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RDA: An Accelerated Collision Free
Motion Planner for Autonomous Navigation in

Cluttered Environments
Ruihua Han1,2, Shuai Wang3, Shuaijun Wang5,1, Zeqing Zhang2, Qianru Zhang2,

Yonina C. Eldar4, Qi Hao1,†, Jia Pan2,†

Abstract—Autonomous motion planning is challenging in multi-
obstacle environments due to nonconvex collision avoidance con-
straints. Directly applying numerical solvers to these nonconvex
formulations fails to exploit the constraint structures, resulting
in excessive computation time. In this paper, we present an
accelerated collision-free motion planner, namely regularized dual
alternating direction method of multipliers (RDADMM or RDA
for short), for the model predictive control (MPC) based motion
planning problem. The proposed RDA addresses nonconvex
motion planning via solving a smooth biconvex reformulation
via duality and allows the collision avoidance constraints to be
computed in parallel for each obstacle to reduce computation
time significantly. We validate the performance of the RDA
planner through path-tracking experiments with car-like robots
in both simulation and real-world settings. Experimental results
show that the proposed method generates smooth collision-free
trajectories with less computation time compared with other
benchmarks and performs robustly in cluttered environments.
The source code is available at https://github.com/hanruihua/
RDA planner.

Index Terms—Collision avoidance, constrained motion plan-
ning, optimization and optimal control

I. INTRODUCTION

MOTION planning has drawn rising interest in many
practical applications, such as self-driving cars and

unmanned logistic vehicles [1], [2]. Its main idea is to compute
a trajectory, defined as a sequence of control commands or
states, from the current state to the desired state. Motion
planners can be classified into four categories [3]: graph search
based, sampling based, interpolation based, and optimization
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based. Graph search based techniques, e.g., state lattice and A
star [4], [5], treat the configuration space as a graph of vertices
and edges and search the minimum cost path. Sampling based
techniques, e.g., the rapidly-exploring random tree (RRT) [6],
probe the configuration space with a sampling scheme and
have been widely used in real-world applications. Interpolation
based techniques construct a new group of data among known
reference points through interpolation models, resulting in
a feasible, smooth trajectory in structured environments [7].
Compared with other methods, optimization based techniques
are advantageous in generating optimized and robust trajecto-
ries in complex scenarios through minimizing cost functions
under physical constraints, such as dynamics, kinematics, and
collision avoidance. For instance, the model predictive control
(MPC) approach adopts the vehicle dynamics model to predict
future states and produce feasible trajectories dynamically
within a set of constraints [8].

Despite its promising features, there are two challenges
hindering the development of optimization based techniques
in real-world applications. First, the motion planning opti-
mization problem is usually nonconvex due to collision avoid-
ance constraints. Numerous approaches have been proposed
to resolve this issue, such as linearizing the constraints by
Taylor expansion [9], [10], relaxing the constraints to formulate
an unconstrained problem [11], and reformulating the con-
straints via strong duality [12], [13]. However, most of these
approaches consider the point-mass object model, or involve
large approximation errors, or fail to exploit the problem
structure. The effectiveness of optimization methods under
the non-point-mass model requires further investigation (i.e.,
accounting for the object shape). Second, the computation cost
grows significantly with the number of obstacles. While several
parallel algorithms [14] have been developed to split multi-
agent planning problems into smaller subproblems for each
agent, they cannot be directly extended to the parallelization
of obstacles. On the other hand, the primal dual alternating op-
timization (PDAO) in [15] is able to update different collision
avoidance constraints in parallel. However, PDAO may diverge
due to the nonlinear coupling among primal and dual variables
in collision avoidance constraints. Additionally, PDAO ignores
the different importance of upcoming and future states due to
the same safety distance for all time slots. Hence, developing
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Fig. 1: Illustration of the Ackerman kinetic model and the distance between the robot and the obstacle.

a parallel and adaptive computing framework to effectively
reduce the computation cost becomes imperative.

This paper proposes an accelerated collision-free motion
planner that realizes accurate, real-time, and robust navigation
under real-world obstacle shapes, computation constraints,
and environmental uncertainties. The main contributions are
summarized as follows.

1) We formulate an optimization based navigation problem
with the non-point-mass obstacle model. The nonconvex
constraints are reformulated into bi-convex counterparts
by joint linearization and strong duality. The safety dis-
tance in the collision avoidance constraints is automati-
cally tuned via l1 regularization.

