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SmartMocap: Joint Estimation of Human and
Camera Motion using Uncalibrated RGB Cameras

Nitin Saini1,2, Chun-Hao P. Huang1, Michael J. Black1, and Aamir Ahmad2,1

Abstract—Markerless human motion capture (mocap) from
multiple RGB cameras is a widely studied problem. Existing
methods either need calibrated cameras or calibrate them relative
to a static camera, which acts as the reference frame for the
mocap system. The calibration step has to be done a priori
for every capture session, which is a tedious process, and re-
calibration is required whenever cameras are intentionally or
accidentally moved. In this paper, we propose a mocap method
which uses multiple static and moving extrinsically uncalibrated
RGB cameras. The key components of our method are as follows.
First, since the cameras and the subject can move freely, we
select the ground plane as a common reference to represent
both the body and the camera motions unlike existing methods
which represent bodies in the camera coordinate system. Second,
we learn a probability distribution of short human motion
sequences (∼1sec) relative to the ground plane and leverage it
to disambiguate between the camera and human motion. Third,
we use this distribution as a motion prior in a novel multi-stage
optimization approach to fit the SMPL human body model and
the camera poses to the human body keypoints on the images.
Finally, we show that our method can work on a variety of
datasets ranging from aerial cameras to smartphones. It also
gives more accurate results compared to the state-of-the-art on
the task of monocular human mocap with a static camera. A video
demo and our code are available at https://tinyurl.com/yeykrb67
and https://tinyurl.com/2p9rme9y.

Index Terms—Gesture, Posture and Facial Expressions; Hu-
man Detection and Tracking; Deep Learning for Visual Percep-
tion

I. INTRODUCTION

MODERN markerless methods use RGB cameras to
estimate human motion without the need for markers

or sensors on the subject’s body [1]. They use sparse 2D
keypoints to either fit a 3D body model or train a neural
network to output the parameters of the body model. Existing
monocular methods [2] take images from a single static camera
and estimate the motion of the person relative to it. Since,
most applications need human motion relative to the world,
the camera should be calibrated relative to the world. Another
problem with this setup is that the subject’s body parts can
often get self-occluded. One solution is to make the camera
freely moving such that it can optimize its view for motion
estimation [3]. However, a moving camera is much more
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difficult to calibrate relative to the world [1]. Estimating the
subject’s global motion is also difficult using a single camera
because the camera motion and the subject’s motion cannot
be disambiguated using only the sparse 2D keypoints. Multi-
view methods employ multiple static cameras to handle self-
occlusions. They calibrate the cameras relative to the world
in a separate calibration step, which increases the preparation
time. The cameras should remain static after the calibration
step. In case they are moved intentionally or accidentally, the
calibration has to be performed again, making the capture
process highly inconvenient and time-consuming.

To address the aforementioned issues, in this paper, we
present a system for outdoor human mocap using a set of
RGB cameras, where some cameras are static while others
are moving. This system is quick to set up, as users can place
the cameras and immediately start the capture session. Any
camera can be moved during the mocap session to get better
visibility of the subject, and each camera, using our method,
extrinsically calibrates itself relative to the world using only
the sparse 2D keypoints of the human body. Our system does
not need a pre-calibration of the extrinsic parameters of the
camera (pose of the camera in the 3D space). It, however,
needs the camera intrinsics (related to the camera sensor and
lens). Since these remain constant for any camera, the intrinsic
calibration needs to be done only once and then can be used
in multiple mocap sessions.

