) that process the images
in the form of 16-by-16 pixel patches [44]. For the training, we
use the Adam optimizer [51] with a learning rate of 0.00005 and
a batch size of 64, except for the ResNet152 where a batch size of
32 is used due to out-of-memory errors. We repeat each training
run with 5 random seeds and report the mean and standard
deviation.

The results in Tables I and II show that the overall best
test accuracy could be achieved with standard empirical risk
minimization and a ResNet50 or ViT-Small model. As expected,
however, these models provide no robustness to adversarial
attacks. Still, acceptable test performance (≥80%) at non-trivial
robustness was realized by models trained with a small attack
budget, e.g. ε = {1, 2}. Nonetheless, the gap between the overall
best test accuracy and the top-scoring adversarially trained mod-
els is significant, i.e., over one and two standard deviations of the
standard trained ResNet50 and ViT-Small model, respectively.

The results in Tables I and II show the trend that with an
increase in model size, the models become more accurate under
adversarial training. This effect is even more amplified when
considering the more advanced adversarial weight perturbation
training (+AWP). Specifically, the most robust ResNet and

vision transformer are both their largest variant trained with
AWP. Moreover, we observe an advantage of the ViT archi-
tecture over the ResNets in terms of robustness, which has
been studied in more detail in [19], [24]. This result suggests
that even larger ViT-based models combined with even more
advanced adversarial training schemes may be able to close the
robustness-accuracy gap entirely.

C. Certified Safety-Domain Training

Adversarial training methods do not ensure robustness but
provide only empirical improvements over common attack
methods. Certified training methods such as the interval bound
propagation [54] can learn networks with formal robustness
or safety guarantees. In this experiment, we study the safety-
domain training of LiDAR-based mobile robot navigation con-
troller [16]. The objective of the learned controller is to map
541-dimensional laser range scans to 7 possible categories, i.e.,
stay, straight forward, left forward, right forward, straight back-
ward, left backward, and right backward. The dataset consists of
2705 training and 570 validation samples uniformly distributed
across the seven classes. Using safety-domain training, we want
to ensure that the robot never crashes into an object in front of
it. This is achieved by training an abstract interpretation repre-
sentation of the network to never output a forward locomotion
class in case the LiDAR input indicates an obstacle. There are
four safety levels with different strictness of what accounts for
an obstacle, e.g., several consecutive rays or just a single ray,
defined in [16]. Safety level 0 corresponds to standard training,
while safety level 3 represents the strictest level.

We test the overparametrization, increased weight decay
(from 0 to 10−5), and smooth activation function methods on
this task. As a baseline, we use the 1D-CNN from [16], which is
comprised of 360 k parameters. Our overparametrized models
increase the width of the network to obtain CNNs with 1.4 M,
3.2 M, and 5.7 M parameters respectively. We use the expo-
nential linear unit (ELU) activation function [55] to represent a
smooth activation due to the non-monotonicity of SiLU being
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incompatible with the used abstract interpretation domains. We
train all models with the Adam optimizer [51] with a learning
rate of 0.0001 and a batch size of 64. The safety level 0 models are
trained for 20 epochs, while the networks trained using safety-
domain training for 2000 epochs. The network architectures are
shown in the Supplementary Materials.

We report the validation accuracy as an evaluation metric.
The experiments on the physical robot in [16] suggest that
a validation accuracy above 80% is necessary to achieve an
acceptable real-world performance. Note that all models, except
those trained with safety level 0, provide some form of formal
safety guarantees. Therefore, this experiment studies how much
validation accuracy is traded for the ensured safety. We repeat
each training run with 5 random seeds and report the mean and
standard deviation.

The result in Table III shows that safety-domain training
benefits from an increased number of parameters (width). How-
ever, the improvement over the baseline is rather incremental
and accounts only for a few percent. In contrast, the accu-
racy reduction caused by the safety-domain training is sev-
eral times more significant, e.g., around 10%, and no network
trained with safety-domain training exceeds the threshold of
80% accuracy. The networks with smooth activation function
and increased weight decay performed worse than the baseline
when using safety-domain training. This suggests that certified
training methods such as safety-domain training may require
different hyperparameters and learning settings than adversarial
training.

V. DISCUSSION AND CONCLUSION

Adversarial training (i.e., training on adversarially perturbed
input data) is a well-studied method for making neural networks
robust to potential adversarial attacks during inference. How-
ever, the improved robustness does not come for free but rather
is accompanied by a decrease in nominal model accuracy and
performance [14]. Recent work [16] has shown that, in practical
robot learning applications, the effects of adversarial training do
not pose a fair trade-off but inflict a net loss when measured in
holistic robot performance. This work revisited the robustness-
accuracy trade-off in robot learning by systematically analyzing
if recent advances in robust training methods and theory in
conjunction with adversarial robot learning can make adversarial
training suitable for real-world robot applications.

We evaluated a total of five robust training methods on three
different robot learning tasks ranging from autonomous driving
in a high-fidelity environment amenable to sim-to-real deploy-
ment to mobile robot navigation and gesture recognition. Our
results indicate that the negative impact on the nominal accuracy
from adversarial training still outweighs the induced robust-
ness. In other words, while adversarial training can improve
the model’s ability to withstand attacks, it does not justify the
reduced accuracy on clean, non-adversarial data.

Nonetheless, our results suggest that, in aggregate, when
combining these methods, a significant improvement in the
robustness-accuracy gap is made. For instance, the combination

of overparametrization, a vision transformer, and a more ad-
vanced training scheme (adversarial weight perturbation) per-
forms much better under adversarial training than the models
tested in [16]. This suggests that future research directions
that can be further combined, e.g., data augmentation or other
training schemes, may be able to close the robustness-accuracy
entirely.
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