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Abstract— Drones equipped with cameras can significantly
enhance human’s ability to perceive the world because of their
remarkable maneuverability in 3D space. Ironically, object
detection for drones has always been conducted in the 2D image
space, which fundamentally limits their ability to understand
3D scenes. Furthermore, existing 3D object detection methods
developed for autonomous driving cannot be directly applied
to drones due to the lack of deformation modeling, which
is essential for the distant aerial perspective with sensitive
distortion and small objects. To fill the gap, this work proposes
a dual-view detection system named DVDET to achieve aerial
monocular object detection in both the 2D image space and the
3D physical space. To address the severe view deformation issue,
we propose a novel trainable geo-deformable transformation
module that can properly warp information from the drone’s
perspective to the BEV. Compared to the monocular methods
for cars, our transformation includes a learnable deformable
network for explicitly revising the severe deviation. To address
the dataset challenge, we propose a new large-scale simulation
dataset named AM3D-Sim, generated by the co-simulation of
AirSIM and CARLA, and a new real-world aerial dataset
named AM3D-Real, collected by DJI Matrice 300 RTK, in both
datasets, high-quality annotations for 3D object detection are
provided. Extensive experiments show that i) aerial monocular
3D object detection is feasible; ii) the model pre-trained on
the simulation dataset benefits real-world performance; and iii)
DVDET also benefits monocular 3D object detection for cars.
To encourage more researchers to investigate this area, we will
release the dataset and related code in here.

I. INTRODUCTION

Drones equipped with cameras provide remarkable flexi-
bility to perceive the world and have been actively used in
a wide range of applications, including agricultural, aerial
photography, fast delivery, and surveillance [1]. A unique
advantage of drones is their maneuverability in the 3D
space, enabling a vast potential in 3D scene understanding.
However, the current drones’ object detection is only limited
to the 2D image space and the resulting 2D boxes with no
3D physical meaning [2]. This paper considers the problem
of 3D object detection for images captured by drones.

In practice, developing 3D object detection systems for
images captured by drones faces three critical challenges:
lack of well-organized dataset, developing suitable 3D rep-
resentation from drone’s view, and a well-designed detection
method. First, the existing drone’s perception datasets [2],
[3] only have 2D annotations in image coordinate, which
cannot be used for 3D object detection. Second, common 3D
bounding box representation for autonomous driving is not
suitable for drones, as in the aerial view, the object height
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Fig. 1. Our dual-view object detection system simultaneously detects the
objects in both 2D range view (RV) and 3D birds’ eye view (BEV), given
a 2D aerial image. Colors denote the BEV detections at various altitudes.

is negligible compared to the flying height of the drones
so that is almost impossible to estimate. Third, the intuitive
method that directly transforms 2D boxes to 3D boxes fails
the aerial view due to the severe deformation issue, including
aerial view variation and distant imaging, see Fig. 2. For the
same reason, the emerging monocular 3D object detection
methods for autonomous driving are not suitable for drones.

To resolve the dataset limitation, we first propose a com-
prehensive and well-organized dataset, including a simulation
data version, AM3D-Sim, and a real-world data version,
AM3D-Real. AM3D-Sim is based on the co-simulation of
AirSIM [4] and Carla [5], where AirSIM simulates the flying
drones and Carla simulates the complex background scenes
and dynamic foreground objects. AM3D-Real is collected
with DJI drones to validate the capability of the 3D measure-
ment of the real world. Similar to the 3D perception dataset
for autonomous driving, our dataset contains the aerial image
data with both 2D and 3D annotations.

To address the object representation issue, we propose a
novel representation for drones: the BEV bounding box and
the categorical altitude level, which simultaneously localizes
an object on the ground and reflects its altitude. Categorical
altitude estimation is essential in aerial view, as i) unlike cars,
the observed ground from drones is usually much broader
and non-flat, especially overpass and ramps, so altitude is
critical for 3D detection; ii) estimated altitudes allow to place
2D image information at the correct 3D locations, so altitude
aids in precise warping. Note that we estimate the categorical
altitude, instead of a continuous value. This can relieve the
difficulty of altitude learning.

To address severe deformation issues caused by view
variation and distant imaging in aerial view, which are
rarely considered in autonomous driving, we propose a novel
geo-deformable transformation, leveraging both the stability
of the geometric transformation and the flexibility of the
learnable deformable transformation. In the geometric trans-
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Fig. 2. Directly transforming 2D detections from RV to BEV (Late-GeoT)
fails due to the small object size and severe deformation issue. Green, blue
and red denote the ground-truth, detections of Late-GeoT and DVDET,
respectively. Note that the BEV image is for reference only. Its pixel values
are inaccurate due to deformation and loss of altitude information.

formation branch, the range-view (RV) feature is warped to
the BEV based on camera pose information and the estimated
altitude level. In the deformable transformation branch,
we adjust the BEV features in a local region through a
distance-aware deformable convolutional network. A residual
structure combines the outputs of two branches. Compared
to methods for autonomous driving, we additionally use a
learnable DCN to adjust the geometrically warped feature,
thus mitigating the severe deviation in the aerial view.