Our mocap method takes in the synchronized videos from
multiple RGB cameras and estimates the camera poses and
the subject’s motion, defined as the trajectory of human poses
(articulated and global), and shape in all the frames. All the
estimates are relative to a global reference frame, which is
the ground projection of the human root joint onto the ground
plane in the first frame. The ground plane is defined as the XY
plane. We learn a probability distribution of the human motion
relative to a ground plane by training a variational autoencoder
using a large human motion dataset (AMASS) [4]. The state-
of-the-art human motion prior [5] learns the distribution of
pose transitions, which is defined as the difference between
two consecutive poses. This is highly sensitive to noise in
long-term motion generation/estimation. Contrarily, we learn
the distribution of the trajectory of body joint positions and
joint angles relative to the above-defined world frame. The
length of each motion sequence is fixed as 25 frames at the rate
of 30 frames per second. We use this probability distribution
to fit the SMPL human body model [6] to the sparse 2D
keypoints in all the views. These 2D keypoints are obtained
using the openpose 2D keypoint detector [7]. While our
motion prior encodes the distribution of human motion relative

ar
X

iv
:2

20
9.

13
90

6v
2 

 [
cs

.C
V

] 
 1

 A
pr

 2
02

3

https://tinyurl.com/yeykrb67
https://tinyurl.com/2p9rme9y


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

Fig. 1: Multi-exposure image of a person playing football [left] and the reconstructed motion of the person and the cameras using our method [right].

to the ground plane, the 2D keypoints contain information
about the subject’s articulated poses and the camera poses
relative to the subject. In the optimization formulation, we
directly optimize for the camera poses and the human poses
in the world frame jointly, and condition the human motion
using our learned probability distribution of human motions.
This keeps the reconstructed poses aligned with the ground
plane. However, this formulation is highly non-convex and
susceptible to converging to a local minimum. Therefore, we
first initialize the human position as the mean of human motion
in the learned latent space. The articulated human pose and the
camera poses are initialized using the estimates of a human
pose regressor [8]. Since a motion sequence in our learned
latent space is of a fixed length of 25 frames and starts from
the origin, we take a multi-resolution optimization approach.
After the initialization stage, we run the optimization stage,
where we split the full sequence into chunks of 25 frames
and run optimization on these chunks independently. This
optimization treats the starting of each chunk as the origin. In
the next stage (stitching stage), we stitch these chunks together
such that the last frame of a sequence aligns with the first
frame of the next sequence. In the final stage, we run the
optimization again on this stitched sequence to get the final
estimates. For longer sequences, stitching the full sequence
can accumulate noise in the orientation estimates, which leads
to poor initialization for the next optimization stage. To avoid
this, we stitch together a smaller number of them, perform
optimization, stitch, optimize and iterate. This way, we slowly
increase the temporal resolution at each stitching stage and
perform the alternate stitching and optimization until the final
optimization for the full sequence.

In summary, we have the following novel contributions:
• A human motion prior which encodes the global and artic-

ulated human motion relative to a global reference frame
(ground plane).

• A multi-resolution optimization method for estimating cam-
era poses along with the human motion and shape relative
to the ground plane using single/multiple uncalibrated RGB
cameras.

II. RELATED WORK

A. Multi-view methods

Most of the existing markerless human mocap methods
utilize videos from multiple calibrated and time-synchronized
cameras. They first detect 2D features (keypoints, silhouette
etc.) on the image plane and then use the camera calibration
parameters to either project them in 3D space [9] or fit the 3D
human body (model parameters, body joints etc.) to the 2D

features [10]. Since calibrating the cameras in a separate step
is not always possible, [11] and [12] utilize the human body
to calibrate the static cameras. While [11] use simple human
motion constraints such as constant velocity or acceleration of
the human joints, [12] learn a human motion prior and use it
to fit the SMPL body model [6] to the 2D keypoints. [13] use
pan-tilt-zoom cameras and triangulate the human annotated 2D
keypoints to reconstruct the 3d motion of people skiing and the
pan, tilt and zoom of the cameras. The static cameras cannot
actively change the viewpoint for better mocap. Therefore,
[14] and [15] use moving cameras along with the static
cameras as their mocap setup. However, all the above methods
for uncalibrated cameras estimate the human motion relative
to one static camera, which should be calibrated relative to
the world such that the estimated human motion can be
transformed to the world reference frame. Calibrating cameras
is particularly hard if all the cameras are moving. [16] use
multiple handheld smartphone cameras and calibrates them
relative to a static background using a structure-from-motion
(SFM) method. However, such calibration is not reliable and
only works for a static background with suitable texture. [1]
use cameras mounted on custom-designed multiple micro-
aerial vehicles and calibrates them using the onboard IMU
and GPS sensors. However, such sensors are not available for
ordinary RGB cameras.

