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Coarse-to-fine Hybrid 3D Mapping System with
Co-calibrated Omnidirectional Camera and

Non-repetitive LiDAR
Ziliang Miao1, Buwei He1, Wenya Xie1, Wenquan Zhao1, Xiao Huang1, Jian Bai2, and Xiaoping Hong1

Abstract—This paper presents a novel 3D mapping robot with
an omnidirectional field-of-view (FoV) sensor suite composed of a
non-repetitive LiDAR and an omnidirectional camera. Thanks to
the non-repetitive scanning nature of the LiDAR, an automatic
targetless co-calibration method is proposed to simultaneously
calibrate the intrinsic parameters for the omnidirectional camera
and the extrinsic parameters for the camera and LiDAR, which
is crucial for the required step in bringing color and texture
information to the point clouds in surveying and mapping
tasks. Comparisons and analyses are made to target-based
intrinsic calibration and mutual information (MI)-based extrinsic
calibration, respectively. With this co-calibrated sensor suite,
the hybrid mapping robot integrates both the odometry-based
mapping mode and stationary mapping mode. Meanwhile, we
proposed a new workflow to achieve coarse-to-fine mapping,
including efficient and coarse mapping in a global environment
with odometry-based mapping mode; planning for viewpoints in
the region-of-interest (ROI) based on the coarse map (relies on the
previous work [1]); navigating to each viewpoint and performing
finer and more precise stationary scanning and mapping of the
ROI. The fine map is stitched with the global coarse map,
which provides a more efficient and precise result than the
conventional stationary approaches and the emerging odometry-
based approaches, respectively.

Index Terms—Mapping, Robotic Systems, Omnidirectional
Vision, Calibration and Identification, SLAM.

I. INTRODUCTION

THREE-DIMENSIONAL scanning (obtain the raw points)
and mapping (register or stitch the points into a

point cloud map) are becoming increasingly important in
robotics [2], digital construction [3], and virtual reality [4],
where digitization of the physical 3D space could provide
tremendous insights in modeling, planning, management,
optimization, and quality assurance. Photogrammetry has been
developed to capture the 3D world. However, its application
has been limited in aviation settings where accurate GPS
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RTK signals are required. Recently, the need for large-scale
mapping of building environments has been rising, mainly
due to the requirements from Building Information Modeling
(BIM) systems. Thanks to the availability of emerging 3D
robotic LiDAR sensors [5], [6], Mobile Laser Scanner (MLS)
systems are increasingly adopted [7] (Fig. 1a, #3 and #4),
where point clouds from these sensors could be registered
to the global frame through sensor motion estimation (i.e.,
odometry) at each instance. However, due to the movement
nature, such approaches largely depend on estimations of
temporal characteristics such as translation and rotation, or
spatial characteristics such as sensor FoV and landmark
coverages. The results vary from scan to scan with no
guarantee of precision. Hence, a more robust and precise
method is desired.

On the other hand, the traditional Terrestrial Laser
Scanner (TLS) has been employed in many precision-stringent
applications (Fig. 1a, #1 and #2). The TLS-based stationary
mapping is usually inefficient (due to the accurate but slow
laser rotation) but could provide precise results. Viewpoints
(also known as stationary scanning locations) need to be
carefully planned to ensure the spatial coverage and enough
overlapping regions of adjacent viewpoints to make accurate
point cloud stitching [8], but on the other hand, as fewer as
possible to reduce scanning time and cost. The planning for
viewpoints largely relies on the overall layout of the scene,
which has been done by human experience so far [9].

#1 #2

#3 #4

(a)

Omnidirectional
camera

Livox Mid-360 LiDAR
(with integrated IMU)

Gimbal mount

Mobile platform

(synchronized)

(b)

Fig. 1. 3D mapping systems: (a) the current TLS (#1 FARO Focus Premium,
#2 LEICA BLK360) and MLS (#3 LEICA BLK2GO, #4 NavVis VLX)
systems; (b) the proposed hybrid mapping robotic system.