2) We develop a parallel local planner, termed regularized
dual alternating direction method of multipliers (RDA),
to solve the bi-convex problem in parallel while bringing
robustness to the algorithm convergence.

3) We implement the RDA algorithm in a high-fidelity
Gazebo simulator and an Ackermann autonomous vehicle,
respectively, and compare its performance with several
benchmark schemes in terms of computation cost and
success rate.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III introduces the
distance based collision avoidance constraint and optimization
problem statement. Then, Section IV describes the proposed
RDA collision-free motion planner. Section V describes the
simulation and real-world experiments. Section VI presents the
conclusion.

II. RELATED WORK

Optimization based collision-free motion planners aim to
minimize or maximize a utility function w.r.t. a set of con-
strained state and control variables. For instance, in [16], an
MPC scheme is proposed to accomplish the path tracking task
by using the varied length time in the prediction horizon,
where the collision avoidance constraint is modeled by the
environmental envelope [17]. In fact, the time elastic bands

(TEB) approach, which is the most popular method in robotics
navigation, is also optimization based, which realizes mo-
tion planning by solving a multi-objective optimization prob-
lem [18]. To guarantee collision avoidance, a formulation of
the constraint based on the minimum distance between robots
and obstacles has been proposed, which, however, is noncon-
vex [19], [20]. Duality based approaches have been studied
recently to handle nonconvexity, where the distance functions
are reformulated to be smooth, differentiable counterparts
via strong duality. The “least-intrusive” trajectory method is
proposed in [12] for non-point-mass objects. However, its final
formulation involves bi-linear terms and needs to be solved via
nonconvex numerical solvers. The work [13] linearizes the bi-
linear terms through duality and develops a sequential convex
programming method. Nevertheless, only point-mass objects
are considered in [13], which is inappropriate for practical
polygonal robots such as self-driving cars. Furthermore, the
complexity of sequential convex programming is exceedingly
high when the number of obstacles is large.

There are many ways to reduce the computation cost for
solving the large-scale motion planning problem. Specifically,
we could consider only the adjacent agents and obstacles
within a pre-defined range of interest such that the number
of agents and obstacles is significantly reduced. However, the
range of interest increases with the velocity of the vehicle, and
collisions may occur if some out-of-range obstacles suddenly
appear or accelerate. Distributed optimization has been lever-
aged to solve the problem in parallel, e.g., collision avoidance
in multi-robot systems [15]. However, the algorithm in [15]
is not compatible with the real-time robot operation system
(ROS). Thus, the performance of parallel computing under
practical sensor and actuator uncertainties requires further
investigation.

As a promising distributed optimization framework, the
alternating direction method of multipliers (ADMM) [21] has
been adopted in multi-agent systems [9], [10], [14], which de-
compose a large centralized problem into several subproblems
solved for each agent. However, for the cluttered environment
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with multiple obstacles, decomposing the problem w.r.t each
obstacle via ADMM has not yet been investigated. The method
adopted in multi-agent systems cannot be applied directly
to multi-obstacle systems, since different agents have their
own motion dynamics. The collision avoidance constraints
are nonlinearly coupled with each other by a single motion
dynamic constraint. Here, we tackle this coupling issue via
joint linearization and duality and then leverage regularization
and ADMM to enhance the robustness of the algorithm.

III. PROBLEM STATEMENT

A. Non-Point-Mass Collision Avoidance Constraint

The point-mass object is not a good model for some specific
robots. For instance, for a robot with Ackermann kinematic
model, as shown in Fig. 1. It is vital to take the rectangle
shape into account when navigating in the corridor. Thus, a
non-point-mass (i.e. arbitrary convex shape) representation is
necessary.

1) Obstacle Model: The environment consists of M non-
point-mass obstacles. The mth obstacle (m = 1, · · · ,M ) is
modeled as a compact convex set Om that is represented by
the conic inequality [22]:

Om = {o ∈ Rom |Dmo�Ombm}, (1)

where Dm ∈ Rlm×om , bm ∈ Rlm , and Om is a proper
cone. The partial ordering w.r.t. a cone K is defined by
x�Ky⇔ y−x ∈ K. Each geometric object can be represented
with a proper cone through this formula. For example, if
Om=R+, the obstacle is a polyhedron; if Om = {(x, t) ∈
Rlm+1|‖x‖2 ≤ t}, the obstacle is an ellipsoid. For static
obstacles, the set O is a constant; for dynamic obstacles, the
set Om can be denoted as Otm, which changes over time.