B. Monocular methods

Early monocular methods like [17], fit a human body model
[18] to the 2D keypoints and body silhouette on the image
plane. Later ones use deep neural networks to directly regress
the parameters of a human body model directly from the RGB
image [19]. All the above, estimate the human pose/motion
relative to the camera or relative to some local coordinate
system on the human body. Recent methods like [5] try to
estimate human motion in a world reference frame using
a monocular video. HuMoR [5] learned the distribution of
human motion transitions and used it to fit the SMPL model
to the 2D keypoints on a monocular video from a static
camera. However, encoding only the motion transitions is
very sensitive to noisy observations (2D keypoints) which can
lead to unrealistic human motion estimates. Methods like [20]
estimate human pose relative to the camera and use SLAM
to track the camera poses that need textured background.
Methods such as [21] train a regressor network which can
output the trajectory of global pose given the articulated
poses. This makes the final output more sensitive to the noisy
articulated poses estimated in the previous stages. They do not
utilize the fact that the articulated poses can also be improved
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using the global pose information, which we do. Additionally,
they represent the global poses trajectory using relative local
differences (similar to [5]) which makes the future results
sensitive to the noise in past poses.

III. APPROACH

A. Goal and preliminaries

Given synchronized image sequences of length T frames
from C cameras looking at a moving person, the goal is
to estimate the camera motion, the person’s shape, and the
person’s motion, which is defined as the trajectory of the
person’s poses (articulated and global). We use the SMPL
human body model [6] to represent the human poses. SMPL is
parameterized by joint angles (θ ∈R63), body shape parameters
(β ∈ R10), root orientation (φ ∈ R3) and root position (τ ∈ R3).
We use N = 22 body joints from SMPL, which includes 21
body joints and 1 root joint. We exclude the 2 hand joints
from the original 24 joints in the SMPL model. Instead of
representing the articulated pose as joint angles, we represent
the subject’s articulated pose at any time t in the latent space of
VPoser [2] (z∈R32), which is a learned probability distribution
of human poses. It is a variational autoencoder (VAE) with
encoder (VE) and decoder (VD). The full human motion is
then represented as ((τ1,φ1,z1), ...,(τT ,φT ,zT ),β ). The position
and orientation of a camera c at any time t is represented as
pc,t ∈R3 and, rc,t ∈R6 respectively. Unless explicitly stated, we
use the 6D representation [22] to represent the rotations in
this paper. The camera motion for any camera c is represented
as ((rc,1, pc,1), ...,(rc,T , pc,T )). Our human motion prior uses a
different representation of the body pose. The body pose xt

at any time t is the orientation and position of each body joint
relative to the world frame, i.e. xt ∈R22∗(6+3). The origin of the
world frame is defined as the ground projection of the SMPL
root joint in the first frame and the ground plane is defined
as the XY plane. The motion prior encodes the fixed length
of 25 consecutive poses, thus, the motion sequence for the
motion prior is represented as x = (x1, . . . ,x25). We represent
the estimated value of any parameter by putting a tilde over
it, e.g. x̃ is the estimated value of x.

B. Human motion prior

We use a VAE to learn a distribution in the latent space
of human motion sequences of a fixed length. Each motion
sequence consists of 25 consecutive human body poses at the
rate of 30 frames per second. The forward-facing direction of
the SMPL root joint in the first frame is aligned with the +Y
axis of the origin.

