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Learning Continuous Grasping Function with
a Dexterous Hand from Human Demonstrations

Jianglong Ye1∗, Jiashun Wang2∗, Binghao Huang1, Yuzhe Qin1, Xiaolong Wang1

(a) Human Demonstration (b) Retargeting Result

(c) Generated Trajectory in the Simulation using CGF

(d) Generated Trajectory in the Real World using CGF

Fig. 1: Examples of our generated trajectories learned from human demonstrations. Given hand-object trajectories from human video (a), we
first translate them into robot manipulation demonstrations (b). We then train Continuous Grasping Function (CGF) to generate human-like
trajectories and deploy them in simulation (c) and real robot (d).

Abstract—We propose to learn to generate grasping motion
for manipulation with a dexterous hand using implicit functions.
With continuous time inputs, the model can generate a continuous
and smooth grasping plan. We name the proposed model Con-
tinuous Grasping Function (CGF). CGF is learned via generative
modeling with a Conditional Variational Autoencoder using 3D
human demonstrations. We will first convert the large-scale
human-object interaction trajectories to robot demonstrations
via motion retargeting, and then use these demonstrations to
train CGF. During inference, we perform sampling with CGF to
generate different grasping plans in the simulator and select the
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successful ones to transfer to the real robot. By training on diverse
human data, our CGF allows generalization to manipulate mul-
tiple objects. Compared to previous planning algorithms, CGF is
more efficient and achieves significant improvement on success
rate when transferred to grasping with the real Allegro Hand.
Our project page is available at https://jianglongye.com/cgf/.

Index Terms—Learning from Demonstration; Dexterous Ma-
nipulation; Deep Learning in Grasping and Manipulation

I. INTRODUCTION

LEARNING to perform grasping with a multi-finger hand
has been a long-standing problem in robotics [1]–[4].

Using a dexterous hand instead of a parallel gripper offers
the robot the flexibility on operating with daily life objects
like humans do, but also largely increases the difficulty given
the large Degree-of-Freedom of the dexterous hand. A typical
method for this task is a 2-step paradigm including grasp
pose estimations following by motion planning [5]–[7]. Recent
works have also studied on using Reinforcement Learning with
human demonstration guidance for grasping [8], [9].

While these approaches have shown encouraging results,
they plan the grasping with finite discrete time steps. On
the other hand, human grasping motion is continuous, can
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we learn a continuous grasping process for robot hands?
Making robot grasping continuous can lead to a more natural
and human-like trajectory, and each step we sample will be
differentiable which we can use a more robust PD control
with feedforward. Recent progress on neural implicit functions
have shown successful applications in learning continuous
image representation [10], [11] and continuous 3D shape
representation [12]–[14]. Can this success be migrated from
representing 2D/3D space to time?

In this paper, we propose to learn Continuous Grasping
Function (CGF) with a dexterous robotic hand. To mimic the
continuous human motion, we utilize human grasp trajectories
from videos to provide demonstrations and supervision in
training. By training CGF with generative modeling on a large-
scale of human demonstrations, it allows generalization to
grasp multiple objects with a real Allegro robot hand as shown
in Figure 1 (d).

Specifically, given the 3D hand-object trajectories from hu-
man videos (Figure 1 (a)), we first perform motion retargeting
to convert the human hand motion to the robotic hand motion
to obtain the robotic manipulation demonstrations (Figure 1
(b)). We then learn a CGF in the framework of a Conditional
Variational AutoEncoder (CVAE) [15] by reconstructing the
robotic hand motion with these demonstrations. Specifically,
the conditional encoder of our CGF model will take the object
point clouds as inputs and provides the object embedding.
Taking the concatenation of the object embedding, a latent
code z and a time parameter t, the decoder of CGF is an
implicit function which outputs the dexterous hand parameters
in the corresponding time t. By sampling a continuous-time
sequence of t, we can recover a continuous grasping trajectory
in any temporal resolution. By sampling the latent code z, we
can achieve diverse trajectories for the same object. Figure 1
(c) shows an example of the inferred grasping trajectory in the
simulator.

