
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2022 1

ERRA: An Embodied Representation and Reasoning Architecture for
Long-horizon Language-conditioned Manipulation Tasks

Chao Zhao*, Shuai Yuan*, Chunli Jiang, Junhao Cai,
Hongyu Yu, Michael Yu Wang, and Qifeng Chen

Abstract—This letter introduces ERRA, an embodied learning
architecture that enables robots to jointly obtain three funda-
mental capabilities (reasoning, planning, and interaction) for
solving long-horizon language-conditioned manipulation tasks.
ERRA is based on tightly-coupled probabilistic inferences at
two granularity levels. Coarse-resolution inference is formulated
as sequence generation through a large language model, which
infers action language from natural language instruction and
environment state. The robot then zooms to the fine-resolution
inference part to perform the concrete action corresponding to
the action language. Fine-resolution inference is constructed as
a Markov decision process, which takes action language and
environmental sensing as observations and outputs the action.
The results of action execution in environments provide feedback
for subsequent coarse-resolution reasoning. Such coarse-to-fine
inference allows the robot to decompose and achieve long-
horizon tasks interactively. In extensive experiments, we show
that ERRA can complete various long-horizon manipulation tasks
specified by abstract language instructions. We also demonstrate
successful generalization to the novel but similar natural language
instructions.

Index Terms—Manipulation, Large Language Model (LLM),
Reasoning, Reinforcement Learning, Human-robot interaction

I. INTRODUCTION

If robots are to be widely deployed in workplaces, hospitals,
and our homes to assist us, they must understand our needs,
discover the underlying causal relations of environments, and
interact with the environment appropriately. An example is
the case of long-horizon manipulation tasks specified by
natural language. For example, when humans hear a request
such as “Please put the cosmetic in the drawer”, we can
simultaneously understand the sentence’s semantics and observe
the surroundings to determine whether we need to “open
the drawer” first or “grasp the cosmetic.” We then observe
the outcomes of attempted concrete action and plan next. In
addition, we can take corrective measures from failure cases
(e.g., cosmetic slips from our hands). To operate in our world,
robots must replicate such abilities.

This is the motivation for the problem tackled in this paper,
which is a robot that has the following abilities: (i) reason
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Instruction: “Please clean the table”

Coarse-resolution Inference

Action language: Grasp an object

Fine-resolution inference

Concrete action

Grasp an object Put the object into the bin Done

Fig. 1: ERRA Overview. The image sequence at the top shows the action
language and execution process to complete a task with the instruction “Please
clean the table,” utilizing ERRA. Given a language instruction, the coarse-
resolution inference produces the next step represented by action language,
according to the environment state. The action language and state are then
processed by fine-resolution inference, which outputs the concrete action to
interact with the environment.

abstract nature language instructions and plan with the causal
relation of the environment, (ii) develop motor skills to interact
with environments, and complete long-horizon manipulation
tasks, (iii) detect failures (e.g., accidentally drop an object) and
correct them (e.g., grasp the object again). Endowing robots
with the combination of abilities (i)-(iii) is a grand challenge
because the long-horizon manipulation tasks with abstract
language instructions, for example, “clean trash on the table,”
requires the embodied agent to have semantic knowledge and a
reliable interpretation of the environment, to successfully plan
and perform a long sequence of motor skills, and to know when
to stop (i.e., no trash on the table). While conventional methods,
such as symbolic programming or hierarchical reinforcement
learning, can plan tasks, most approaches rely on carefully
designed representations and analytical transition models, which
limit generalization. Recently, a few studies have explored the
use of pre-trained large language models (LLMs) to answer
questions that require reasoning and planning through prompt
design (i.e., hand-crafted text prompts) and utilizing such
ability for long-horizon robot manipulation [1]–[3]. However,
an important problem with these approaches is that there is
no guarantee of what manipulation tasks LLMs can reason
about and plan without trying because LLMs lack real-world
experience during their original training. Furthermore, small
changes in prompts can deteriorate the performance of LLMs,
making finding appropriate prompts time-consuming.
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To address the above problems and endow robots with
abilities (i)-(iii), we propose the ERRA framework based
on tightly-coupled probabilistic inferences at two levels of
granularity, coarse and fine. An overview of ERRA is shown
in Fig. 1. The coarse-resolution inference focuses on high-level
reasoning and planning (i.e., what to do in the next step?),
and the fine-resolution inference focuses on learning concrete
actions (i.e., how to do it?). The results of executing concrete
actions in the environment provide feedback for subsequent
coarse-resolution inferences. Such coarse-to-fine inferences are
invoked repeatedly to decompose long-horizon manipulation
tasks as a sequence of concrete actions. Coarse-resolution
inference is built on a pre-trained large language model for
generating the action language. Motor skills in fine-resolution
inference are learned through reinforcement learning (RL) under
self-supervision.