1) Training data: We use AMASS dataset [4] to train our
network. AMASS is a collection of multiple human mocap
datasets, unifying them with the SMPL body representation.
We follow the preprocessing steps in HuMoR [5] which
removes the motion sequences where the person’s feet are
skating or sliding over the static ground plane. In such
motions, the person doesn’t interact with a stationary ground
plane but with an object such as a treadmill or skates. The
preprocessing step also changes the frame rate to 30 FPS and
gives out a total of 11893 motion sequences. We randomly

select 25 consecutive frames from any of these sequences and
canonicalize them such that the origin is the ground projection
of the root joint at the first frame and the person’s forward
direction is aligned with the origin’s +Y axis. Even though
the shape of the subjects in AMASS varies, we follow [5]
and keep the body shape constant to the mean shape. This
reduces the complexity of the model by ignoring the body
shape variations at the expense of some possible artefacts such
as foot-skating.

2) Model architecture and training: We use convolutional
architecture for both the encoder and the decoder networks.
The encoder (ME) consists of a 1D convolutional (conv) layer
at the input and 4 identical residual blocks. We modify the
ResNet [23] residual blocks to create these blocks. We replace
the 2D convolutions with 1D convolutions. We further replace
the ReLU units with the GELU units within the blocks. We
also place a GELU unit after the input 1D conv layer and each
of the residual blocks. The output dimension of the first conv
layer is 1024. The input and output dimension of each residual
block is 1024. Furthermore, two linear layers transform the
output of the last residual block to the mean (µ ∈R1024) and log
of variance (log(σ 2) ∈R1024) of the gaussian distribution in the
latent space, from which the latent value (m∈R1024) is sampled
using the reparametrization trick [24]. The decoder (MD)
architecture also consists of 4 consecutive residual blocks,
similar to the ones in the encoder. The first residual block
acts as the input layer, and there is a deconvolutional layer at
the output of the decoder.

We train our motion VAE network using a combination of
reconstruction (Lrec) and KL divergence loss (LKL).

L= Lrec +wklLKL, (1)
where

Lrec = ||x− x̃||2 and LKL =−
0.5

1024

1024

∑
i
(1+ log(σ 2

i )−σ
2
i −µ

2
i ).

(2)
We employ a 20 epochs cyclic annealing scheme for the

parameter wkl [25]. Initially, the value of wkl starts at 0 and
increases linearly with the training epochs. After 10 epochs,
the value reaches 1 and stays constant for another 10 epochs.
The value again drops to 0 and the cycle continues.

C. Camera and human pose estimation

First, we use openpose [7] to detect 2D keypoints of the
subject in each image. Then we use them in our method which
consists of the following steps, 1) Initialize, 2) Optimize, 3)
Stitch and 4) Optimize-final (see fig. 2).
• Step 1: Initialize We initialize the SMPL and camera
poses for each frame using the results from PARE [8]. PARE
gives the camera pose relative to the person and the person’s
articulated pose for each image. We take the mean of the
articulated poses in all the views (θinit), project it to the VPoser
latent space (zinit) and use it as the initial articulated pose
of the subject. For the initialization of SMPL position (τinit)
and orientation (φinit) relative to the ground plane, we use the
decoded output of the mean value in the motion prior latent
space. We use the initialized pose of the person to calculate
the position (rinit) and orientation (pinit) of the cameras relative
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Initialize Optimize Stitch Optimize-final

PARE

Openpose

Fig. 2: Our method takes in synchronized images of a moving person from multiple intrinsically uncalibrated cameras, and processes them in 4 steps 1)
Initialize, 2) Optimize, 3) Stitch and 4) Optimize-final to give the motion of the person and the cameras in the world frame.