2) Robot Model: The state of each robot at time t is
represented by its center point and denoted as st ∈ Rnr .
The value of nr depends on the working space dimension.
When the robot moves in a plane, we have nr = 3 and
st = (xt, yt, θt), where (xt, yt) represents the position and θt
the orientation. Given a certain state, the robot can be modeled
as a compact set Zt changing with state variable st:

Zt(st) = R(st)z + p(st), ∀z ∈ C,
C = {z ∈ Rnr |Gz�Kr

h}, (2)

where R(st) ∈ Rnr×nr is the rotation matrix representing
the orientation of the robot and p(st) ∈ Rnr is the transition
matrix representing the position of the robot. The vector
z ∈ Rnr is the initial pose vector, and C is a convex
set representing the robot shape at the initial position, with
G ∈ Rh×nr and h ∈ Rh. We assume R(st) and p(st) are
linear functions of s. Any nonlinear function is represented by
a linear approximation. For instance, the rotation matrix can
be linearized by its Taylor expansion [23].

3) Collision Avoidance: The minimum distance between a
robot and an obstacle dist(Zt(st),O) satisfies:

dist(Zt(st),O) = min {‖e‖2| (Zt(st) + e) ∩O 6= ∅} , (3)

where ∅ denotes the empty set. Substituting the expressions of
Zt(st) and O into (3), we can find dist(Zt(st),O) by solving
the following convex problem:

min
z,o
‖R(st)z + p(st)− o‖2

s.t. Do�Kob, Gz�Krh
(4)

with variable z and o. Thus, to guarantee the collision avoid-
ance, we have the following constraint:

dist(Zt(st),O) ≥ dsafe, (5)

where dsafe is a positive real number representing the safe
distance. Constraint (5) is nonconvex as the convex distance
function is at the left hand side of operator ≥.

B. State Evolution

The robot state evolution can be described as follows:

st+1 = st + f(st,ut)∆t, (6)

where the initial state s0 is the current state, ut ∈ Rnu is the
control vector, and ∆t is the time length of each slot. When
the robot moves in a plane, we have nu = 2 and ut = (vt, ψt),
where (vt, ψt) represents the linear and angular velocities. 1

For linear robot dynamics (e.g., omni wheels), we have
f(st,ut) = [(At − I)st + Btut + ct)/ ∆t], and

st+1 = Atst + Btut + ct, t = 0, · · · , N − 1, (7)

where (At, Bt, ct) are the coefficient matrices. For nonlinear
robot dynamics (e.g., Ackerman wheels [24]), we have

f(st,ut) =

[
vt cos(θt), vt sin(θt),

vt tanψt
L

]T
.

By leveraging the first-order Taylor polynomial, the nonlinear
dynamics function can be linearized into the same structure as
(7), where the associated coefficients (At, Bt, ct) at time t in
(7) are given by:

At =

 1 0 −v̄t sin(θ̄t)∆t
0 1 v̄t cos(θ̄t)∆t
0 0 1

 , (8)

Bt =

 cos(θ̄t)∆t 0
sin(θ̄t)∆t 0

tan ψ̄t∆t
L

v̄t∆t
Lcos2ψ̄t

 , (9)

ct =

 θ̄tv̄t sin(θ̄t)∆t
−θ̄tv̄t cos(θ̄t)∆t

− ψ̄tv̄t∆t
Lcos2ψt

 , (10)

where v̄t and ψ̄t are the nominal linear speed and steering
angle of the control vector ūt at time t, respectively. The
constant L denotes the distance between the front and rear
axles. To evaluate the accuracy of the adopted linerization, the

1The linear and angular velocities (vt, ψt) may also be added to the state
space model, where we have nr = 5 and accelerations become the control
vector. Note that this would lead to an equivalent optimization problem, and
the proposed RDA is still applicable.
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Fig. 2: Accuracy of the adopted linear approximation.

trajectories generated by the original dynamics function (green
line) and linearized dynamics function (blue line) are shown
in Fig. 2. It can be seen that the two trajectories are very close
to each other. Moreover, as seen in Fig. 2, the approximation
error fluctuates between 0 and 0.03, which is negligible. This
is because we can set θ̄t, v̄t, ψ̄t as the robot states from the
last navigation step, and the robot states have a slight change
between consecutive steps.