In our experiments on testing our model, we will perform
sampling on the latent code z multiple times given a test object
and generate diverse grasping trajectories. We then execute
these trajectories in the simulator and select the one which can
successfully grasp the object up. Different from the previous
paradigm on grasping followed by planning, we empirically
find our method is much more efficient since we avoid
performing planning for each trajectory but directly generate
the trajectory from CGF. Given the selected trajectories from
the simulator, we can deploy them in the real world with an
Allegro hand attached on an X-Arm 6 robot. Compared with
planning, our method achieves better Sim2Real generalization
with more natural and human-like motion, which leads to a
better success rate.

We highlight our main contributions here: (i) A novel
Continuous Grasping Function (CGF) model which allows
smooth and dense sampling in time for generating grasping
trajectory; (ii) CGF allows efficient generation of grasping plan
and more robust control in simulation; (iii) We achieve much
significant improvement on Sim2Real generation on Allegro
hand by learning CGF from human demonstrations.

II. RELATED WORK

Generalization in Dexterous Manipulation. Dexterous
manipulation is one of the most challenging problems in
robotics [1]–[4], [16], [17]. Recent studies on model-free [18]–
[21] and model-based [22], [23] Reinforcement Learning
(RL) have achieved encouraging results on multiple complex
dexterous manipulation tasks. However, there is still a large
challenge on generalization for RL. For example, when the
RL policy in [18] can be transferred to the real robot, it is
learned specifically for one object. On the other hand, an
RL policy trained with multiple objects in simulator [21]
has not yet been transferred to real. Instead of using RL,
one line of works on dexterous grasping is first performing
a grasp estimation and then planning for execution [5], [7],
[24], which have shown great success on generalization to
multiple objects and in real robots at the same time. Our work
aligns more closely with this line of research. Through training
on large-scale human demonstrations, our method is able to
generate grasping trajectories for unseen objects based on
their geometry. Compared to previous planning methods, our
approach provides more diverse, smooth and natural grasping
trajectories in a more efficient way, as evidenced by our
experimental results.

Grasping Motion Synthesis. Synthesizing and predicting
human grasp has been an active research field for both
computer vision and robotics [6], [25]–[27]. For example,
Grasping Field [26] is proposed as an implicit function that
generates plausible human grasps given a 3D object. However,
to apply on the robot hand, we will need to synthesize the full
motion instead of a static pose. This motivates the research
on synthesizing the hand-object interaction motions [28]–[31].
For example, a full body and hand motion are synthesized
together to grasp an object in [30]. While related to our
work, most approaches are still focusing on modeling the
human hand. In this paper, we provide a framework where
we first retarget the human hand trajectories to the robot hand
trajectories and learn the robot grasping function with them.

Learning from Human Demonstrations. Our work is
related to imitation learning or RL with human demonstrations
for not only parallel grippers [32]–[34] but also dexterous
hands [9], [35]–[38]. For example, DexMV is a platform
proposed in [9] for extracting 3D human demonstrations from
videos, generating robot demonstrations by retargeting, and
augmenting Reinforcement Learning with these demonstra-
tions for multiple manipulation tasks. Although both methods
utilize robot demonstrations for training, DexMV’s use of GT
states as inputs limits its generalizability to multiple objects
and real robot transfer. In contrast, our implicit function
generates continuous grasping given a point cloud input and
can be deployed to the real robot. As most RL approaches
are still with full access to GT states, they are not directly
comparable to our method.

Implicit Functions for Robotic Tasks. Beyond its success-
ful applications in computer vision, implicit functions have
recently been explored in robotic manipulation tasks [39]–[43].
For example, NeRF [14] is used as a manner for learning 3D
representations for control in [39]. Instead of using implicit
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Fig. 2: Pipeline overview. During training, human demonstrations are first translated to robot joint positions which serve as the supervision
for grasping function learning. During inference, our trained CGF takes a sampled latent code z, object feature and query time sequence as
inputs to generate the trajectory. We then execute these trajectories in the simulator and deploy successful ones to the real robot.

functions to learn static 3D representations, our work focuses
on the continuity in time. We build a grasping function to
directly generate the trajectory instead of a static scene.