to the ground plane. Since PARE assumes an orthographic
camera with a focal length of 5000, we use the method in
[26] to transform the SMPL position estimate in the actual
camera. The SMPL shape (βinit) is initialized with a vector of
zero values.
• Step 2: Optimize We estimate the motion of the person in
small intervals (25 frames). We split the full sequence into
chunks of length 25 and run the optimization for each chunk
independently in three phases to avoid local minimum, similar
to [15]. In the first phase, we optimize the camera poses only.
In the second phase, we optimize camera poses along with
SMPL position and orientation. In the final phase, we optimize
all the parameters, except the SMPL position and orientation
in the first frame. The initial SMPL position and orientation in
the first frame act as the pivot for all the optimizing parameters.
• Step 3: Stitch We stitch together the estimated motions.
Since the origin for each chunk is defined as the ground
projection of the root joint, we stitch consecutive sequences
together such that the root ground projection of the last frame
of a chunk is aligned with the first frame of the next chunk.
For very long sequences, we stitch together fewer sequences,
optimize, stitch and repeat until all the sequences are stitched.
• Step 4: Optimize-final In the final optimization step
(optimize-final), we again optimize all the parameters for the
fully stitched sequences in three phases, the same as in the
previous optimization stage. This step is the final optimization
step if all the sequences are stitched. For very long sequences,
we stitch together fewer chunks instead of all. Then we
optimize and repeat the stitching and optimization cycle until
the whole sequence is done.

In all the optimization stages, we minimize the same loss
function, which is a weighted combination of multiple loss
terms. It is given as

E = w2DE2D +wmEm +w3DSE3DS +wCOSECOS +wCPSECPS

+wβ Eβ +wzEz +wGPEHGP +wCGPECGP.
(3)

The component E2D is the 2D reprojection loss given as

E2D =
1

NT ∑
n,c,t

wn||Π(rc,t , pc,t ,Jn(VD(zt),τt ,φt ,β ))− jn
c,t ||2, (4)

where, J is the SMPL 3D joint regressor function [6], V is
the VPoser decoder [2], Π is the camera projection function,
jn
c,t is the 2D keypoint corresponding to the joint n in camera

c at time instant t, and wn is the confidence score given by
the 2D detector for the joint n. The loss component Em is the
motion prior loss given as

Em =
T−25

∑
t
||MEµ

(VD(zt:t+25),τt:t+25,φt:t+25,β )||2, (5)

where MEµ
is the µ part of the motion prior encoder. The loss

component E3DS is a temporal smoothing term for the 3D joint
positions. It is given as

E3DS = ∑
t
||J (VD(zt),τt ,φt ,β )−J (VD(zt−1),τt−1,φt−1,β )||2. (6)

ECOS and ECPS are the camera motion smoothing terms.
Following [15], we use L2 loss on the positions and the 6D
representation of the camera orientations, given as

ECOS =
1

CT ∑
c,t
||rc,t− rc,t−1||2 ; ECPS =

1
CT ∑

c,t
||pc,t− pc,t−1||2. (7)

Eβ and Ez are the SMPL shape and VPoser regularization
terms [15], given as

Eβ = ||β ||2 and Ez = ||z||2. (8)

EHGP and ECGP are the ground penetration terms for both
the human and the cameras. These terms avoid the scenarios
where the cameras or the human goes below the ground plane.
These are given as

EHGP =
1
T ∑

t
max(0,J z(VD(zt),τt ,φt ,βt)) and (9)

ECGP =
1

CT ∑
c,t

max(0, pz
c,t), (10)

where, J z and pz are the vertical (z) component of the 3D
joint positions and the camera positions, respectively. In all
the above equations, T is replaced with 25 in the Step 2.
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Fig. 3: Camera setup used to collect our smartphone dataset.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We evaluate our method using a sequence taken from each
of the following datasets

1) RICH dataset [27]: it is collected using 7 static and one
moving IOI cameras. It has the ground truth poses of the
person and the camera poses for the static cameras. The GT
poses of the moving camera are not available.

2) AirPose real-world dataset [15]: It is collected using RGB
cameras mounted on two DJI unmanned micro aerial vehicles
(UAVs). One UAV is kept hovering and other is encircling the
subject while looking at him.