In practice, there are boundary constraints on the control
vector ut:

umin � ut � umax, amin � ut+1 − ut � amax, (11)

where umin,umax ∈ Rnu are the minimum and maximum
values of the control vector, respectively. The minimum and
maximum values of the acceleration vector are denoted by
amax and amin, respectively.

C. Problem Formulation

We consider the MPC formulation for autonomous planning,
where the future state is predicted by the robot dynamics
within a receding horizon consisting of N time steps. The
goal of MPC is to minimize a convex and smooth cost function
C0({st,ut}∀t) under collision avoidance, state evolution, and
boundary constraints. The explicit form of C0 depends on the
type of navigation task. For instance, the cost function of path
tracking is given by

C0({st,ut}) =

N∑
t=0

[
Qt(st − s�t )

2
+ Pt(vt − v�t )2

]
, (12)

where s�t and v�t are the reference state and speed. A larger
value of the weighting coefficients {Qt, Pt} leads to the robot
moving with the reference path.

The MPC optimization problem over a finite future horizon
(t = 1, · · ·N ) with M obstacles is obtained by combining the
constraints in (5), (7), (11):

P0 : min
{st,ut}

C0({st,ut}) (13a)

s.t. st+1 = Atst + Btut + ct, ∀t, (13b)
umin � ut � umax, ∀t, (13c)
amin � ut+1 − ut � amax, ∀t, (13d)
dist (Zt (st) ,Om) ≥ dsafe, ∀t,m. (13e)

The challenges of solving P0 in cluttered environments are
twofold: 1) (13e) is a sufficient but not necessary condition
for collision avoidance, making it difficult to be satisfied; 2)

the number of obstacles M in (13e) could be large. Below, an
effective method will be presented to tackle these challenges.

IV. RDA COLLISION-FREE MOTION PLANNER

In this section, the RDA approach for solving P0 is pre-
sented. The overall algorithm is summarized in Algorithm 1.

A. l1-Regularization

To address the first challenge, we need to reformulate the
constraint (13e). Intuitively, an ideal strategy is to generate a
larger dsafe for the upcoming time steps and a smaller dsafe

for the future time steps. To this end, this paper proposes a
dynamic safety distance approach, where dsafe is replaced by a
vector variable d = [d1, · · · , dN ]T ∈ RN , and equation (13e)
is converted into dist (Zt (st) ,Om) ≥ dt. Each dt is upper
bounded by dmax and lower bounded by dmin. However, such
a formulation ignores the different importance of upcoming
and future states, which leads to a solution with dt = dmin for
all t. Consequently, the l1-regularization method is further pro-
posed to generate uneven values of {dt} among different time
steps by imposing sparsity upon d. This would automatically
allocate different attention to different states. Mathematically,
l1-regularization is realized by adding a penalty function of d
to C0. The penalty function is set as the negative l1-norm of
d, i.e., C1(d) = −η‖d‖1 = −η

∑N
t=0 dt, where η ∈ R ≥ 0

is a weight factor to adjust the collision avoidance ability in
different scenarios:

min
{st,ut},d

C0({st,ut}) + C1(d) (14a)

s.t. (13b)− (13d), (14b)
dt ∈ [dmin, dmax], ∀t, (14c)
dist (Zt (st) ,Om) ≥ dt, ∀t,m. (14d)

Note that a larger value of η encourages dt to reach dmax

and vice versa.

B. Parallel Computation via ADMM

To address the second challenge, we first transform the
constraint dist (Zt (st) ,Om) ≥ dt into its linearized dual
form:

dist (Zt (st) ,Om) ≥ dt ⇔
λt,m �O∗

m
0, µt,m�K∗

r
0,

λTt,mDmpt(st)− λTt,mbm − µTt,mh ≥ dt,
µTt,mG + λTt,mDmRt(st) = 0,∥∥DT

mλt,m
∥∥
∗ ≤ 1,

(15)

where λt,m ∈ Rlm and µt,m ∈ Rh are the dual variables. The
symbol K∗ is the dual cone of K and ‖·‖∗ is the dual norm. The
dual norm of the Euclidean norm is equal to itself. Note that the
above transformation is different from that in [12]. Specifically,
the method in [12] does not involve linearization of translation
and rotation matrices, resulting in a smooth nonconvex dual
problem. In contrast, by leveraging joint linearization and
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duality transformation, (15) has a smooth bi-convex dual form,
which facilitates the subsequent parallelization procedure.