The primary contribution of this work is to suggest a new
approach, ERRA, that allows an embodied agent to acquire
reasoning, planning, and interaction abilities for solving long-
horizon manipulation tasks specified by natural language. Exten-
sive experiments show that ERRA is capable of understanding
the semantics in abstract language instructions, reasoning
in environments with rich functional relationships between
objects, and providing motor skills to complete long-horizon
manipulation tasks. We also show that ERRA allows the robot to
recover from failure cases and adapt to environmental changes
in the real world, significantly improving the robustness of
robots in dynamic environments.

II. RELATED WORK

Task and Motion Planning. In robotics, task and motion
planning [4] is capable of solving long-horizon (i.e., multi-
step) manipulation tasks. Traditional methods rely on symbolic
planning [5] or optimization [6] in abstract or symbolic spaces.
However, most approaches require manually defined repre-
sentation spaces and environment kinematics models, which
are usually domain-specific and lack generalization ability.
More recently, LLMs have demonstrated dawning properties
on reasoning and planning under appropriate conditions (e.g.,
language prompts) [7]–[10]. Several works [3] have studied
using LLMs to plan robot manipulation tasks. SayCan [1] uses
LLM to infer the entire plans of the manipulation task and
estimate the feasibility of each step using a model of action
affordance. However, these methods assume that the execution
of each planned motor skill is faultless, making them not
robust to intermediate failures in task execution. In this aspect,
[2] introduces additional modules to incorporate human and
environmental feedback to improve the completion of tasks.
While prior works have investigated how LLMs plan via prompt
design, the ability of LLMs is agnostic, requiring time and
human effort to design and experiment with different prompts.
We introduce the prompt tuning method [11], enabling the LLM
to be a reasoner and planner without using design prompts.

Learning Language-Conditioned Manipulation. Natural
language provides a human-interactive interface to link humans
to robots, which is important for deploying robots in our
lives. Many studies [12]–[16] have explored how robots
follow language instructions, in which robots are required

to complete tasks specified by the language. Some studies
[17]–[19] have learned language-conditioned behaviors through
imitation learning. For example, [20] learns a direct mapping
from images and natural language instructions to actions using
a Transformer network. [21] uses an offline robotics dataset
with crowdsourced natural language labels to learn a range of
vision-based manipulation tasks. Most of these works focus
on learning short-horizon manipulation tasks such as grasping
or in-hand manipulation. In contrast, ERRA can understand
instructions with abstract semantics and achieve long-horizon
tasks by leveraging LLMs’ semantic knowledge to interpret
instructions and plan tasks.

Reinforcement Learning for Manipulation. Reinforce-
ment learning combined with deep learning has recently made
extensive progress in learning skills in different domains, such
as beyond human experts at the games of Go [22] and Atari
[23]. In robotic manipulation, reinforcement learning offers the
robot a way to acquire various manipulation skills through self-
exploration [24]–[26]. However, most studies focus on learning
narrow and individual tasks. Some works achieve long-horizon
task planning by hierarchical reinforcement learning [27], [28],
which requires manual task-level design and lacks general-
ization ability. In our work, ERRA leverages reinforcement
learning to acquire low-level motor skills in the simulation
and cooperates with the coarse-resolution inference module to
perform long-horizon manipulation tasks.

III. METHOD

In this section, we describe the architecture of ERRA, as
shown in Fig. 2. ERRA is based on two inference modules,
coarse and fine. The coarse-resolution module infers an
action language (e.g., grasp the apple) based on language
instruction, environment state, and robot proprioception. The
action language corresponds to a motor skill that the robot needs
to execute. Subsequently, the fine-resolution inference module
generates concrete actions for executing the motor skill, using
inputs of the action language inferred by the coarse-resolution
inference module and the visual and tactile information. By
iteratively invoking the coarse-to-fine inference process, a task
can be decomposed into simpler concrete actions and executed.
The step-by-step planning and execution processes of ERRA
enable feedback to be established and mitigate the challenges
of reasoning and planning, resulting in effective and robust
performance. In the following sections, we describe the problem
formulation of the coarse and fine-resolution inferences and
elucidate the supervised learning and reinforcement learning
approaches we adopted to train these two inference modules
in the simulation.