3) Our smartphone dataset: it is collected using 4 smart-
phone cameras, where two of the cameras are static while the
other two are moving. The data is collected when the subject
is playing with a football in a small field. The camera setup
can be seen in Fig. 3. We show the rest of the three cameras
and the subject in the frame of the camera Cam1. Cam1 and
Cam3 are static, and Cam2 and Cam4 are moved along the
boundary walls of the field. We used OpenCamera app [28] to
collect the video data on the smartphones. Each smartphone
records the videos at 30 FPS. Since the frame rates are the
same and constant, we manually synchronize the videos by
synchronizing just one frame. Similar to AirPose dataset, the
smartphone dataset also does not contain any GT.

B. Metrics

We use the following metrics to quantitatively evaluate the
reconstruction by our method on the RICH dataset. 1) Mean
camera position error (MCPE): This is the mean value of the
distance between the estimated and the GT position of all the
cameras. It is given as

MCPE =
1
C ∑

c
||pc− p̃c||. (11)

2) Mean camera orientation error (MCOE): This metric
is the mean geodesic distance between the estimated camera
orientation and the GT on the 3D manifold of rotation matrices
[29]. It is given as

MCOE =
1
C ∑

c
arccos(0.5∗ (Tr(R̃cR>c )−1)), (12)

where Rc is the camera orientation matrix.
3) Mean position error (MPE): This is the mean value of the

distance between the estimated SMPL root position parameter
and its GT value provided by the RICH dataset.

MPE =
1
T ∑

t
||τt − τ̃t ||. (13)

4) Mean orientation error (MOE): This metric is the mean
geodesic distance between the estimated SMPL root orienta-
tion and the GT on the 3D manifold of rotation matrices [29].
It is given as

MOE =
1
T ∑

t
arccos(0.5∗ (Tr(R̃φt R

>
φt
)−1)), (14)

where Rφt is the SMPL root orientation matrix at time t.
5) Root-aligned mean per-joint position error (RA-MPJPE):

This metric is to quantitatively evaluate the articulated pose
estimate [1]. It is the distance between the estimated 3D
joints and their corresponding values when the SMPL position,
orientation of the root joint and shape are aligned with their
corresponding GT. For alignment, all these three parameters
are set to zero. The error is given as

RA-MPJPE =
1

NT ∑ ||Jn(θt)−Jn(θ̃t)||. (15)

6) Mean per-vertex position error (MPVPE): This metric
is to evaluate the shape estimate relative to the GT. We do the
SMPL forward pass using only the estimated and GT shape
parameters and then calculate the mean distance between the
corresponding vertices as

MPV PE =
1
V ∑ ||Sv(β )−Sv(β̃ )||, (16)

where S is the SMPL vertices regressor function [6] and V is
the number of vertices in the SMPL model.

C. Results and discussion

1) RICH dataset: We show the evaluation metrics and their
corresponding standard deviation values of our method on
RICH in Table I and II. The results of our method using all 8
cameras are shown in the last row of Table I (C1,..,8). We also
compare the performance of our method with multiple camera
configurations. In the first row, we show the results when only
the first camera is used (C1). Next, we add camera 8, which is
moving, and the results are shown in the second row (C1,8). We
keep adding static cameras one at a time and show the results
in further rows. Adding an extra view, only gives information
about the articulated pose of the subject and the relative poses
of the camera and the subject. This is why we don’t see
improvement in the global pose estimates of the person or
in the camera poses with addition of more views. However,
adding more views helps in handling occlusions better and we
see in Fig. 4 the RA-MPJPE improves with more camera views
but gets saturated after 4 views. This shows that 4 views are
sufficient to resolve any uncertainty in the person’s articulated
pose due to occlusions, and adding more views doesn’t provide
any additional information.

Note that we do not optimize the SMPL position and
orientation in the first frame, as it acts as the pivot and bring
the person conforming to the first frame using (5) and cameras
using (4). Therefore, the estimate in the first frame is noisy
and because of (7), a few initial frames become noisy. Hence,
we ignore the first 10 frames for evaluation.