Plugging (15) into (14), the problem (14) is converted into
be a bi-convex problem:

min
{st,ut,dt}

{λt,m,µt,m,zt,m}

C0({st,ut}) + C1(d) (16a)

s.t. st+1 = Atst + Btut + ct, ∀t, (16b)
umin � ut � umax, ∀t, (16c)
amin � at � amax, ∀t, (16d)
dt ∈ [dmin, dmax], ∀t, (16e)
zt,m ≥ 0, ∀t,m, (16f)
λt,m �O∗

m
0, µt,m�K∗

r
0, ∀t,m, (16g)∥∥DT

mλt,m
∥∥
∗ ≤ 1, ∀t,m, (16h)

Ht,m(st,λt,m,µt,m) = 0, ∀t,m, (16i)
It,m(st,λt,m,µt,m, dt, zt,m) = 0, ∀t,m, (16j)

where, the nonlinear functions in (16i) and (16j) are

Ht,m(st,λt,m,µt,m) = µTt,mG + λTt,mDmRt(st), (17)

It,m(st,λt,m,µt,m, dt, zt,m) = λTt,mDmpt(st)− λTt,mbm

− µTt,mh− dt − zt,m. (18)

Existing methods approximate these bi-linear terms by Taylor
polynomial [13] and solve a sequence of convex problems
using the interior point method (IPM). The associated com-
putation complexity is O((N(nr + nu + 1) +N(

∑M
m=1 lm +

Mh))3.5), which is exceedingly high for large M .
In contrast, we solve this bi-convex optimization problem

by ADMM, where each iteration includes smaller convex
subproblems, and the dual variables associated with different
obstacles are updated in parallel to accelerate the computation
speed. In particular, the augmented Lagrangian (scaled form)
of (16) can be formulated as

L ({st,ut, dt}, {λt,m,µt,m, zt,m}, {ξt,m, ζt,m})
= C0({st,ut}) + C1(d) + J({st,ut, dt})

+

N∑
t=0

M∑
m=1

Qt,m(λt,m,µt,m, zt,m)

+
ρ

2

N∑
t=0

M∑
m=0

‖It,m(st,λt,m,µt,m, dt, zt,m) + ζt,m‖22

+
ρ

2

N∑
t=0

M∑
m=0

‖Ht,m(st,λt,m,µt,m) + ξt,m‖22 , (19)

where {ξt,m, ζt,m} are dual variables corresponding to the
equality constraints (16i) and (16j), ρ is the penalty parameter
chosen as a large value. Here J({st,ut, dt}) is the indicator
function of the constraints (16b)–(16e), i.e., J({st,ut, dt}) =
0 if (16b)–(16e) are satisfied and J({st,ut, dt}) = ∞
otherwise. Similarly, Qt,m(λt,m,µt,m, zt,m) is the indicator
function of the (t,m)th constraints in (16f)–(16h).

In (19), the first three items are coupled across differ-

ent t due to the constraint (16b), while the latter three
terms are decomposable w.r.t. t and m. Consequently, we
split the primal variables into two groups: 1) {st,ut, dt};
2) {λt,m,µt,m, zt,m}. Given the fact that the dual variables
{ξt,m, ζt,m} can be updated in parallel, the ADMM method
for minimizing the augmented Lagrangian is

{sk+1
t ,uk+1

t , dk+1
t } = arg min

{st,ut,dt}
L
(
{st,ut, dt},

{λkt,m,µkt,m, zkt,m}, {ξkt,m, ζkt,m}
)
, (20a)

λk+1
t,m ,µk+1

t,m , zk+1
t,m = arg min

λt,mµt,m,zt,m

L
(
{skt ,ukt , dkt },

{λt,m,µt,m, zt,m}, {ξkt,m, ζkt,m}
)
,∀t,m, (20b)