Combining the strength from both worlds would be ideal in
large-scale 3D mapping applications. As shown in Fig. 1b,
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the proposed hybrid mapping robot is developed carrying
a gimbal mount and a novel sensor suite consisting of an
omnidirectional non-repetitive Livox Mid-360 LiDAR1 and
an omnidirectional camera. The sensors’ FoV and the non-
repetitive scanning nature are shown in Fig. 2a. In the
odometry-based mapping mode, the sensor suite is kept
horizontal by fixing the gimbal mount to coarsely and
efficiently map the entire space with the mobile platform.
Based on the coarse map, a few viewpoints are planned for the
stationary mapping of targeted ROIs. In the stationary mapping
mode, the robot will navigate and stay still at each viewpoint,
performing 360°×300° scanning by traversing the vertical FoV
through the gimbal mount. These precise scans are registered
with each other and then stitched with the pre-generated coarse
map forming a global map with fine ROIs.

The main contributions of this work are as follows:
1) The first hybrid 3D mapping robot system that

integrates odometry-based and stationary mapping modes
is proposed. The consistency of point clouds in two
modes can be guaranteed with the single omnidirectional
non-repetitive Livox Mid-360 LiDAR.

2) An omnidirectional camera is introduced in the proposed
system to complement the omnidirectional LiDAR.
A novel automatic targetless co-calibration method
is proposed to simultaneously calibrate the intrinsic
parameters and the extrinsic parameters.

3) An automated coarse-to-fine hybrid mapping workflow is
demonstrated, including odometry-based coarse mapping
in the global environment, planning for the viewpoints
in the ROIs, and finer stationary mapping at viewpoints.
The entire project is open-sourced on GitHub2 to aid the
development of this emerging field.

II. RELATED WORKS

A. Mapping Solutions

3D mapping solutions are of great interest in many
emerging fields [3]. TLS-based and MLS-based approaches
are commonly adopted.

The traditional TLS-based approach uses a heavy-duty
single-laser scanner and traverses the entire FoV through
step-wise rotations about the horizontal and vertical axes.
It provides sufficiently dense points with good precision.
However, this method is slow and laborious. It has to be
repeated on many viewpoints, which need to be chosen wisely
because a lack of viewpoints will cause missing information
in the desired ROI, while the excess of viewpoints will lead
to longer scanning hours and poorer efficiency. Currently,
viewpoints planning relies on human intuition or experiences,
making it challenging to plan effectively in large and complex
working environments like the construction scenes [9].

On the contrary, the MLS-based approach provides real-
time scanning and mapping results as the LiDAR moves.
The current MLS devices are classified by their usage
configurations, such as handheld (Fig. 1a, #3), backpack

1The authors gratefully acknowledge Livox Technology for the equipment
support.

2https://github.com/ZiliangMiao/Hybrid Mapping Cocalibration.git

(Fig. 1a, #4), and trolley. Most of these mobile systems rely on
conventional LiDARs (16, 32, or 64 lines) and construct the
3D map by registering the point cloud with LiDAR odometry
or LiDAR-IMU odometry. Such mobile systems greatly speed
up the mapping process without planning for viewpoints.
However, it cannot replace the TLS-based approaches due to
insufficient mapping precision and sparse point clouds [3]. The
repetitive scanning nature of mechanical LiDAR is unsuitable
for stationary scanning due to limited FoV coverage (20%
coverage for 32-line LiDAR). Therefore, the indispensable
motion for more coverage will cause errors in pose estimation,
which are accumulated throughout the process, limiting the
usage in high-precision applications.

Both TLS-based and MLS-based approaches have their
unique advantages and drawbacks. It is desired to devise
a mechanism to combine both modes. For example, a
combination of TLS and MLS is used to solve the registration
problem between non-overlapping spaces [8] or use TLS scans
as references to MLS mapping registration to achieve low
mapping errors [10]. Moreover, MLS is also used to provide a
3D map to solve the viewpoints planning problem of TLS [9].
However, all these methods are based on heterogeneous
sensors for different modes, with different synchronization,
data structure, and protocols, which are difficult to construct
a one-stop mapping robot with a streamlined and automated
workflow.