In table II, we compare the monocular and the multi-view
version of our method (row 3 and 4) with the reference
methods GLAMR [21] (row 1) and HuMor [5] (row 2), which
are the state-of-the-art monocular human pose and shape
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Cameras MCPE
(cm)

MCOE
(rad)

MPE
(cm)

MOE
(rad)

RA-MPJPE
(cm)

MPVPE
(cm)

C1 72.68 0.20 10.89 ± 7.31 0.27 ± 0.10 6.60 ± 4.92 3.07 ± 1.45
C1,8 55.85 0.14 7.61 ± 4.14 0.22 ± 0.06 6.24 ± 5.02 3.13 ± 1.50
C1,2,8 90.46 0.17 12.72 ± 2.93 0.23 ± 0.07 5.97 ± 4.91 3.00 ± 1.38
C1,2,3,8 89.68 0.14 11.67 ± 2.59 0.20 ± 0.07 5.73 ± 4.80 3.02 ± 1.38
C1,..,4,8 95.03 0.16 12.39 ± 2.69 0.22 ± 0.07 5.68 ± 4.68 2.91 ± 1.30
C1,..,5,8 93.74 0.16 12.49 ± 2.74 0.20 ± 0.07 5.66 ± 4.65 2.91 ± 1.32
C1,..,6,8 92.43 0.17 13.42 ± 2.85 0.20 ± 0.06 5.87 ± 4.77 2.31 ± 0.92
C1,..,8 88.13 0.18 13.69 ± 3.05 0.19 ± 0.06 6.03 ± 4.94 1.86 ± 0.79

TABLE I: Evaluation of our method using multiple camera configurations.
Camera no. 1-7 are static in the RICH dataset with available GT, and camera
no. 8 is moving but GT is not available. Hence, the MCPE and MCOE metrics
for rows 2-9 do not include camera 8.

Camera MCPE
(cm)

MCOE
(rad)

MPE
(cm)

MOE
(rad)

RA-MPJPE
(cm)

MPVPE
(cm)

GLAMR
[21] 250.93 0.27 24.07 ± 4.96 0.48 ± 0.28 9.66 ± 9.51 2.84 ± 1.12

HuMor
[5] 90.09 0.17 30.32 ± 8.12 0.48 ± 0.39 10.82 ± 8.14 4.2 ± 2.09

C1
(ours) 72.68 0.20 10.89 ± 7.31 0.27 ± 0.10 6.6 ± 4.92 3.07 ± 1.45

C1,..,8
(ours) 88.13 0.18 13.69 ± 3.05 0.19 ± 0.06 6.03 ± 4.94 1.86 ± 0.79

TABLE II: Comparison of our method (C1,..,8), monocular version of our
method (C1) and state-of-the-art monocular methods HuMor [5] and GLAMR
[21] on RICH dataset.

estimation methods. We see that our method significantly
outperforms these methods. Both HuMor and GLAMR uses a
motion prior which encodes human motion transitions instead
of absolute motions. As we discussed in Sec. II-B, reconstruct-
ing the motion from the space of motion transitions is very
sensitive to noise and can lead to spurious results. In Fig. 5, we
show the qualitative results of our method and the reference
method and compare them with the GT. The 3D reconstruction
of the human and the cameras relative to the ground plane
are shown for our method (blue), the GT (green) and the
reference method [5] (red). For a clearer illustration, we render
each pose by adding a time-dependent offset to the position
estimate at that time. Camera pose estimates are unchanged
for the rendering. We can see that our estimates are very close
to the GT, while the reference method estimates are quite
inaccurate. For example, in the left inset box, we see that both
the feet are on the same side, giving a physically implausible
global pose estimate. In the right inset box, the person’s body
suddenly rotates more than 90◦, again resulting in a physically
implausible motion. In Fig. 6, we do a qualitative comparison
of our method with GLAMR [21] by showing the resulting
mesh overlaid on the original image. While the results from
our method are nearly perfectly aligned with the person in
the image, the overlaid GLAMR results does not match the
person. This is due to the errors in both the estimated person’s
poses and the estimated camera pose.