Based on the above designs, we propose a dual-view, aerial
monocular 3D object detection system; termed as DVDET,
which jointly localizes the objects in the image and the
3D space. We utilize the domain transfer technique to help
handle the real-world data with the knowledge learned on the
large-scale simulation dataset. We conduct comprehensive
experiments to validate the effectiveness of DVDET.

To summarize, our contributions are as follows:
• We propose a novel task of aerial monocular 3D object

detection to promote 3D scene understanding for drones from
an aerial perspective. Our final system can simultaneously
achieve 2D object detection in RV and 3D object detection
in BEV given one 2D aerial image.
• We propose two core techniques specifically designed

for aerial monocular 3D object detection, including trainable
geo-deformable transformation, which warps the features
from the RV to the BEV by leveraging camera pose pa-
rameters, geometric prior and learning ability, as well as
categorical altitude estimation, which estimates the altitude
level of each image pixel through classification.
• We build novel simulation and real-world benchmarks

for the task of aerial monocular 3D object detection. We con-
duct extensive experiments to validate the proposed methods.
We apply the domain transfer technique to benefit the real-
world performance with the large-scale simulation data.

II. RELATED WORK

Aerial object detection. Since objects in aerial perspec-
tive have massive variations in scale and orientation, existing
detection datasets and algorithms could not be directly ap-
plied. To mitigate the dataset problem, a large number of
aerial object detection datasets [2], [3] with large quantities
of arbitrarily oriented instances in complicated scenes are
proposed. To handle the large scale and orientation variations

along with aerial perspective, a large amount of aerial object
detection algorithms are proposed, e.g. feature pyramids
and deformable modules are designed to handle the scale
variations and the orientation variants [6], [7].

Unfortunately, the current aerial object detection datasets
and algorithms only focus on the 2D range-view space and
could not directly achieve 3D scene understanding. Recently,
3D object detection in driving scenarios is emerging [8], [9],
[10]. To take advantage of the maneuverability of drones and
fill the huge scientific blank in aerial 3D object detection, this
work proposes a new task of aerial monocular 3D object
detection and a well-organized dataset.

Monocular 3D object detection. Monocular 3D object
detection aims to detect objects in the 3D space given the
2D image. It has three types: direct, depth-based, and grid-
based. The direct methods first detect the 2D boxes and then
use the geometric relation to regress the 2D boxes to 3D
boxes [11], which perform inferior without explicit depth
information. The depth-based methods [12] first estimate the
depth map, which is combined with the image to generate
the pseudo-3D point clouds. Then, 3D object detection could
be performed. However, here depth estimation and detection
are not trained in an end-to-end manner. The grid-based
methods [13] predict BEV grid representation and conduct
the 3D detection on the grid. However, equal contribution of
the image features along the projection ray causes repeated
grid features. Recently, [14], [15] jointly performs depth
estimation and detection, and uses the estimated depth to
weight the contribution of image features to the grids.

The current monocular 3D object detection methods are
designed for driving scenarios, mainly about depth learning.
However, drones’ aerial perspective encounters severe view
variation and deformation. To tackle this issue, we introduce
a novel geo-deformable transformation, leveraging geometric
prior and learning ability, to achieve a more precise trans-
formation from the range view to BEV.

View transformation. View transformation is a common
module of many tasks, such as the view synthesis [16],
multi-view pedestrian detection, and tracking [17]. It has two
types: geometric and parametric transformation. The non-
parametric geometric transformation [17] explicitly trans-
forms the source view to the target view based on the
camera projection, easy to deploy, and performs stably, while
unable to estimate the unseen areas and tolerate the view
deformation. The parametric transformation implicitly im-
plements the view transformation with neural networks [18]
trained with GAN [16]. It could infer unseen regions based
on the context and flexibly adjust itself to cope with the
deformation, but hard to fit the diverse and changing views.

Taking advantage of the stability of the geometric trans-
formation and the flexibility of the learnable parametric
transformation, we propose the hybrid geo-deformable trans-
formation to address the view variation and distortion issue.

III. PROBLEM FORMULATION

Aerial monocular 3D object detection aims to localize the
objects in the 3D space given a single 2D aerial image. To



Backbone BEV
Decoder

Altitude 
Estimation

Geo-deformable 
Transformation

RV feature
BEV feature

Geometric 
Transformation

DCN
Deformable
Convolution Network

GT

BEV bounding box

Categorical altitude level

(𝑢, 𝑣)

𝑥
𝑦

(𝑥! , 𝑦!,𝑧!)