III. METHOD

A. Overview

We aim to learn human-like robot grasping given object
point clouds as input. We emphasize that learning from human
demonstration could lead to more natural trajectories and
the continuity helps the following control. To this end, we
train Continuous Grasping Function with a CVAE framework
to generate continuous trajectories and deploy them in the
simulator and real robot consecutively. The pipeline is shown
in Fig. 2. During training, we first perform hand motion
retargeting on a large-scale hand-object interaction dataset [44]
to collect demonstrations. Then the retargeting results served
as the supervision for the grasping function learning. During
inference, numerous continuous trajectories are sampled for
a specific object and tested in the simulator. The successful
trajectories will be deployed to the real robot. Besides, we
can take more advantage of continuous implicit function by
utilizing PD control with feedforward with the derivative of
the joint positions.

B. Human Demonstration Translation

Data collection on human hand-object interactions is rela-
tively well established and accessible. Using large-scale hu-
man hand-object interaction data, we can learn patterns of
how dexterous hands manipulate objects, and our goal is to
generalize it to the robot hand. In this paper, we use ground
truth trajectories from DexYCB [44]. Translating human hand
motion to robotics motion is the first step. Following [38], we
formulate our hand motion retargeting problem as a position-
based optimization problem. We encourage the robot’s joint

position to be as close as possible to its corresponding human
hand joint position,

min
qt

N∑
i=0

||Ji(qt)− ji||2 + λ||Ji(qt)− Ji(qt−1)||2

s.t. qlower ≤ qt ≤ qupper,
(1)

where qt is joint position at time t, Ji is the forward
kinematics function of the i-th joint and ji is the Cartesian
coordinates of the hand joint which matches the i-th joint
of the robot. qlower and qupper are the joint limits. We also
encourage smoothness by incorporating a normalization term
to penalize a large distance between qt and qt−1. We set the
initial q0 = 1

2 (qlower + qupper).

C. Continuous Grasping Function Learning

Our generative model is based on Conditional Variational
Auto-Encoder (CVAE) [45], where we propose Continuous
Grasping Function (CGF) to replace the traditional decoder.
During training, both encoder and CGF are used to learn the
grasping generation in a robot hand reconstruction task with
object point clouds and robot joint positions as inputs; during
inference, only CGF is used to generate continuous grasping
with only object point clouds as input. The architecture is
shown in Figure 3.

During training, given the object point cloud Po ∈ RN×3

(N is the number of points) and a sequence of joints positions
{qt}, t ∈ {0, 1, · · · , T} (T is the number of frames) as inputs,
we employ PointNet [46] and MLP to extract object feature
Fo ∈ R1024 and hand features {Fh

t } ∈ R256 respectively. All
these features are then concatenated as Foh for the encoder
input. The outputs of the encoder are the mean µ ∈ R256 and
variance σ2 ∈ R256 of the Gaussian distribution Q

(
z | µ, σ2

)
.

The latent code z is sampled from the distribution for the hand
reconstruction.
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Fig. 3: Network architecture. Our generative model takes object point cloud and a sequence of joint positions as input and recovers
corresponding robot hands. The proposed CGF takes the latent code z, object feature, and the query time t as inputs to predict the
corresponding joint position q̂t. ⊕ denotes concatenation.

After the encoding and sampling, we use our CGF to decode
continuous grasping. Inspired by implicit functions [12], [13],
[47] for shape representation, our proposed CGF maps the
query time t to the joint position qt. We concatenate latent
code z and the object feature Fo with time t as the input for
CGF. Specifically, CGF is a MLP f parameterized by θ which
predicts the corresponding joint position q̂t:

q̂t = f(t, z,Fo; θ). (2)

We reverse the time and define t = 0 as the end of the grasping
for the convenience of implementation, i.e., when the robot’s
hand touches the object. And as t grows, the hand moves
further away from the object. Given the predicted joint position
q̂t, a differentiable forward kinematics layer Ji is utilized to
get the Cartesian coordinate of the i-th joint.