ξk+1
t,m = ξkt,m + (µkt,m)TG + (λkt,m)TDmRt(s

k
t ), (20c)

ζk+1
t,m = ζkt,m + (λkt,m)TDmpt(s

k
t )− (λkt,m)Tbm

− (µkt,m)Th− dkt − zkt,m,∀t,m, (20d)

Problems (20a) and (20b) are convex, and (20c) and (20d)
are the subgradients to update the dual variables. Problem
(20a) can be efficiently solved via a convex solver, e.g.
CVXPY [25], whose computation cost is independent of M .
Problems (20b)–(20d) are all separable across (t,m), and
{λt,m,µt,m, zt,m, ξt,m, ζt,m} can all be updated in parallel.
Furthermore, each problem in (20b) is a conic constrained least
squares problem which can be solved with low-cost solvers.
The stopping criteria to terminate the iterative procedure is
given by∑

t

∑
m

[
‖Ht,m(skt ,λ

k
t,m,µ

k
t,m)‖22

+ ‖It,m(skt ,λ
k
t,m,µ

k
t,m, d

k
t , z

k
t,m)‖22

]
≤ εpri, (21)∑

t

∑
m

[
‖λk+1

t,m − λkt,m‖22 + ‖µk+1
t,m − µkt,m‖22

]
≤ εdual, (22)

where the first condition guarantees the primal residual being
small and the second condition guarantees the dual residual
being small. Constants εpri > 0 and εdual > 0 are the
stopping criterion values. To achieve the best tradeoff between
the solution quality and computational cost, εpri and εdual

can be chosen empirically. According to our experimental
data in appendix, the stopping criteria value can be set to
εpri, εdual ∈ [0.1, 1].

C. Complexity Analysis and Warm Starting

1) Complexity Analysis: The entire procedure of RDA is
summarized in Algorithm 1. In each iteration, the CVXPY
solver is first adopted to solve (20a) with a complexity of
O((N(nr + nu + 1))3.5). Then, to optimize dual collision
variables, we need to solve (20b), which involves NM sub-
problems with the mth problem being solved at a computa-
tional cost of O((lm+h+ 1)3.5). Finally, the Lagrange multi-
pliers are updated via vector-matrix multiplications in (20c)–
(20d), which involve a complexity of O(N(

∑M
m−1 lmnm +

Mhnr)). Therefore, the total complexity of RDA is given
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by O(K(N(nr + nu + 1))3.5 + N
∑M
m=1(lm + h + 1)3.5 +

N(
∑M
m−1 lmnm+Mhnr)), where K is the number iterations

for the RDA to converge.
2) Warm Starting: It can be seen from the above analysis

that the complexity of RDA is linear in M . This signifi-
cantly saves computation time compared with IPM whose
complexity is cubic in M . Furthermore, the value of K
can be significantly reduced by leveraging warm starting.
Specifically, for collision-avoidance autonomous driving, the
odometry of the ego-vehicle and the states of surround-
ing obstacles do not vary significantly between two con-
secutive time steps, and therefore, the current RDA solu-
tions can be adopted as an initial guess of both the pri-
mal and dual solutions to the subsequent RDA iterative
procedure. That is, setting {λ0

t,m,µ
0
t,m, z

0
t,m, ξ

0
t,m, ζ

0
t,m} =

{λ�t,m,µ�t,m, z�t,m, ξ�t,m, ζ�t,m} for (20a), where the solutions
with � denote the cached values obtained from the previous
RDA outputs.

V. EXPERIMENTS AND RESULTS

In this section, we adopt numerical simulations, high-fidelity
simulators, and hardware experiments to verify the perfor-
mance and efficiency of RDA. In particular, we consider the
collision-free path tracking task for autonomous vehicles. The
task is defined as moving as close as possible to a reference
path while avoiding collisions. In our experiments, we set
η = 10, ρ = 10.

Besides the proposed RDA planner, we also simulate the
following schemes for comparison: (1) Optimization based
collision avoidance (OBCA) planner [12], which directly
solves the dual-MPC problem via nonconvex optimization
methods such as sequential convex programming; (2) Time
elastic band (TEB) planner [18], which obtains a sequence
of robot poses via general graph optimization and sparsity
regularization; (3) Point-mass ADMM (PMA) [14], which
models each obstacle as a single point and determines the
collision condition by computing the distance between this
point and the ego-robot position; (4) OBCA-II, which adopts
the OBCA planner but with no safe-distance regularization;
(5) RDA-II, which adopts the RDA planner but with no safe-
distance regularization.