(𝑥" , 𝑦",𝑧")

𝑝#$
𝑝#%

Altitude Confidence 𝑝#%

𝑝#$

GT

DCNc

Add ConcatcMultiply

Fig. 3. The overall framework of aerial monocular 3D object detection. First, a backbone is utilized to extract the RV feature from the image data. Second,
the altitude estimation module predicts the categorical altitude level for each RV feature point, afterwards, a geometric transformation is performed to get
the categorical altitude level for each coordinate in BEV. Third, the RV feature and the estimated altitudes are output to a geo-deformable transformation
module to generate the BEV feature. Finally, the BEV feature is decoded to the object bounding boxes with orientation.

mathematically formulate this task, we represent a 3D object
from an aerial perspective. Traditionally, an object’s 3D
bounding box is represented in two ways: eight box corners
or box parameters, including the box center, the box size
(length, width, height), and the box orientation. However,
neither representation is suitable for the drone’s cases. As
the drone’s altitude is usually tens or even hundreds of times
higher than that of the objects, making it almost impossible
to perceive the object’s height or the precise altitude.

To address such a 3D object representation issue, we use a
bird’s-eye-view (BEV) bounding box to reflect the object oc-
cupation on the ground and a categorical altitude to reflect the
discretized altitude level. Specifically, a BEV bounding box
is parameterized by (x, y, w, l, θ, c), where (x, y) is the cen-
ter of the object on the ground, w is the width, l is the length,
θ denotes the azimuth angle and c is the object category. We
categorize the altitudes into 9 bins ranging from -1m to 8m in
a space-increasing way. The center of the categorical altitude
bins a are [−1.0,−0.5, 0, 0.5, 0.75, 1.0, 1.5, 2.0, 8.0].

Since the aerial view is significantly different from car
driving, most existing monocular 3D object detection meth-
ods designed for cars cannot be directly applied to drones. To
fill this gap, we propose a series of techniques: categorical
altitude estimation and geo-deformable transformation in
Section V. We further integrate the proposed methods and
propose an overall perception system that jointly localizes
objects in the 2D image and 3D space; see Sec. VI.

IV. DATASET PREPARATION

To enable aerial monocular 3D object detection, we de-
velop the first datasets for 3D object detection for aerial
image. The previous aerial object detection datasets only
provide the 2D bounding boxes in the image coordinate
system. Besides, the existing 3D object detection datasets for
autonomous driving could not be easily transferred to drones
due to the large domain gap, for example, perspectives.

TABLE I
DATASET STATISTICS. FH IS FLYING HEIGHT IN METER. *(*/*) DENOTES

TOTAL(TRAIN/TEST).
Dataset Scenes FH(m) Images Boxes

AM3D-Sim 3 40-80 48,250 (41,500/6,750) 397,984 (347,588/5,0396)
AM3D-Real 10 30-40 1,012 (919/93) 33,083 (31,668/1,415)

We propose both simulation and real-world datasets,
named AM3D-Sim and AM3D-Real. The datasets include
RGB images with well-annotated 2D & 3D bounding boxes
of vehicles and precise camera pose information; see Tab. I.
Our dataset organization refers to the database schema of
NuScenes[9], an open-source autonomous driving bench-
mark. Our goal is to motivate monocular 3D object detection
from aerial view by providing challenging benchmarks with
novel difficulties to the 3D perception community.

AM3D-Sim is collected by the co-simulation of CARLA
and AirSIM. CARLA [5] simulates complex scenes and traf-
fic flow, and AirSIM [4] simulates drones flying in the scene.
To promote data diversity, the flying height is set ranging
from 40m to 80m, covering an area of 200m×200m. In the
simulation, the annotations could be produced autonomously,
so we provide a large and diverse simulation benchmark.

AM3D-Real is collected with DJI Matrice 300 RTK flying
over the campus. The drone is equipped with a well-aligned
LiDAR and an RGB camera. We annotate the 3D bounding
boxes in the 3D point clouds collected by the LiDAR and get
the 2D boxes by projecting the 3D boxes back to the image
according to the calibrated camera project matrix. Due to
challenging and costly data collecting and labeling, the flying
height is set lower and the dataset size is relatively smaller.

V. METHODOLOGY

A. Motivation

The aerial setting has severer view deformation than the
driving setting for two reasons. First, in autonomous driving,
objects in the scene share almost the same altitude with
the camera and the distortion along the height axis is less
sensitive, so the ratio of height to depth is mostly constant.



The object height could be leveraged as a reliable proxy
to estimate the depth information; while in the aerial view,
there is no reliable proxy and we have to work with a
pure 3D space problem. Second, autonomous driving usually
considers detecting objects within 100 meters; while a drone
usually considers more distant objects.

To tackle the 3D space problem in the aerial setting,
we consider solutions from two aspects: i) achieve better
altitude estimation; ii) compensate for the inaccurate altitude
estimation. Accordingly, we propose two techniques: i) cate-
gorical altitude estimation, simplifies the challenging altitude
learning by categorizing the altitude into multiple bins and
substituting the strict regression task with an easygoing clas-
sification task; ii) geo-deformable transformation, corrects
severe view deviation using a learnable deformable network
with trainable offsets to compensate for the geometric spatial
sampling generated based on the estimated altitudes.