A. Coarse-resolution Inference

The objective of learning the coarse-resolution inference
is to obtain a high-level manipulation planning strategy, as
shown in Fig. 2A. The coarse-resolution inference is formulated
as a sequence-to-sequence text generation task, in which the
generated action language guides fine-resolution inference to
predict concrete actions performed by the robot.
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A: Learning Coarse-resolution Inference in Simulation
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B: Learning Fine-resolution Inference in Simulation
State st

Action language: “Open the drawer”
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C: Coarse-to-fine Inference in Real World
Instruction: “Please put the cosmetic into drawer”
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inference

Fine-resolution
inference

Fig. 2: System Overview. A: We generate a set of correspondences (S,C) in the simulation to learn the coarse-resolution inference. State S includes the
instruction Λ, depth image I , and tactile signal T . The provided inputs are encoded as three vectors (Λe, Te, Ie), respectively. These vectors are concatenated
and subsequently fed to Google T5. At last, the output action language C and label of action language Cl are used to compute loss; B: To learn fine-resolution
inference, we employ PPO. The RL agent takes the state st as input and predicts the action at for the robot execution at time step t. The agent then obtains
rewards rt and auxiliary reward rau from the simulation; C: We deploy the ERRA in the real world. Given instruction, the coarse-resolution module infers the
action language based on current observation and the tactile signal. Then the fine-resolution module predicts actions with the inputs of action language and
environment state.

Problem Formulation: Formally, it is a mapping p : S → C,
where S = (Λ, I, T ) is the input state and C = (c1, c2, ..., cm)
is a sequence of text that represents the action language. The
state S consists of three parts: a language instruction Λ =
(λ1, λ2, ..., λn), which is a sequence of text words; a depth
image I taken by the camera in the environment; and a tactile
signal T (i.e., a binary signal indicating the presence or absence
of objects between fingers). The coarse-resolution inference is
constructed as a neural network that predicts each word ci ∈
C given the state S.

Learning Coarse-resolution Inference: To learn the coarse-
resolution inference, we generate a synthetic dataset D =
(d1, d2, . . . ). The dataset is collected in simulation leverag-
ing the pre-programmed environments for various language-
conditioned manipulation tasks. Each piece of data di contains a
corresponding relationship: at the current state S, what needs to
do next (denoted as Cl = (cl1, ..., clm)). For instance, in the first
example of Fig. 3(a), the data di ∈ D consists of the language
instruction Λ = {Please put the cosmetic into the drawer},
the tactile signal T = 0, the depth image I , and the label of
the action language Cl = {Open the drawer}.

We choose Google T5 [29], a large-scale pre-trained language
model, as the backbone of the network, which provides benefits
of better contextual understanding and generalization ability
for language. As shown in Fig. 2A, the model extracts the
information from the language instruction, tactile signal, and
image. Then, the model reasons the next action language is
“Open the drawer,” based on the available information while

rejecting other possibilities, such as “Grasp the cosmetic.”
Operationally, we encode the image I with an image encoder
from CLIP [30] as a dense vector Ie. The binary tactile signal
T is transformed to a random initialized dense vector Te ∈ Rn,
with the same dimension as the embedding vectors in T5.
Subsequently, image embedding Ie and tactile embedding Te
are concatenated with the word embedding Λe of the given
instruction Λ as the input sequence (Λe, Te, Ie), as shown in
Fig. 2A. Given such input, the model is expected to generate
the appropriate action language C after training.