The unique non-repetitive scanning nature of the Livox
LiDAR provides a combination of an instantaneous high
density at a short time interval for odometry (with effective
point density as 32-line LiDAR within 0.1 seconds) and an
image-level resolution at relatively long time intervals for
scanning (within 3 seconds, as shown in Fig. 2b), which makes
it surprisingly suitable for such hybrid working mechanism.
The feature provides sufficiently good performance in
odometry scenarios [11] and a dense FoV coverage for image-
like feature processing [6], [12], [13]. In this paper, the two
working modes are integrated into the same robot, ensuring
overall mapping efficiency and precision with an automated
coarse-to-fine hybrid mapping workflow.

B. Calibration Methods

In addition to LiDAR, cameras are usually required
in 3D mapping systems to give an overview of the
mapped environment [14]. Cameras could provide high-quality
geometric, color, and texture information [15], which enables
further modeling and rendering [16] of the point clouds
and permits tasks in object detection, segmentation, and
classification [17]. Meanwhile, for autonomous navigation, the
camera is also vital to visual-LiDAR odometry through sensor
fusion [4]. All these functions would rely on the accurate
calibration of the intrinsic parameters of the camera and
extrinsic parameters between the cameras and LiDAR [15].

Traditionally, multiple cameras are usually required to
be complementary to the omnidirectional FoV of LiDAR.
This work employs an omnidirectional camera over the
traditional multi-camera vision to avoid bulky construction,
high cost, shutter synchronization, and cascaded extrinsic
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calibrations. The intrinsic and extrinsic parameters of this
novel omnidirectional sensor suite are essentially needed.

The intrinsic parameters of the omnidirectional camera
must be well calibrated since these types usually possess
much larger and more complex distortions than pin-hole
cameras [18]. In [18]–[20], higher-order polynomial-based
intrinsic models are introduced with many degrees of
freedom to obtain satisfactory results. A popular OcamCalib
toolbox based on the checkerboard is provided [19]. These
methods could be susceptible to over-fitting with high-order
polynomials and often require evenly distributed artificial
targets and dense features across the entire space. Typically,
these calibration processes are manual and could lead to
tedious procedures with a large margin of error. Additionally,
the omnidirectional camera in our work is constructed with
a refractive-reflective geometry to capture a ring-like FoV
beyond 180°. This construction makes intrinsic calibration
even more difficult. An accurate, automatic, and targetless
calibration method is desired.

The extrinsic calibration method between the
omnidirectional camera and LiDAR has only been explored
in [21] using edge correspondence to match point clouds
and images. The bearing angle images highlight the edge
features, which are manually positioned. Targetless extrinsic
calibration methods for monocular cameras and LiDAR have
been developed recently. With the non-repetitive LiDARs,
CamVox [12] could project the image-like LiDAR point
clouds onto the camera image plane and extract edge pixels
using the grayscale images based on reflectivity and depth.
The method proposed in [13] uses voxels to extract the edge
points in 3D space and classifies the edges based on depth
continuity. Both methods work well with conventional pin-hole
cameras and need to be extended toward the omnidirectional
cameras with significantly larger distortions. An additional
targetless extrinsic calibration method employing mutual
information (MI) is also developed [22], which maximizes
the intensity correlations of LiDAR and camera. However,
the misrepresented information caused by lighting conditions,
surface reflection properties, and spectral reflectance
disagreement could result in worse calibration than the
edge-based methods.

In the proposed targetless co-calibration method, the high-
resolution dense point cloud of the non-repetitive scanning
LiDAR gives abundant and ground-truth-level features, which
eliminates the artificial targets and manual involvement and
reduces the error caused by insufficient coverage and sparse
features of the targets. With the co-calibration method, the
intrinsic and extrinsic parameters are obtained simultaneously
and can be re-calibrated fast and reliably in work scenes.