B. Framework in Mathematics

As discussed in Sec. III, the goal is to provide the bird’s-
eye-view (BEV) bounding box and the categorical altitude
for each object in a range-view (RV) aerial image. Fig. 3
illustrates the proposed framework of monocular 3D object
detection for drones in four steps.

First, we extract the RV features from the RGB image by
a backbone network. Given an image I ∈ RHI×WI×3 with
HI ,WI the image height and weight, the RV feature map is

F(rv) = fbackbone(I) ∈ RHR×WR×C ,

where fbackbone(·) is a DLA-based backbone [19], and
HR,WR, C are the height, weight and channel dimension.

Second, we estimate the categorical altitude level for
each coordinate in BEV by leveraging the proposed altitude
estimation module followed by the geometric transformation.
The BEV map of categorical altitude A(bev) is

A(bev) = faltitude(F
(rv)) ∈ RX×Y×Z , (1)

where faltitude(·) is the proposed altitude estimation module,
X,Y denote the length of the perception field along x-axis
and y-axis, Z is the amount of categorical altitude bins along
z-axis. Each element A(bev)(x, y, z) reflects the confidence
score of the zth altitude level at the location (x, y) in BEV.

Third, we get the BEV features by warping the RV features
based on the proposed geo-deformable transformation and
the estimated categorical altitude. The BEV feature map is

F(bev) = fdeform(F
(rv),A(bev)) ∈ RX×Y×C , (2)

where fdeform(·) is the proposed geo-deformable transfor-
mation module that leverages the camera pose information,
geometric prior and the learning ability.

Fourth, we detect the BEV bounding boxes by decoding
the BEV features. The detected BEV bounding boxes are

{oi} = fdecoder(F
(bev),A(bev))),

where oi = (xi, yi, wi, li, θi, ai, ci) is the ith box with
(xi, yi) the center, wi the width, li the length, θi the azimuth
angle, ai the altitude level and ci the object category. Our
decoder follows the established detector CenterNet [20].

C. Categorical altitude estimation

Here we elaborate on the details of the proposed categor-
ical altitude estimation module (1). The specific goal is to
localize the object in z-axis. Categorical altitude estimation
is critical for 3D detection in aerial view as the observed
ground is broader and not flat, and allows to place 2D
image information at the correct 3D locations, providing side
information for precise warping. It is challenging because the
aerial perspective encounters severe long-range issues, where
the altitude difference across objects is relatively minor
compared to the distance between objects and the drone.
It is almost impossible to accurately localize the objects in
a continuous manner. To alleviate the difficulty of altitude
estimation, we categorize the altitude into multiple bins and
substitute the regression task with a classification task.

To realize this, we first estimate the altitude level at each
RV pixel. Intuitively, image context can provide rich altitude
hints. For example, since most vehicles have similar sizes,
they look bigger when they are closer to the drone and
smaller when far away from the drone. The RV map of
altitude confidence is obtained as

A(rv) = conv(F(rv)) ∈ RHR×WR×Z ,

where conv(·) is a 1× 1 convolution layer. Each element in
A(rv) reflects the probabilities over all the altitude levels at
each pixel in the RV. We next geometrically transform the
RV map of altitude confidence to the BEV coordinate by

A(bev) = t(A(rv)) ∈ RX×Y×Z ,

where the geometric transformation t(·) is fully derived from
the camera pose provided with the input image. The output
A(bev) reflects the altitude information at each BEV location.

D. Geo-deformable transformation

The proposed geo-deformable transformation aims to learn
the BEV feature for the 3D object detection given the RV
feature; see (2). This is required to infer the 3D scene given
the planar 2D image; however, the altitude information is not
available without an extra depth sensor. Theoretically, each
image pixel is the projection of a line across all the altitudes
in the 3D space, causing ambiguities.

To compensate for the missing altitude information, we
consider solutions from two aspects: 1) weighting features
along the z axis; 2) deforming features along with the x, y
axes. First, we leverage the geometric transformation derived
from the camera pose to generate BEV representations at all
possible altitudes; and then, weight them with the estimated
altitude confidence. The weighted BEV representations are
averaged along the altitude axis, collapsing to a flat BEV
feature. Second, we use a trainable deformable convolutional
network (DCN) to adaptively revise the distortion in the
BEV feature caused by the imprecise altitude estimation,
promoting flexibility in this view transformation phase. DCN
is capable of augmenting the spatial sampling locations
with additional offsets, which could help to finetune the
geometrically transformed feature. A residual structure is



applied to combine information from both the geometric
transformation and the adaptively deformable transformation.