The first objective function is the reconstruction error, which
is defined as the L2 distance between the joint positions
as well as their Cartesian coordinates. We denote them as
Lq =

∑T−1
t=0 ‖q̂t − qt‖22 and Lj =

∑T−1
t=0

∑
i=0 ‖Ji(q̂t) −

Ji(qt)‖22 respectively. Following the training of VAE [24], we
define a KL loss to encourage the latent code distribution
Q
(
z | µ, σ2

)
to be close to the standard Gaussian distribu-

tion, which is achieved by maximizing the KL-Divergence as
LKL = −DKL

(
Q
(
z | µ, σ2

)
‖N (0, I)

)
. We also introduce

a contact loss at the end of the grasping to push the tips
of robot hand to the object surface, which is achieved by
minimizing distances to their closest object points Lcontact =∑

i minp∈Po ‖Ji(q0)− p‖22 where i belongs to the indices of
all tips. The full training loss is:

L = λqLq + λjLj + λKLLKL + λcLcontact, (3)

where λq, λj , λKL and λc are weights for various losses.
During inference, our CGF can easily sample a large

number of diverse trajectories. We use PointNet to get the
object feature Fo and sample a random latent code z from
the standard Gaussian distribution, then with a time query
sequence, our CGF can produce a continuous and natural
trajectory. By sampling a large amount of z, we can find
trajectories with a smaller gap between the human hand and
robot hand, which guarantees both natural and successful
trajectories.

D. PD Control with Feedforward

Different from previous works, we utilize an implicit func-
tion to output the target joint position qd, and given the
continuity property of the implicit function, we can easily get
the derivative (target joint velocity) q̇d and the second-order
derivative (target joint acceleration) q̈d. Thus we can use a
more robust controller, PD control with feedforward in the
form of

τ = ID(q̈d, q, q̇)−Kpe−Kv ė, (4)

where e = q − qd, ė = q̇ − q̇d, τ is the joint torque
and ID(q̈d, q, q̇) is the inverse dynamics. Kp and Kv are
hyperparameters. q, q̇, and q̈ are the joint position, velocity,
and acceleration of the robot. As far as we know, our method is
the first end-to-end manner that can directly get the derivative
to use the PD control with feedforward.

IV. EXPERIMENTS

We conduct quantitative and qualitative evaluations in both
simulator and real world. We show that by learning from
human demonstrations, CGF is more efficient in finding suc-
cessful grasping and our generation results can be transferred
to the real robot with a higher success rate.

A. Experimental Setting

Datasets. We utilize the DexYCB dataset [44] to serve as
human demonstrations. DexYCB contains 1,000 sequences of
human grasping motions with 20 YCB objects [48]. We use 15
of them as training objects. We remove the handover process
from the demonstrations, filter out all left-handed sequences
and perform hand motion retargeting (Sec. III-B) to translate
the hand motion into Allegro robot motion.

Baselines. We mainly compare CGF to two-step methods,
i.e., grasping synthesis followed by motion planning. We
provide two grasping synthesis baselines: GraspTTA [27] and
GraspIt [49], where the former is also a generative model
and the latter is based on searching. For GraspTTA, we apply
the same hand motion retargeting to obtain the Allegro hand
joint positions. Then, we utilize rapidly exploring random tree
(RRT) [50] and cross-entropy method (CEM) [51] with model
predictive control (MPC) [52] for planning the trajectory to
reach the grasp pose, which are named GraspTTA+RRT and
GraspTTA+CEM-MPC respectively. For GraspIt, due to the
high Degree-of-Freedom of the dexterous hand, we firstly
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Fig. 4: Qualitative evaluation in the simulation. Because of human demonstrations, our CGF generates a more natural and reasonable
trajectory, which is helpful for the sim-to-real transfer. G is short for GraspTTA.

leverage the large set of grasping poses from ContactGrasp [6]
to construct a low-dimensional subspace via EigenGrasp [53].
We then use GraspIt [49] and RRT for the grasping searching
(including post-optimization) and motion planning respec-
tively. We name it GraspIt+RRT. For the smoothness eval-
uation, we additionally perform linear interpolation between
the beginning and ending joint positions generated by CGF
and take it as a trivial baseline.

Implementation Details. For training CGF, we sample
2, 000 points on the object mesh as the input object point
clouds. During training, we employ the Adam optimizer with
the learning rate 5e− 4, where the learning rate is reduced by
half per 500 epochs. The batch size is 32. The training takes
1000 epochs in total. The dimension of the latent code z is
256. CGF is a 4-layer MLP with channels (1281, 512, 256, 25)
and internal ReLU activation. The loss weights are λq = 1,
λj = 10, λKL = 1e−3 and λc = 50. We sample 10, 000 latent
codes for CGF and output the trajectories. We then pick the
successful trajectories in the simulator to evaluate in the real
world and count the success rate. For simulation experiments,
environments are built upon the SAPIEN [54] simulator.