III. PROPOSED SYSTEM

A. Co-calibrated Omnidirectional Sensor Suite

The Livox Mid-360 LiDAR has a 360° × 55° FoV and
features a non-repetitive scanning pattern, with increasingly
denser points over time (the coverage of FoV approaches
100%), as shown in Fig. 2b. The unique feature specifically
benefits both odometry-based and stationary mapping modes.

The omnidirectional camera provides color information of
the surroundings and has a corresponding 360° × 70° FoV
(Fig. 2a). Both sensors are synchronized and are mounted on
a two-axis gimbal (Fig. 1b) to extend the scanning FoV to
360°× 300°.

-7°

-10°

+60°

+52°
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+60°

-7°

+52°

Omnidirectional Camera Livox Mid-360 LiDAR

(a)

T = 0.1s T = 0.5s T = 3.0s

(b)

Fig. 2. Configuration of the sensors: (a) omnidirectional camera and Livox
Mid-360 LiDAR, both on the gimbal mount; (b) point cloud accumulation
over time due to the non-repetitive scanning nature of the Livox LiDAR.

（Color represents reflectivity of LiDAR points)
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Fig. 3. Proposed co-calibration process. * The grayscale value indicates the
average reflectivity of the projected LiDAR points within a pixel.

The co-calibration simultaneously obtains the intrinsic
(camera) and extrinsic (camera-LiDAR) parameters, defined
respectively as Θ , [u0, v0, c, d, e, a0, . . . , an]

T and ∆ ,
[α, β, γ, tx, ty, tz]

T, which will be introduced later. With
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the unique benefit of the non-repetitive scanning LiDAR,
an extremely dense point cloud is always available, which
provides a 3D ground truth of the environment. This high-
resolution point cloud could be projected onto the 2D image
plane with pixel values from LiDAR reflectivity, from which
clear edge features could be extracted. To align the edges
from LiDAR and the camera, the co-calibration iteratively
maximizes the correspondence of projected LiDAR edge
points with the omnidirectional camera edge pixels. Kernel
Density Estimation (KDE) is employed to estimate the camera
edge distribution with different distribution smoothness (by
varying bandwidth coefficient) to obtain global optimum.
The entire process of co-calibration can be divided into the
following two steps (Fig. 3):

1) Edge Extraction: Edge extractions are performed for
both camera and LiDAR. For the camera, exposure fusion [23]
is adopted to enhance the dynamic range of images to capture
more details for low and high-brightness objects. Canny edge
extraction [24] is performed on the enhanced image, with
edge points Q = [q1, q2 . . . , qn]. For LiDAR, since the
FoV is smaller, point clouds scanned from different pitch
angles are stitched together. The stitching is performed by the
generalized iterative closest point (GICP) algorithm [25] with
the initial transformation given by the state of the gimbal.
The stitched point cloud with reflectivity is then projected
to an image plane with the azimuthal angle and elevation
angle as the coordinates, generating a grayscale image by
taking the average reflectivity of the projected LiDAR points
within each pixel. The Canny edge extraction is performed
on this grayscale image. Uniform sampling is performed in
each stage to remove the non-uniform point distribution. The
edge pixels are then identified in the original 3D point cloud
P = [LP1,

LP2 . . . ,
LPm].