Geometric transformation. The geometric transforma-
tion is a non-parametric approach for view transformation.
The camera projection matrix P defines the mapping be-
tween the global coordinate (x, y, z) ∈ R3 to the local image
pixel coordinate (u, v) ∈ R2. The geometric transformation
of altitude z could be denoted as the following mapping:

z

 u
v
1

 = P

 x
y
z

 .
The RV feature F(rv) ∈ RHR×WR×C is transformed to all

the Z possible altitudes, which are stacked along the z-axis
and produces the 3D feature G(bev) ∈ RX×Y×Z×C . Given
the feature G and the altitude confidence A(bev) in BEV, via
weighting and collapsing along the altitude, we can get the
flatten BEV feature F

(bev)
g ∈ RX×Y×C as follows,

F(bev)
g (x, y) =

1

Z

∑
z=0,1,...,Z−1

G(bev)(x, y, z)·A(bev)(x, y, z),

where z is the index of the altitude level, G(bev)(x, y, z)
is possible feature representation at the coordinate (x, y, z).
A(bev)(x, y, z) is the confidence that the altitude value of
the feature point at the coordinate (x, y) ranges in the z-th
altitude level. Here, the 3D feature G(bev) contains the BEV
feature across all the possible altitudes. As stated in [21],
BEV grids greatly reduce the computational overhead while
offering similar performance to 3D voxel grids. So we use
the flatten BEV feature while keeping the relative importance
in the altitude levels to perform 3D object detection.

Deformable transformation. Through geometric trans-
formation across all the possible altitudes, we get flat yet
‘stereo’ BEV feature. The non-parametric geometric trans-
formation lacks learnable flexibility. Ideally, if the altitude is
precisely estimated, the BEV feature could exactly represent
the real world. However, the severe long-range issue along
with the aerial view makes the altitude estimation especially
difficult. Therefore, the geometrically transformed BEV fea-
ture F

(bev)
g is expected to encounter spatial sampling noise.

To promote better transformation, a DCN layer is cascaded
to augment the geometric spatial sampling with trainable
offsets. We further concatenate the coordinates with the
BEV feature to guide offset learning. Since the coordinates
could hint at the network with the geometric prior that
the perception field is increasing with the distance between
objects and the camera, which means that the perturbation
area is large at far distance, and vice versa. Mathematically,
the BEV feature map after the deformable convolution is

F
(bev)
d = DCN([F(bev)

g ;X;Y]),

where DCN(·) is the trainable DCN layer, [; ] denotes
concatenation, X,Y ∈ RX×Y×1 refer to the x, y coordinates
of the feature points, reflecting the geometric prior.

Finally, we use a residual structure that combines the
geometrically transformed feature F

(bev)
g and the adaptively

View 
Transform

BEV
Decoder

Backbone RV
Decoder

Fig. 4. DVDET simultaneously localizes objects in image and 3D space.

deformable feature F
(bev)
d to get the final BEV feature map,

F(bev) = F
(bev)
g + F

(bev)
d .

E. Loss function

To train the overall system, we consider two loss functions
to supervise two tasks: the altitude-level classification and the
BEV-based object detection. For altitude-level classification,
let A(bev) be the estimated altitude category, Ã(bev) is the
ground-truth altitude category, M is the objectiveness mask,
only the foreground objects are supervised, the classification
loss is then Laltitude = M � Focal(A(bev), Ã(bev)). Focal
loss [22] is used to alleviate the class imbalance issues.
For BEV object detection, we follow CenterNet [20] and
jointly optimize the classification and regression losses. Let
H be the estimated category heatmap, H̃ be the ground-
truth heatmap, the classification loss is Lcls = Focal(H, H̃).
Let (x, y, w, l, θ) be a detected box and (x̃, ỹ, w̃, l̃, θ̃) be the
ground-truth box, `1 loss ‖·‖1 is used for the regression loss

Lbox = ‖x− x̃‖1 + ‖y − ỹ‖1 + ‖w − w̃‖1 +
∥∥∥l − l̃∥∥∥

1

+
∥∥∥sin θ − sin θ̃

∥∥∥
1
+
∥∥∥cos θ − cos θ̃

∥∥∥
1
.

The overall loss is the addition of Laltitude, Lcls and Lbox.

F. Simulation to real-world transfer

To alleviate expensive and laborious real-world data col-
lection/annotation, we adopt a Sim2Real training regime,
where the model is pre-trained on simulation data (AM3D-
Sim), and followed by fine-tuning on real data (AM3D-Real).
Specifically, to minimize the domain gap, which can be
triggered by the inconsistency between physical parameters,
e.g. illumination, reflection, etc, we take inspiration from the
idea of domain randomization [23], conducting aggressive
color augmentations on the simulation data, and train the
model to be invariant to all of them. Likely this model can
adapt to the real-world environment, as the real visual scene
is expected to be one sample in that rich distribution of
training variations.