For GraspTTA, we generate 200 grasp poses for each object.
For CEM-MPC, we set popsize M = 100, time horizon T =
5, number of elites e = 10, and iterations I = 2. For GraspIt,
we search for valid grasp poses with 100 different random
seeds and use the contact energy as the objective function.
For motion planning with RRT, we set 10,000 nodes in the
tree and set step size ε = 0.01 and probability of sampling
β = 0.5.

B. Evaluation Metrics

Smoothness. To measure the continuity of the generated
grasping, we propose to compare the smoothness. We first
normalize joint positions by making all joints start at 0 and

Smoothness - Joints ↓ Smoothness - Cartesian ↓
Method Pos Vel (log) Acc (log) Pos Vel (log) Acc (log)
G + RRT 3.40 3.43 6.47 9.71 3.95 6.99
G + CEM-MPC 7.42 3.12 5.54 16.36 3.48 5.90
Ours 10.42 2.06 3.51 6.69 1.99 3.47
Linear Interpolation 1.00 -3.58 -1.99 1.96 0.70 1.38

TABLE I: For smoothness of joint positions and Cartesian coordi-
nates, our CGF outperforms baselines by a large margin, which helps
produce more natural trajectories and better control. G is short for
GraspTTA.

end at 1 in all trajectories. Then we calculate discrete first-
order and second-order gradients, i.e. velocity and accelera-
tion. Smoothness is defined as the sum of the L1 distances
of position, velocity, and acceleration between neighboring
frames. Note that the linear interpolation is the upper bound
with a joint position smoothness of 1.0.

Cost per Successful Trajectory in Simulator. While
sampling more grasps with a generative model or more random
configurations with a planning algorithm could increase the
probability of finding a successful trajectory, the cost should
not be neglected. Thus, the average cost per successful trajec-
tory is evaluated in the simulator for our method and baselines.
The cost is defined as the number of environment steps for
GraspTTA+CEM-MPC and our method or collision checks for
GraspTTA+RRT, per successful trajectory. Additionally, wall-
clock time is provided for a comprehensive evaluation.

Success Rate in the Real World. We also evaluate the
success rate in the real world. Note the successful trajectories
in the simulator do not guarantee success in the real world
because of the sim-to-real gap. For our method and all the
baselines, we collect 20 successful trajectories, deploy them in
the real world and count the success rate. This metric reflects
the sim-to-real transfer ability.

C. Simulated Experimental Results

Smoothness Evaluation. We compare the smoothness with
three baselines and summarize the results in Tab. I. For better
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Interpolation
Fig. 5: Grasping interpolation. We show the first frame and the last frame of the grasping trajectory. Yellow lines indicate the trajectory of
the palm joint. Our method produces diverse grasping and the interpolation between them is also plausible. To the best of our knowledge,
this result on interpolating both robot hand grasping pose and trajectory has not been shown before.

Cost (log) / Succ. Traj. ↓ Time (s) / Succ. Traj. ↓
Method Seen Unseen Seen Unseen
G + RRT 5.30∗ 4.97∗ 56.61 41.47
G + CEM-MPC 5.85 5.58 146.78 123.48
Ours 4.30 4.19 11.70 8.31
Linear Interpolation - - - -

TABLE II: Success cost evaluation. Since our method only requires
fewer simulation steps to test a trajectory, the average cost and time
for a successful trajectory is much lower than baselines. Note that
we calculate the amount of collision detection for RRT. G is short
for GraspTTA.

comparison, the smoothness for velocity and acceleration
is in the log form. For both joint positions and Cartesian
coordinates, our CGF outperforms baselines by a large margin.
Note that for the joint position smoothness, our method does
not show an advantage over the baseline. This is due to that
humans tend to follow a natural curve rather than the shortest
path. Nevertheless, the improvement in the smoothness of
velocity and acceleration plays an important role in producing
natural trajectories, suppressing vibration, and achieving high
accuracy control [55], [56].