2) Iterative Optimization: The iterative optimization is
performed in the omnidirectional image space. The LiDAR
edge points are projected to the image coordinates through
the following equations:

CP = C
LT(LP;∆) = C

LR · LP + C
Lt, LP ∈ P, (1)

p = Π(CP;Θ) =

[
c d
e 1

] [
r cosφ− u0
r sinφ− v0

]
, (2)

r = F(θ; a0, . . . , an) = a0 + a1θ
1 + . . .+ anθ

n, (3)

θ = arccos(
z√

x2 + y2 + z2
), (4)

φ = arccos(
x√

x2 + y2
), (5)

where CP and LP denote the 3D point coordinates in camera
and LiDAR coordinate systems, respectively, and they are
related through the extrinsic transformation C

LT(LP;∆), i.e.,
rotation C

LR and translation C
Lt with the extrinsic parameters

∆. The symbol p denotes the location of the point in the
camera image space, and Π(CP;Θ) expresses the intrinsic
transformation from CP = [x, y, z]

T (3D point) to p

(2D point), with the distortion correction matrix
[
c d
e 1

]
.

The pixel radius r from the image center [u0, v0]
T is

transformed from the elevation angles θ by a polynomial
function F(θ; a0, . . . , an) in the camera model; θ and φ are the
elevation and azimuth angle of CP (Note the omnidirectional
camera features a ring image).

To facilitate the alignment between the camera edges
and the LiDAR edges, the camera edge distribution with
nonparametric probability density function is constructed
with the Gaussian Kernel by Kernel Density Estimation
(KDE) [26]. The optimization is based on maximizing the
probabilities of the projected LiDAR edge points onto the
camera edge distribution:

Θ̂, ∆̂ = arg max
Θ, ∆

1

m

m∑
i=1

||f̂(pi;h,Q)||2, (6)

f̂(pi;h,Q) =
1

nh2

n∑
j=1

K

(
pi − qj
h

)
, (7)

K(x) =
1√

2π det(Σ)
e−

1
2 (x−µ)

TΣ−1(x−µ), (8)

µ = [0, 0]
T
, Σ = I2×2, (9)

where h denotes the bandwidth of the KDE.
Several rounds of iterative optimization with reducing

bandwidth are carried out to approach the correct calibration
values smoothly. At the start of the process, the bandwidth
is set at a large number to get a continuous and smooth
cost function, which allows the optimization to approach
the optimal region quickly without many local optima.
Then the bandwidth is reduced gradually to increase the
gradient, ensuring a sensitive optimization around the optimum
(optimization of the x-axis translation is shown in Fig. 4).
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Fig. 4. Iterative optimization with the reducing KDE bandwidth: (a) the
normalized cost w.r.t. the translation in the x-axis under the different values
of bandwidth; (b) zoom in to a sub-region of (a) to demonstrate the iterative
process.

The optimization uses the Levenberg-Marquardt
method implemented in Ceres-solver [27]. For
computational efficiency, the parabolic Epanechnikov
kernel K(x) = 3

4 (1 − x
Tx) can be substituted for the

Gaussian kernel.

B. Coarse-to-fine Hybrid Mapping

The coarse-to-fine hybrid mapping workflow is outlined in
Fig. 5. With the co-calibration and synchronization, all the
obtained LiDAR points are represented in both coordinates
and color. Odometry/SLAM methods are used as a backbone
to provide localization in both coarse and fine mapping. We
used FAST-LIO (LiDAR-Inertial odometry [11]) in our current
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Fig. 5. Proposed coarse-to-fine hybrid mapping workflow. The
odometry/SLAM serves as a backbone to provide localization results.

system, but the choice is not limited; other odometry/SLAM
methods could be utilized as well. At the coarse mapping
stage, the robot obtains the localization and motion results
from the odometry, from which the scanned points are
converted and registered to the global map. Based on the
coarse map, a few viewpoints for stationary mapping are
planned for the targeted ROIs, which is well developed in
previous work by considering the constraints such as range,
grazing angle, FoV, and overlap [1]. The robot then navigates
to the generated viewpoints one-by-one through the backbone
odometry/SLAM and performs the fine mapping, respectively.
At each viewpoint, stationary scans are performed at several
gimbal states, with overlapping FoV regions between the
adjacent two states, and cover a large overall FoV (360° ×
300°). These point clouds will be pre-registered based on the
gimbal angles (as initial angles) at each viewpoint. The scans
from all the viewpoints are then combined with the global
coarse map based on robot localization (again provided by the
LiDAR-Inertial odometry) as the initial state for optimization.
Finally, the GICP [25] algorithm is used to optimize all the
localization results and gimbal states and refine all stationary
scans and the coarse map to form the fine map. Notably,
we could choose either odometry or SLAM methods in
the localization backbone. Although SLAM has more loop-
closure functions than odometry, the final GICP optimization
is accurate enough to yield a much better localization result.