A. Numerical Simulation

We verify the proposed RDA in our intelligent robot simula-
tor (ir-sim)2, which is a Python-based 2D numerical simulator
for robotic localization and navigation. The simulation scenario
is given in Fig. 3, where the obstacles are marked in black with
various shapes (e.g., rectangle, circle, etc.). The reference path
(i.e., the black line) in ir-sim is generated from a series of
directional waypoints and calculated by Dubins path [26].

The resulting navigation process of RDA in a cluttered
environment with 8 obstacles is shown in Fig. 3(a)–(e). The
actual robot path is represented by a green line and the robot

2https://github.com/hanruihua/ir sim.

Algorithm 1: RDA motion planner

1 Initialize the given points of the robot state s and
control vector u;

2 for iteration k = 1, 2, · · · do
3 Update the variables s, u, d by solving (20a) with

CVXPY;
4 Update the dual collision variables λ, µ, z by

solving (20b) with accelerated gradient projection
in a parallel manner;

5 Update the Lagrangian multipliers ζ and ξ by
(20c)-(20d) in a parallel manner;

6 if (21) and (22) are satisfied then
7 break
8 end
9 end

10 Apply the first receding step control vector to the robot.

is marked as a yellow box. The predicted trajectory within the
receding horizon is represented by a red curve. It can be seen
that the vehicle successfully avoids all obstacles while moving
close to the reference path in a smooth manner.

We compare the proposed RDA with OBCA, whose tra-
jectories and computation times are shown in Fig. 3(e)–
(f) and Fig. 5(a)–(b), respectively. It can be seen that both
approaches have the ability to find a proper collision-free
trajectory. However, the required computation time of RDA
is significantly shorter than that of OBCA, i.e., 0.1 seconds
for RDA versus over 0.3 seconds for OBCA, as illustrated
in Fig. 5(a). This implies that the planning frequency of
RDA is three times as fast as that of OBCA, thus providing
real-time potential in high-speed scenarios. Furthermore, as
shown in Fig. 5(b), the computation time of RDA only has a
slight change as the number of obstacles increases, while that
of OCBA grows dramatically. This corroborates the parallel
computation capability of RDA.

Here, we compare RDA with RDA-II and OBCA-II with the
safe distance dsafe being fixed to 0.5 m. It can be seen from
Fig. 3(g)–(h) that the vehicle gets stuck at position (10, 20)
for RDA-II due to the dense obstacles residing within this
local region and position (31, 32) for OBCA-II due to the 180-
degree turn at the right hand side of the reference path. In
contrast, the proposed RDA with distance regularization η ∈
[5, 30] passes these challenging points.

Finally, we compare RDA with PMA in another challenging
scenario, i.e., the corridor scenario as shown in Fig. 4. It can
be seen that the vehicle with RDA (yellow box) successfully
crosses the entire tunnel while that with PMA (red circle) gets
stuck at the first narrow gap. This is because PMA computes
the distance between the centers of the ego-vehicle and the
nearby obstacle, which works well only when both objects are
circular. However, in the considered scenario, both the vehicle
and the obstacle are rectangles, making the solution to PMA
infeasible.

https://github.com/hanruihua/ir_sim
https://github.com/hanruihua/ir_sim
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(a) RDA at time step 0 (b) RDA at time step 50 (c) RDA at time step 100 (d) RDA at time step 200

(e) RDA trajectory (f) OBCA trajectory (g) RDA-II trajectory (h) OBCA-II trajectory

Fig. 3: Navigation process and trajectory comparison of RDA and OBCA in a simulated environment.

Fig. 4: RDA (yellow box) and PMA (red circle) trajectories in
the corridor.
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Fig. 5: Comparison of computation cost of RDA and OBCA.