VI. DUAL-VIEW OBJECT DETECTION SYSTEM

We further propose a dual-view object detection system,
termed as DVDET, which simultaneously perceive the ob-
jects in the 2D image space and the 3D physical space,
based on the intuition that the two views could potentially
promote each other. Specifically, the 2D image space can
provide object details, such as color and shape, and help
object understanding, while the 3D space can provide more
accurate spatial information. The implicit consistency from



TABLE II
OVERALL PERFORMANCE OF THE BASELINES AND OUR PROPOSED GEO-DEFORMABLE TRANSFORMATION (GeoDT ) AND CATEGORICAL ALTITUDE

ESTIMATION (CAE) MODULES ON AM3D-SIM. THE BEV OBJECT DETECTION IS EVALUATED WITH AP/AP@50/AP@75. THE CATEGORICAL

ALTITUDE ESTIMATION IS MEASURED WITH ACCURACY. BOTH GeoDT AND CAE IMPROVES THE PERFORMANCES.

Method
Trans-

Location
Trans-
Type

Altitude
Estimate BEV Object Detection Altitude Classification

Early Inter Late Geo Def CAE Fullset Town1 Town2 Town3 Fullset Town1 Town2 Town3
Late-GeoT - - X X - - 0.62/2.50/0 1.13/5.89/0.05 0.37/2.38/0 0.07/0.48/0 - - - -
Early-GeoT X - - X - - 37.36/81.75/27.88 37.43/78.49/30.71 42.62/90.11/33.40 32.27/75.84/20.72 - - - -
Inter-GeoT - X - X - - 38.64/80.52/32.19 38.85/77.06/34.94 43.19/88.20/36.58 34.17/75.42/26.15 - - - -
Inter-GeoDT - X - X X - 40.84/81.85/36.37 43.39/80.32/42.67 44.11/88.32/38.46 36.02/76.79/30.05 - - - -
Inter-GeoT-CAE - X - X - X 41.54/82.94/37.31 43.27/80.56/42.35 44.37/88.11/39.26 37.65/79.61/31.96 88.56 74.55 93.54 83.54
DVDET - X - X X X 42.70/84.57/38.37 45.31/82.94/44.93 45.06/89.43/39.41 38.78/81.07/33.17 90.36 79.02 94.24 86.36

the supervision of the two views, including RV and BEV,
can thus help reduce the error of each other and promote
more precise detection. Fig. 4 illustrates DVDET. The de-
tectors for two views share the same backbone. The RV
decoder localizes objects in the 2D image space and the
BEV decoder localizes objects in the 3D space by using the
proposed categorical altitude estimation and geo-deformable
transformation methods.

VII. EXPERIMENTAL RESULTS

A. Implementation details

Our detector follows the CenterNet [20] with DLA-34 [19]
backbone. The RV aerial image size is (800, 450) and
(720, 480) in the simulation and real-world dataset. The res-
olution of the BEV is 0.25m/pixel. We transform the pyramid
RV feature maps to BEV. The size of the BEV feature
map is (192, 352) and (96, 128) in the simulation and real-
world datasets respectively. We employ the generic detection
evaluation metric: Average Precision (AP) at Intersection-
over-Union (IoU) thresholds of 0.5 and 0.75.

B. Overall performance

Evaluation on AM3D-Sim. We first compare base-
lines that directly transform the three different information
sources: detected objects, input image, or intermediate fea-
ture from RV to BEV according to the given camera pose
information, as shown in Tab. II. Early-GeoT, Inter-GeoT
and Late-GeoT denotes transforming the raw RV image,
intermediate feature and the detection output, respectively.
Here GeoT is short for geometric transformation, fully
derived from the camera pose. We see that: i) Inter-GeoT
performs the best; ii) Early-GeoT performs slightly inferior
to Inter-GeoT. Since compared to Inter-GeoT, the input of
Early-GeoT has higher resolution, however, it encounters
irreparable deformation, which could be alleviated in Inter-
GeoT. Overall, Inter-GeoT has more flexibility and performs
the best. iii) Late-GeoT performs poorly. Directly trans-
forming the RV detection fails the BEV object detection.
This might be caused by two reasons: first, objects in the
RV are mostly represented with an axis-aligned bounding
box, which could not precisely represent the objects in the
local coordinate; second, there are many tiny objects from
the aerial perspective, occupying only 0.146% of the image
on average. So, the view deformation along with the aerial
perspective severely degrades the transformed BEV object
detection performance.

TABLE III
PERFORMANCE OF DUAL-VIEW SYSTEM ON AM3D-SIM. DUAL-VIEW

SYSTEM OUTPERFORMS THE INDIVIDUAL VIEWS.