Success Cost Evaluation. The average cost and time per
successful trajectory are presented in Table II. The number
of simulation steps and collision detections are shown in the
log form for better comparison. Our method, which directly
executes target joint positions generated from CGF, obtains
a significantly lower average cost and time per successful
trajectory compared to GraspTTA+RRT and GraspTTA+CEM-
MPC. The main reasons are: (i) Our method does not require
excessive exploration like MPC-CEM or sampling numerous
configurations like RRT; (ii) Our method produces more
natural trajectories than two-step methods, yielding a higher
probability for finding a successful trajectory. We also evaluate
on unseen objects, our method still surpasses the baselines
with a slight decrease in metrics. This decrease in cost for
unseen objects can be attributed to that the difficulty of finding
a successful trajectory is largely determined by the object
geometry. The linear interpolation baseline, which generates
the smoothest trajectory, never grasps objects successfully in

Success Rate (%) ↑
Method Banana Cleanser Meat Can Soup Can Bottle Ball
G + RRT 10.0 15.0 10.0 5.0 5.0 10.0
G + CEM-MPC 10.0 10.0 15.0 5.0 0.0 15.0
GI + RRT 60.0 65.0 50.0 50.0 65.0 40.0
Ours 70.0 85.0 70.0 80.0 85.0 65.0

TABLE III: Real-world experiments. For the successful trajectories
in the simulation, our CGF has a higher success rate in the real world.
G is short for GraspTTA and GI is short for GraspIt.

the simulator.
Qualitative Evaluation. We visualize the typical trajecto-

ries of the baselines and our method in Fig. 4. Since RRT is
only planning the reachable target joint positions, the trajectory
may not be natural. And a small perturbation in the execution
process may cause it to collide with objects. CEM-MPC is
not a long-time horizon method, which will make it fall into a
local optimum quickly. As shown in Fig. 4, the middle finger is
not in the ideal position. However, our CGF, learning from the
human demonstration, could generate a much more natural and
smooth trajectory. This is helpful for the sim-to-real transfer,
which we will discuss in the next section.

Grasping Diversity. The ability to generate diverse outputs
is one of the motivations for using CVAE. We perform
interpolation in the latent space and show the results in Fig. 5.
CGF produces diverse grasping and the interpolation between
them is also plausible. We believe this is an interesting and
potentially very useful property of our model. To the best of
our knowledge, this result on interpolating both robot hand
grasping pose and trajectory has not been shown before.

D. Real-World Robot Experiments
Setup. For the real-world robot experiments, we attached an

Allegro hand on an X-Arm 6 robot. We select 6 real objects
from YCB [48] which are Banana, Bleach Cleanser, Ball
Potted Meat Can, Tomato Soup Can and Mustard Bottle, where
the first 3 objects are unseen. The initial pose of the object is
given and we use open-loop control for grasping.

Results with a Real Robot Hand. We evaluate the sim-to-
real transfer ability of the trajectories generated by our method
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Fig. 6: Real-world results on Meat Can, Soup Can and Ball. Our CGF successfully transfers the simulation trajectory to the real robot.

Mass 1x Mass 2x Mass 3x
Velocity 1x 5.66% 4.15% 7.10%
Velocity 2x 14.95% 7.73% 2.10%
Velocity 3x 4.29% 1.65% 16.77%

TABLE IV: Ablation study on the PD control with feedforward.
We report improvements on the success rate of the PD control with
feedforward over the default PD control with different velocities and
masses.

and baselines. For each object and method, we collect 20
successful trajectories in the simulator and deploy them in the
real world. We report the success rate in Tab. III. Although all
the trajectories succeeded in the simulator, our method has a
much higher success rate in the real world than the baselines.
We believe there are two main reasons leading to better sim-
to-real transfer ability: (i) Learning from human demonstration
can lead to more natural behavior trajectory; (ii) The use
of implicit function also helps provide a continuous and
more smooth trajectory. In contrast, the motion planning used
in the 2-step procedure baselines often generates unnatural
trajectories which reduces the success rate when deploying in
the real world. Specifically, while GraspTTA [27] is able to
generate grasp poses in the simulation, it does not ensure stable
robotic grasping in the real world, and an unnatural trajectory
approaching the grasp accumulates additional errors. On the
other hand, GraspIt [49] is able to generate stable robot grasp
pose in the real world, however, the 2-step procedure with it
still performs worse than our method. We further provide a
visualization of our successful trajectories in the real world in
Fig. 6, which shows that our method could generate natural
and human-like grasping.