IV. EXPERIMENTS AND RESULTS

A. Co-calibration Results

The effectiveness of the proposed co-calibration method is
demonstrated in three natural scenes, as shown in Fig. 6. The
projection error (in pixels) is defined as:

e =
1

n

n∑
i=1

d(pi;Q), (10)

where d is to calculate the distance from the LiDAR projected
point pi to the nearest point in target set Q. Note that the
largest 10% of the distances are considered outliers with no
correspondences and are eliminated. Overall, the co-calibration
works well in all scenes with projection errors on the order of
3 pixels or less. The colorized point clouds after co-calibration
also show much better consistency, as seen in Fig. 6b.

(a) (b)

Fig. 6. Co-calibration results in three scenes: (a) aligned LiDAR edge points
(red) on camera images; (b) comparison of colorized point clouds before and
after co-calibration with the average projection errors in pixels.

We further compare our co-calibration results with
the classical target-based intrinsic calibration [19], [28],
and the state-of-the-art MI-based extrinsic calibration [22],
respectively, as shown below.

1) Analysis of the Intrinsic Results: As a comparison, the
target-based intrinsic calibration for omnidirectional cameras
is performed [19]. Thirty checkerboards are manually selected
as a reference set (Fig. 7a). As the number and position
of the targets affect the calibration profoundly, we evaluate
the calibration result as a function of the targets’ number
and randomly select a specific number of checkerboards
from the reference set for calibration (repeated 100 times
independently). The mean reprojection error is used to
represent the calibration accuracy. The results in Fig. 7b
show that as the number of checkerboards increases, the
calibration is more accurate and converged. It is likely that
more checkerboards would increase the FoV coverage and
feature points density and improve the effectiveness of the
target-based method. However, it is labor-intensive to place
many checkerboards uniformly and densely around the sensor
and manually select the appropriate ones, which may be
impossible in the field. The co-calibration method, on the
contrary, employs dense LiDAR points as abundant, well-
covered, and accurate features; and the elimination of artificial
targets and human involvement enables an accurate, efficient,
and field-friendly approach. Our co-calibration result yields
a significantly improved performance on the same reference
set, compared with the conventional method (orange and blue
boxplot in Fig. 7b, respectively).

2) Analysis of the Extrinsic Results: The mutual
information (MI)-based extrinsic calibration method
utilizes the fact that the reflectivity of LiDAR points
and corresponding grayscale intensity values of camera
pixels are correlated since both of them capture the spectral
response of the object at light frequencies (LiDAR 905 nm,
camera 400-800 nm), which are usually similar. These values
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Fig. 7. Comparison with the target-based intrinsic calibration: (a) the poses
of the thirty checkerboards; (b) boxplots of projection errors of target-based
calibration (blue) and the proposed co-calibration (orange).

are then used to calibrate the extrinsic parameters between
the camera and LiDAR by maximizing the MI of the two
distributions [22]. Fig. 8 shows the comparisons of the two
optimization methods demonstrating the normalized costs on
different extrinsic parameters. The proposed co-calibration
method shows a much more sensitive and reliable gradient
in the cost function near the optimum than the MI-based
method.
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Fig. 8. Comparisons of the normalized cost function between the proposed
method and the MI-based method. The optimal values should lie in the gray
areas estimated based on manufacturing.