System BEV RV
AP AP@50 AP@75 AP AP@50 AP@75

RV - - - 56.70 93.40 61.70
BEV 42.70 84.57 38.37 - - -
Dual-View 43.27 84.83 39.76 57.80 93.50 65.10

We next validate the other two proposed modules, namely,
geo-deformable transformation (GeoDT) and categorical alti-
tude estimation (CAE). Building on Inter-GeoT, Inter-GeoDT
integrates deformable convolutions into the geometric trans-
formation and DVDET further considers all the possible
altitudes. As shown in Tab. II: i) Inter-GeoDT consistently
performs better than Inter-GeoT and improves by 12.99%
on AP@75 on the fullset, reflecting the effectiveness of
the proposed geo-deformable transformation; ii) Inter-GeoT-
CAE improves Inter-GeoT by 7.50% on AP on the fullset
and DVDET improves Inter-GeoDT by 4.54%, reflecting the
effectiveness of the proposed categorical altitude estimation.
Fig. 5 shows that i) BEV detection performance degrades
with the altitude, which means the detection difficulty is
increasing along with the altitude; ii) the improvement of
DVDET over Inter-GeoDT is stable across all the altitudes,
which means that DVDET is robust and alleviates the severe
deformation issues at high altitude.

We further validate the feasibility of the dual view object
detection in Tab. III. We see that: i) dual-view outper-
forms the individual RV and BEV by 1.1 and 0.57 on
AP, respectively. It means that the two views can provide
complementary information and promote each other: BEV
can alleviate the occlusion in the RV, while RV can provide
more object details and more smooth image context to help
alleviate the deformation in BEV. Fig 7 presents quantitative
results on AM3D-Sim. We see that: i) the proposed system
accurately detects most of the objects in dual-views; ii) the
occlusion and overlapping between objects are alleviated in
BEV; iii) as the right sample shows, the objects on the ramp
can be accurately detected. Note that the presented BEV
images are the RV images transformed to the ground plane.
It only provides a rough idea about BEV object detection
and cannot accurately represent the real situation, especially
for the areas with varying altitudes.

Evaluation on AM3D-Real. We further validate the
proposed modules and dual-view system on the real-world
dataset with abundant scenes and high-quality annotations,
which is relatively smaller than the simulation one due to the



TABLE IV
OVERALL PERFORMANCE ON AM3D-REAL. * DENOTES WITH DOMAIN

TRANSFER FROM SIMULATION TO REAL DATA.

System Method BEV RV
AP AP@50 AP@75 AP AP@50 AP@75

RV - - - - 39.90 84.70 30.00

BEV

Inter-GeoT 22.67 62.26 9.76 - - -
Inter-GeoDT 23.89 65.04 11.50 - - -
Inter-GeoT-CAE 24.13 66.41 10.71 - - -
DVDET 26.79 69.08 13.89 - - -
Inter-GeoT* 25.14 60.52 17.29 - - -
Inter-GeoDT* 27.11 65.95 17.05 - - -
Inter-GeoT-CAE* 28.19 68.79 16.30 - - -
DVDET* 29.04 72.66 15.09 - - -

Dual-View DVDET 27.39 68.46 14.43 41.60 84.80 34.10
DVDET* 31.82 72.60 21.40 43.50 85.90 35.90

Fig. 5. DVDET is robust and
could alleviate the severe deforma-
tion issues at high altitude.

Fig. 6. Simulation data benefits
BEV object detection on real data
with domain transfer.

costly collection and annotation. To mitigate this, we apply
the domain adaptation technique to transfer the pre-trained
system on the simulation data to handle real-world data.
From Tab. IV, we see that: i) both the proposed module: geo-
deformable transformation (GeoDT), and categorical altitude
estimation (CAE) achieve improvements, the in-line results
with cognition validate that the proposed system is robust
and the proposed dataset is trustworthy; ii) dual-view outper-
forms the individual RV and BEV; iii) the simulation data
could effectively help to improve the real-world detection
performance. Fig. 6 shows that the detector pre-trained on
simulation data consistently enables a better initialization for
the real-world data. Fig. 8 presents qualitative results. We
see: i) the proposed system could accurately detect most of
the objects in dual-views; ii) the occlusion and overlapping
between objects are alleviated in BEV.

C. Ablation studies

We provide ablation studies to validate our design choices,
and all experiments are conducted on AM3D-Sim.

Effect of geo-deformable transformation. Tab. V ex-
plores the properties of geometric and deformable transfor-
mation with multiple variants. We see that: i) the geometric
transformation Geo achieves stable but inferior performance;
ii) the purely learnable transformation without any geo-
metric guidance MLP fails; iii) the improperly introduced
deformable flexibility Geo-MLP severely harms the transfor-
mation; iv) a well-designed deformable module Geo-DCN
and Geo-DADCN boost the detection performance; v) the
distance prior could help DCN learn the offset, and improve
the AP from 40.23 to 42.70. To sum up, the proposed geo-
deformable transformation enjoys both stability of geometric
transformation and the flexibility of learnable transformation.

Effect of categorical altitude estimation. Tab. VI as-
sesses the effectiveness of categorical altitude estimation. We

TABLE V
ABLATION STUDIES ON THE TRANSFORMATION TYPES. THE

GEO-DEFORMABLE VARIANT Geo-DADCN PERFORMS THE BEST.