E. Ablation Study
To demonstrate the advantages of continuous grasping, we

ablate the PD control with feedforward (Sec. III-D) which
relies on the derivatives of CGF. Note that baselines can not
directly utilize PD control with feedforward since they are not
continuous. We compare the performance of the PD control

Cost/S.T. - Noisy Points ↓ Cost/S.T. - Noisy Pose ↓
s Seen Unseen Seen Unseen
0 4.30 4.19 4.30 4.19

0.001 4.28 4.26 4.31 4.38
0.01 4.32 4.38 4.38 4.56
0.1 4.39 4.67 4.48 5.64
1 4.61 4.89 - -

TABLE V: Analysis Study for Noises. Our method is robust against
noises on both point cloud and pose.

with feedforward to the default PD control in the simulator
with different velocities and masses. Specifically, we set the
speed to 1x, 2x and 3x and the mass of the robot to 1x, 2x and
3x. We combine them in pairs and report the improvements
on the success rate in Tab. IV. We show that the PD control
with feedforward has improvements in all various cases, which
proves its robustness.

In addition, we analyze the robustness of CGF by adding
noises on the input point cloud and the object pose. For the
object point cloud Po ∈ RN×3, we add N independently
sampled Gaussian noises n ∼ N (0,Σ), where Σ = diag(σ)
is the diagonal covariance matrix. The noise scale was set
with σ = s (maxi Po

i −mini Po
i ), with s as the parameter

controlling the noise scale and Po
i is the i-th point in Po.

For the object pose T ∈ SE(3), we also add Gaussian noises
n ∼ N (0,Σ) to its translation part, with the same distribution
as that for the point clouds. The results in Tab. V show
that our method is robust against both point cloud and pose
noise, despite the higher cost of finding successful trajectories
resulting from increased noise.

V. CONCLUSION

We propose a novel implicit function named Continuous
Grasping Function to generate smooth and dense grasping
trajectories. CGF is learned in the framework of a Conditional
Variational AutoEncoder using 3D human demonstrations.
During inference, we sample various grasping plans in the
simulator and deploy the successful ones to the real robot.
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By training on diverse human-object data, our method allows
generalization to manipulate multiple objects. Compared to
previous planning algorithms, CGF is more efficient and has
a better sim-to-real generalization ability.

REFERENCES

[1] J. K. Salisbury and J. J. Craig, “Articulated hands: Force control and
kinematic issues,” The International Journal of Robotics Research, 1982.

[2] D. Rus, “In-hand dexterous manipulation of piecewise-smooth 3-d
objects,” The International Journal of Robotics Research, 1999.

[3] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of
dexterous manipulation,” in ICRA, 2000.

[4] M. R. Dogar and S. S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in IROS, 2010.

[5] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered
robotic grasps via deep learning,” in IROS, 2015.

[6] S. Brahmbhatt, A. Handa, J. Hays, and D. Fox, “Contactgrasp: Func-
tional multi-finger grasp synthesis from contact,” in IROS, 2019.

[7] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans, “Planning multi-
fingered grasps as probabilistic inference in a learned deep network,” in
Robotics Research, 2020.

[8] P. Mandikal and K. Grauman, “Learning dexterous grasping with object-
centric visual affordances,” in ICRA, 2021.

[9] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang,
“Dexmv: Imitation learning for dexterous manipulation from human
videos,” ECCV, 2022.

[10] Y. Chen, S. Liu, and X. Wang, “Learning continuous image representa-
tion with local implicit image function,” in CVPR, 2021.

[11] E. Dupont, Y. W. Teh, and A. Doucet, “Generative models as distribu-
tions of functions,” arXiv, 2021.

[12] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in CVPR, 2019.

[13] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3d reconstruction in function space,” in
CVPR, 2019.

[14] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in ECCV, 2020.

[15] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation
using deep conditional generative models,” in NeurIPS, 2015.

[16] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa, M. Erd-
mann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge, “Extrinsic
dexterity: In-hand manipulation with external forces,” in ICRA, 2014.

[17] B. Calli, A. Kimmel, K. Hang, K. Bekris, and A. Dollar, “Path planning
for within-hand manipulation over learned representations of safe states,”
in International Symposium on Experimental Robotics. Springer, 2018.

[18] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz,
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