The inaccurate calibration result of the MI-based method
could be attributed mainly to three reasons: the lighting
conditions, the surface reflection properties, and the spectral
reflectance disagreement. The camera’s light source Ii is the
external ambient lighting which does not change with the
camera pose. On the contrary, LiDAR uses an active laser
from the sensor and therefore differs significantly from the
camera, as shown in Fig.9a. Besides the lighting, the surfaces
of the objects are important. The detected intensity could be
modeled as follows:

Ir = Kd · Ii · f(θ), (11)

where Ir and Ii indicate the reflection intensity and incident
intensity, respectively, Kd is the reflectance, and f(θ)
describes the surface properties of the object with respect to
incident angle θ. For most objects, the surface is Lambertian
(diffusive), and in that case, f(θ) = cos θ. However, many
surfaces do not follow this property, and it could be a specular

reflection that the LiDAR does not collect any signal; or the
retroreflection that the majority of the energy will be directed
back toward the LiDAR itself and gives a strong intensity, such
as those on traffic signs and warning stickers, which show a
contrast difference in the LiDAR intensities from the camera
intensities shown in the red boxes in Fig. 9b. Additionally,
the spectral reflectance of objects at various light wavelengths
could be different. For instance, materials composed of plant
fibers show a large reflectance at around 905 nm, even those
dyed in black colors. As a result, no contrast could be seen in
LiDAR intensities of materials with different colors, as shown
in green boxes in Fig. 9b. All three factors mentioned above
could cause significant differences in intensity response from
the LiDAR and the camera and reduce the applicability of the
MI-based method.
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Fig. 9. Analysis of the MI-based extrinsic calibration: (a) the types of
reflection of the LiDAR and camera w.r.t. the rough surface and the
retroreflective surface; (b) the inconsistent intensity cases between LiDAR and
camera, including retroreflection cases (red boxes), and the special spectral
reflectance cases (green boxes).

B. Coarse-to-fine Hybrid Mapping Results

The proposed coarse-to-fine hybrid mapping method is
demonstrated in an academic building on the SUSTech
campus. The global coarse map is generated by Fast-LIO in
ten minutes, and the ROI is selected based on this global
coarse map (Fig. 10a). In this case, five viewpoints are
properly planned in this ROI (Fig. 10b), and perform stationary
scanning for three minutes in each (Fig. 10c).

Plane thickness could be used as a quantitative metric for
precision evaluation and comparison between coarse and fine
mapping. Local planes with a small third eigenvalue λ3 are
selected by diagonalizing the covariance matrix. Assuming
the points along the plane’s normal direction follow the
Gaussian distribution (corresponding to the third eigenvalue
λ3 with the normal direction of the plane defined by its
eigenvector), we could set the thickness of the plane as 4

√
λ3.
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(a)

(b)

(c)

Fig. 10. Coarse-to-fine hybrid mapping: (a) odometry-based global coarse
mapping; (b) coarse map of the selected ROI, with markers indicating the
planned viewpoints; (c) fine map of the ROI, the color illustrates the scans
from respective viewpoints.

TABLE I
SPECS COMPARISON OF CURRENT MAPPING SYSTEMS

Proposed #1 FARO Focus
Premium 150

Type Hybrid Mapping TLS
FoV 360° × 300° 360° × 300°

Range 0.1-40 m 0.5-150 m
PPS 200,000 pts/s 2,000,000 pts/s

Precision ∼ 40 mm (coarse)
∼ 20 mm (fine) ∼ 1mm [29]

Accuracy ∼ 10 mm (coarse)
∼ 2 mm (fine) ∼ 1mm [29]

Registration Odometry+Optimization Optimization
Work Manner Mobile Robot Manual (tripod)

Viewpoints Planning Coarse map-based Intuition-based
Vision 1-omni camera 1-camera

#2 LEICA
BLK360

#3 LEICA
BLK2GO

#4 NavVis
VLX

TLS MLS MLS
360° × 300° 360° × 270° 360° × 30°(×2)