The network is trained with soft-prompt tuning [11]. Con-
ventional prompt tuning methods freeze all parameters of the
pre-trained language model and use a language prompt to
probe it to downstream tasks [11]. In soft-prompt, the prompt
is replaced by a group of trainable dense vectors, which avoids
manually designing prompts and reduces the number of training
parameters. Fig. 3(b) shows the difference between our training
method and alternatives. We add relevant soft prompts before
the transformer layer of T5 to control the behavior of the
LLM. Soft prompts are parameterized by using a two-layer
feed-forward neural network. During training, we keep the
language model parameters constant and only fine-tune the
parameters related to these soft prompts. We learn the model
with the language model loss:

L = −
m∑
i=1

logP (ci = cli|c<i,Λ, I, T ), (1)
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Λ: Please put the cosmetic
into the drawer

T : 0
Cl: Open the drawer
I

Λ: Please put the cosmetic
into the drawer

T : 0
Cl: Close the drawer
I

Λ: Please put the cosmetic
into the drawer

T : 0
Cl: Done
I

(a)

Prompt tuning
(ERRA)

Pre-trained LLM
Frozen weights

Prompt design
(e.g. SayCan)

Pre-trained LLM
Frozen weights

Fine tuning

Pre-trained LLM
Tunable weights

Tunable soft prompt Designed prompt Instruction Tactile Image
(b)

Fig. 3: (a) Three examples of collected data, each data di contains a state
S = (Λ, I, T ), and a label of the action language Cl; (b) Difference between
our training and others. Instead of adjusting the parameters of LLM or using
engineered prompts, our method introduces prompt tuning, which adds a small
set of learnable soft prompts and shares the frozen LLM across all tasks.

where m is the sequence length of C, ci ∈ V is the ith word
in sequence C, cli is the ith word of sequence Cl, and V is
the vocabulary.

B. Fine-resolution Inference

The fine-resolution inference aims to link the action language
inferred by the coarse-resolution module to the concrete action
that enacts it. The fine resolution module outputs the action
parameters of the gripper for the robot to execute, to realize
the motor skills corresponding to the action language. These
motor skills are limited to four degrees of freedom in order to
simplify collision calculations and motion planning.

Problem Formulation: We formulate the problem of learn-
ing fine-resolution inference as a Markov Decision Process
(MDP). An MDP comprises state space S′, action space
A, a reward function R(st, st+1), and transition probability
P (st+1|st, at). The RL aims to discover an optimal policy π
that selects action at to maximize cumulative rewards.

Learning Fine-resolution Inference: We model the policy
as a categorical model corresponding to a discrete-domain
stochastic policy. The policy is trained with proximal policy
optimization (PPO). At time step t, the agent chooses an action
at according to the probability output by the policy π(at|st),
and receives a reward rt from the environment.

The state is represented by a tuple st = (I, Le, T ), where I
is the initial depth image of the environment with a resolution
of 240×320, T is a binary signal from the tactile sensor on the
finger, and Le is the embedded vector of the inferred action
language. Le and T are concatenated as a vector gt = (Le, T ).

The policy network architecture comprises a convolutional
(Conv) block and a multilayer perceptron (MLP) block, as
shown in Fig. 2B. The depth observation I and gt are embedded
into two latent vectors by the Conv block and MLP block,
respectively. The resultant vectors are then concatenated and
passed to the fully-connected layers (FCs) to produce an output
action.

The action at consists of two components, namely gripper
pose displacement and gripper closure. The gripper pose dis-
placement is constructed as the difference between the current
and desired pose of the gripper. It is formed as (xt, yt, zt, αt),
where (xt, yt, zt) represents the relative displacement of the
gripper in the workspace, and αt represents the gripper’s
rotation about its z-axis. The displacement of the z-axis is
executed last by the robot, and we fix the target gripper height
during action execution to facilitate learning. The gripper
closure control is represented by a one-hot vector βt is a
one-hot vector that the gripper will be closed if βt = 1. Thus,
the full action is defined as at = (xt, yt, zt, αt, βt), and we
discretize each action coordinate according to the workspace.
During operation, the robot initiates its movement along the x
and y axes before proceeding to the z-axis.

The reward rt is given at the end of an episode, 1 for
successfully completing the required motor skill and 0 other-
wise. In addition, we also provide a linear auxiliary reward
that encourages the robot to approach the target position. The
auxiliary reward rau varies from 0 to 1 based on the distance
between the gripper and target positions (the closer, the higher).