2) Airpose dataset: In Fig. 7, we show qualitative results
of our method on the Airpose real-world dataset. We show the
cropped version of the original images of the subject, along
with the same image with the estimated mesh overlaid on top.
Two adjacent columns are the two views at the same time
instant. The results show that our method can reconstruct the
diverse poses captured from an aerial view. In the bottom-
right corner, we show the 3D reconstruction of the subject’s
poses, shape, and the camera poses for a sub-sequence. The
color gradient from yellow to violet is used to show the time
transition. We observe that the subject’s reconstructed body
is not touching the ground, but lies a bit above the ground
plane. This is because the actual terrain is not a plane, but a
sloped hilly terrain. Even though the motion prior is trained
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Fig. 4: RA-MPJPE of our method using different camera configurations.

on the motion sequences performed on a plane surface, our
method can still recover the global motion on terrain with a
small slope.

3) Smartphone dataset: We also show the qualitative results
of our method on our smartphone dataset. We show the
cropped images, the overlaid estimated mesh and the 3D
reconstruction of the subject and the cameras in Fig. 8. Our
method accurately reconstructed the subject’s pose playing
football and the camera motion along the wall of the playing
arena. We see that the overlays are near-perfectly aligned
with the images, showing the accurate reconstruction of the
relative pose of the camera and the person. The complete
reconstruction is shown in the bottom-right image, and we see
that the subject’s motion and the camera motion are temporally
and spatially coherent.

V. LIMITATIONS

Our method assumes a planar ground surface and human
motions which do not involve moving ground (e.g. a treadmill)
or sliding motions (e.g. skating, skiing, etc.). However, it can
be extended for non-planar ground surfaces by encoding the
surface, articulated poses and global poses together in a prior.
A major limitation in training such a prior network is the
unavailability of human mocap data where the ground surface
is also captured. Moreover, most existing datasets are collected
with a human subject moving on a planar ground surface.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method to reconstruct the
3D human poses, shape, and camera poses relative to a
global coordinate frame using synchronized RGB videos from
single/multiple extrinsically uncalibrated cameras. We use the
ground plane as the reference coordinate system and train a
human motion prior using a large amount of human mocap
data. We use the latent space of this motion prior to fit the
SMPL body model to the 2D keypoints on all the views
simultaneously. We show our results on two existing dataset
and one new dataset that we collect using smartphones. We
show that our method reconstructed the human poses, shape,
and camera poses on all the three datasets. We showed the
quantitative results on the RICH dataset, demonstrating that
our method achieves more accurate results compared to a state-
of-the-art method on the task of monocular human motion
reconstruction. We also analyzed the effects of multiple views
on our method’s performance. We show that our method works
for diverse types of camera views by showing qualitative
results on all the three datasets. The accurate reconstruction by
our method on the smartphone data is evidence of the ease of
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Fig. 5: Comparison: our method (blue), HuMoR [5] (red) and GT (green). For clarity, the human poses are shifted sideways using time-dependent offsets.

Fig. 6: Comparison of GLAMR [21] and our method using a single camera on the RICH dataset. We show images at 4 time instants, each containing the
original image, the GLAMR results (green) and results from our method (cyan) using a single camera.

Fig. 7: Results on the Airpose real-world dataset. The result at each time instant is shown using an image grid of 2×2. The top row shows the cropped region
of the actual image, while the bottom row shows the estimated mesh overlaid on top of it. Each column corresponds to each camera view. The bottom-right
image shows the full 3D reconstruction of the subject’s poses, shape, and the camera poses.

use of our method. Our future work includes usage of synthetic
data with physics to generate training dataset.

Disclosure: Michael J. Black has received research gift
funds from Intel, Nvidia, Adobe, Facebook, and Amazon.
While he is a part-time employee of Amazon, his research
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