Transformation AP AP@50 AP@75
Geometric Geo 38.64 80.52 32.19
Deformable MLP 23.56 58.16 14.97

Geo-Deformable
Geo-MLP 24.45 59.16 16.26
Geo-DCN 40.23 81.83 34.83
Geo-DADCN 42.70 84.57 38.37

TABLE VI
ABLATION STUDIES ON THE CATEGORICAL ALTITUDE ESTIMATION.

CATEGORICAL ESTIMATION IMPROVES 5.50% ON AP@75.

Altitudes Estimation Supervison AP AP@50 AP@75
Single - - 40.84 81.85 36.37

Multiple
Categorical - 40.94 81.7 36.85
Categorical X 42.70 84.57 38.37
Continuous X 40.69 83.21 35.08

TABLE VII
DVDET OUTPERFORMS 3D DETECTION SOTAS FOR CARS AND 2D

DETECTION SOTAS FOR FLAT BEV IMAGE ON AERIAL 3D DETECTION.

AP for method
3D detection for cars 2D detection DVDETMonoRCNN CaDDN Faster-RCNN SwinT

AM3D-Sim 0.41 41.54 20.05 24.00 43.27
AM3D-Real 0.00 24.13 12.40 8.20 31.82

TABLE VIII
DVDET OUTPERFORMS PREVIOUS SOTAS BY 15.32% ON KITTI, A

WELL-KNOWN AUTONOMOUS DRIVING BENCHMARK.

Method AP|R40
[Easy / Mod / Hard ] ↑

AP3D APBEV
FQNet(CVPR19) [24] 2.77/1.51/1.01 5.40/3.23/2.46
M3D-RPN(ICCV19) [25] 14.76/9.71/7.42 21.02/13.67/10.23
MonoPair(CVPR20) [26] 13.04/9.99/8.65 19.28/14.83/12.89
MoVi-3D(ECCV20) [27] 15.19/10.90/9.26 22.76/17.03/14.85
RTM3D(ECCV20) [28] 14.41/10.34/8.77 19.17/14.20/11.99
MonoRCNN(ICCV21) [11] 18.36/12.65/10.03 25.48/18.11/14.10
CaDDN(CVPR21) [14] 19.17/13.41/11.46 -/-/-
GUP Net(ICCV21)[29] 20.11/14.20/11.77 -/-/-
DVDET 23.19/15.44/13.07 32.05/22.15/19.32

see that: i) without supervision, the BEV representation with
multiple altitudes shows similar performance as its single
version. The minor difference among altitudes is difficult to
catch; and ii) with the proper altitude guidance, the aug-
mented BEV representation across multiple altitudes could
achieve superior performance, the overall AP could achieve
42.70; iii) in the same setting, continuously regressing is
clearly worse than categorically binning (40.69 vs. 42.70).

D. Generalization to autonomous driving

We further validate the proposed modules by comparing
with previous SOTAs on AM3D-Sim and the KITTI 3D
object detection benchmark [8]. Tab. VII shows DVDET
clearly outperforms 3D autonomous driving and 2D detec-
tion SOTAs on both simulation and real datasets. Note: i)
MonoRCNN [11] and CaDDN [14] are worse than DVDET
as they do not consider severe view deformation; while we al-
leviate this by the proposed geo-deformable transformation;
ii) Faster-RCNN [30] and SwinT [31] on 2D BEV images
are worse than DVDET as they consider 3D scenes with
flat images; while DVDET considers 3D features with the
proposed categorical altitude estimation technique. Tab. VIII
shows DVDET clearly outperforms previous 3D autonomous



Fig. 7. The qualitative results of DVDET on AM3D-Sim. The upper row
shows the BEV results and the bottom row shows the RV results. The
ground-truth are colored green and the predictions are colored red.

Fig. 8. The quantitative results of DVDET on AM3D-Real. The upper row
shows the BEV results and the bottom row shows the RV results.

driving SOTAs on KITTI. Note: i) DVDET benefits monoc-
ular 3D object detection for autonomous driving; ii) our
improvement (15.32%) is significantly superior to previous
SOTA GUP Net(ICCV21)[29] (4.90%).

VIII. CONCLUSION

To address the problem of aerial monocular 3D object
detection, this paper proposes a new dataset, including
both simulation (AM3D-Sim) and real-world (AM3D-Real)
dataset, as well as a novel monocular 3D object detection sys-
tem, DVDET, with two core techniques: categorical altitude
estimation and geo-deformable transformation. Extensive ex-
periments show that i) DVDET significantly outperforms
baseline methods on AM3D-Sim and AM3D-Real, reflecting
the effectiveness of the 3D scene understanding from aerial
perspective; ii) the model pre-trained on the simulation
dataset benefits real-world performance; and iii) DVDET
achieves the leading performance on KITTI, reflecting that
the proposed method also benefits autonomous driving.
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