B. Gazebo Simulation

To verify the effectiveness of the proposed RDA under
practical sensor and motion constraints, we implement the
RDA and TEB methods in Gazebo [27], which is a high-
fidelity robotic simulator with close-to-reality sensory data and
motion dynamics. The scenario consists of an autonomous
vehicle and 10 obstacles (i.e., marked as blue cubes with the
size of 0.35 m × 0.35 m × 0.35 m). The receding horizon of
RDA is set to 20. Under the above setting, we execute 50 trials

with random goal points and positions of obstacles. Fig. 6
illustrates the trajectory of RDA in one particular case when
the robot moves from the starting point (0, 0) to the target point
(5, 4). The odometry of the vehicle with the RDA planner is
illustrated by the red arrows. It can be seen that the proposed
RDA generates a smooth and collision-free trajectory in the
dense-obstacle scenario.

Performance comparison between RDA and TEB is shown
in Fig. 7. The success rates (a successful trail is defined as
no collision or stuck during the navigation) of both schemes
under the different number of obstacles are shown in Fig. 7(a).
The two simulated schemes achieve similar success rates in
environments with few obstacles. However, RDA significantly
outperforms TEB in environments with dense obstacles. The
average navigation time (i.e., the average time required by the
planner to move from the starting point to the goal) under
the different number of obstacles is shown in Fig. 7(b). RDA
reduces the navigation time by up to 40%, which demonstrates
the necessity of predictive path optimization.

C. Hardware Experiment
To evaluate the performance of RDA in real-time operating

systems under limited hardware resources, we implement RDA
and TEB planners in an autonomous robot shown in Fig. 8. The
robot has four wheels and adopts Ackermann steering, which
can be viewed as a size-scaled road vehicle. Its sensor suite
consists of a 2D Lidar and multiple cameras (including RGB
and depth cameras). NVIDIA Jetson Nano is adopted as the
onboard computing platform for processing the sensor data and
executing the navigation package. The software architecture of
our implementation is shown in Fig. 9(a), which consists of
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Fig. 6: RDA Simulation in the Gazebo.
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Fig. 7: Performance comparison of RDA and TEB.

Fig. 8: The hardware of the Ackermann robot.

the RDA planner module and the robot module. Data sharing
between two modules is realized via ROS communications,
where master/slave nodes publish/subscribe topics carrying
the controller, map, and odometry information. Note that we
convert the obstacles in the costmap into non-point mass
representation via DBSCAN [28], and the experimental setting
is the same as Gazebo.

Based on the above implementation, the trajectories (red
arrows) of RDA and TEB planners of one trial are shown in
Fig. 9(b) and Fig. 9(c), respectively. It can be seen that the
robot powered by RDA achieves the target point successfully
with a smooth curve. In contrast, the TEB planner fails to
find a feasible route to cross those narrow gaps, and the
robot eventually gets stuck after a sequence of replanning.
This demonstrates the effectiveness and robustness of RDA in
real time systems and dense obstacle environments. Note that
we adopt the default parameters for TEB. One may fine-tune
these parameters to generate a feasible path. However, TEB
involves large-scale parameters without interpretability, leading
to a large amount of manual effort for calibration whenever the

robot enters a new complex scenario. In contrast, RDA only
involves several tuning parameters (e.g., η for regularization
and ρ for ADMM augmentation), which significantly facilitates
practical deployment.

VI. CONCLUSION

In this paper, we have presented RDA, an accelerated opti-
mization based collision-free motion planner for autonomous
navigation. RDA can support Ackermann dynamics and en-
able adaptive safety distances, non-point-mass representation
of obstacles, and parallel computing of optimal trajectories.
Various simulations and real-world experiments have shown
that the proposed RDA can achieve a significantly shorter
execution time compared to existing OBCA; the failure rate
and the navigation time of RDA can be reduced by 10 ∼ 40%
compared with various benchmark schemes such as TEB and
PMA. Future directions include high-speed vehicle and multi-
vehicle RDA, as well as real-world verification.

APPENDIX

To illustrate the relationship between the performance of
the algorithm and the stopping criteria, we choose different
values of εpri and εdual for the proposed RDA and execute 50
trials in the numerical simulator with 8 randomly distributed
obstacles. The average success rate and computational cost
are shown in Fig. 10. It can be seen that the success rate and
computational cost decrease as εpri and εdual increase. But since
the success rate drops significantly when εpri, εdual > 1 and the
computational cost drops significantly when εpri, εdual > 0.1,
the stopping criteria value is chosen to be εpri ∈ [0.1, 1] and
εdual ∈ [0.1, 1].
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