0.5-45 m 0.5-25 m 0.9-100 m
680,000 pts/s 420,000 pts/s 300,000 pts/s (×2)
∼ 20 mm [30] ∼ 20 mm [30] 15-50 mm(walls, 80.5%) [31]
∼ 1 mm [30] ∼ 30 mm [30] 15-50 mm(beams, 98.2%) [31]
Optimization Odometry/SLAM Odometry/SLAM

Manual (tripod) Manual (handheld) Manual (backpack)
Intuition-based No need No need

3-camera 3-camera 4-camera

The coarse and fine maps of the three different scenes are
shown in Fig. 11a, whereas the zoomed views show the point
cloud quality with the top view of the selected planes to
demonstrate the mapping quality. The quantitative evaluations
of the plane thickness (the mapping precision) in these scenes
are summarized in Fig. 11b. Besides precision (spread of data),
accuracy (correctness) is also important to examine. Fig. 11c
illustrates the measurement accuracy (compared to results
from a TLS system, which we regard as ground truth). It is
evident that both the precision and accuracy of fine mapping
outperform coarse mapping. Although odometry-based coarse
mapping has good performances in best-case scenarios, it
could be significantly improved by fine mapping in the average
values and worse-case scenarios, which are the main concerns
of the surveying and mapping industry.

With the accurate co-calibration results, LiDAR points
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Fig. 11. Comparison of coarse and fine mapping: (a) coarse and fine maps
in three scenes (scene #1 is from Fig. 10b, scene #2 and #3 are new). The
left column shows the large-scale coarse map, and the right column shows
the zoomed-in coarse and fine map in top view (to visualize wall thickness)
and third person view (to visualize scene); (b) mapping precision from the
three scenes; (c) mapping accuracy from the three scenes; (d) top view of the
colorized fine map; (e) third-person view of the colorized ROI.

can be colorized from the image information through the
transformation in Eqn. 1 and Eqn. 2. Fig. 11d shows the
colorized hybrid mapping, and Fig. 11e illustrates the fine
mapping of the zoomed-in ROI. The coarse-to-fine map with
great precision and accurate colorization pave the way for
higher precision with a single unified setup and workflow. It
benefits industries requiring both efficiency and accuracy, such
as construction automation and building inspection.

Lastly, a detailed comparison of the proposed system
with the current widely used TLS and MLS systems
(shown in Fig. 1a) is made in Table I, where several key
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parameters are listed. The most crucial difference is that the
proposed system integrates two working modes in a single
streamlined workflow, ensuring overall mapping efficiency
and precision/accuracy. All other systems are either TLS
which only works in stationary mode, or MLS in mobile
mode. Due to this capability, it is the first robotic system
that allows automatic viewpoint planning instead of human
intuition-based viewpoints selection. In addition, the mobile
robot could navigate itself with overall good localization and
provide good initial states for fine map optimization. The
mapping precision and accuracy of the proposed system are
also compared with these systems [29]–[31]. The proposed
system achieves performance close to the LEICA TLS but
allows mobility as MLS, agreeing with the purpose of the
system.

V. CONCLUSION

This paper proposed a coarse-to-fine hybrid 3D mapping
robotic system based on an omnidirectional camera and a non-
repetitive Livox LiDAR. A hybrid mapping approach with both
odometry-based and stationary mapping modes is integrated
into one mobile mapping robot, achieving a streamlined
and automated mapping workflow with the assurance of
efficiency and mapping precision and accuracy. Meanwhile,
the proposed automatic and targetless co-calibration method
provides accurate parameters to generate colorized mapping.
Specifically, the calibration is based on edges extracted
from camera images and LiDAR reflectivity, and the result
is compared with the mutual-information-based calibration
method, which was under-performing possibly due to varied
reflection nature in light sources, surface reflection properties,
and the spectral reflectance disagreement in the MI-based
method. In future work, more complicated planning strategies
could be developed to further optimize both the objectives
of scanning time and spatial coverage. We believe this new
automated mapping robot will open up a new horizon for
surveying and inspection robotics.
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