C. Training Details

Coarse-resolution and fine-resolution inferences are learned
in the Pybullet simulator [31] and then transferred to the
real world. In the coarse-resolution inference learning stage,
we generate 300 examples per task in the simulation for 17
language-conditional manipulation tasks, as shown in Fig. 5.
Specifically, we vary a task from the following three aspects:
object types, object positions, and initial setups. For example,
in the “Put something into the drawer” task, we consider
different objects, such as cosmetics or cans, and randomly
position them within the workspace. Additionally, we have
two different initial setups where the drawer is either open or
closed. The generated synthetic dataset D contains over 12000
corresponding relationships and is used to train the coarse-
resolution inference with cross-entropy loss. We follow the
implementation in [11] for the soft-prompt tuning. We use
the Adam optimizer [32] and a linear learning rate scheduler
during training. A default setting trains for ten epochs and
uses a learning rate of 5 × 10−5. Fig. 4 shows seven scene
setups, and we also create similar ones in the simulation. In the
real world, we deploy ERRA on a UR10 arm equipped with
a parallel gripper, an Intel L515 depth camera, and a tactile
sensor, as shown in Fig. 4(a).

To learn the fine-resolution inference, 32 robots in simulation
environments collect training episodes by obtaining the current
policy from the optimizer every eight epochs. In each envi-
ronment, a manipulation task specified by an action language
is procedurally generated, which is randomly selected from
substeps in 17 language-conditional manipulation tasks and
applies the same random variations as during data collection in
the coarse-resolution inference learning stage. The robot in the
simulation environment then collects episodes, during which the
reward is automatically determined based on whether the task
is completed. If the robot completes the task, the environment
will be reset, and a new task will be generated again. At last,
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Depth camera

Our gripper

Tactile sensor

(a) (b)

(c)

Cut banana and clean table Put cosmetic into drawer
and clean table

Close drawer and
grasp knife

Cut apple Pick all round
objects into boxCut apple Put cosmetic into drawer Clean table

Fig. 4: Hardware and Scene Setup. (a) Robot hardware and objects in real-world experiments; (b) Three scene setups for the hybrid tasks; (c) Four scene
setups for the Long-horizon tasks. Short-horizon tasks also use these scenes. An example task is shown at the bottom right in each scene setup.

TABLE I: task family and language instruction definitions

Task Family Num Task Explanation Instruction Type Example Instruction Example Task

Short-horizon 10
Tasks that require one reasoning step

Straight “Please grasp the apple” Robot needs to grasp the apple
completed by a single motor skill

Long-horizon 4
Tasks that require many reasoning steps

Abstract “Please clean the table”
Robot needs to pick up all trash

completed by a range of motor skills on the table into the bin

Hybrid 3
Combined long-horizon

Abstract
“Please put the apple into the Robot needs to place the apple

and short-horizon tasks drawer and clean the table” and clean all trash

the collected episodes are returned to the optimizer for learning
the policy. During the training, we use Adam optimizer [32]
with a learning rate of 10−4. We also randomize the object’s
physical properties during the task generation and add noise to
the depth observation to make the learned policy robust to the
various conditions in the real world. Specifically, the object
size undergoes a global scaling, which entails resizing object
dimensions within a range from 85% (min) to 115% (max) of
its original size. Meanwhile, the spatial and visual properties are
impacted by adding noise to camera properties. Specifically, we
add noise to the camera position, camera pointing position, and
field of view. The camera position and pointing are perturbed
using three-dimensional vectors, and random noise of each
dimension is sampled from a range {−2.5 mm, 2.5 mm}.
Similarly, the field of view is perturbed with a noise range
of {−0.025◦, 0.025◦}. Supplement materials are available at:
https://robotll.github.io/ERRA/

IV. EXPERIMENTS

We design a set of experiments in both simulation and
real-world to evaluate the ERRA and other baselines in the
language-conditioned manipulation tasks. The hypotheses we
want t o validate are as follows:
H1: ERRA can perform long-horizon language-conditioned

manipulation tasks and outperforms other baselines.
H2: Robot proprioception is important for completing language-

conditioned manipulation tasks.
H3: LLMs with prompt-tuning allow ERRA to generalize to

unseen natural language instructions.
H4: ERRA is able to transfer to the real world.
H5: ERRA can respond to environmental changes caused by

humans or its own failures.

A. Scenes, Tasks and Evaluation Setup

Scene and task setup: Fig. 4 shows seven scene setups, and
we also create similar ones in the simulation. Our hardware
settings in the real world are also shown in Fig. 4(a). To evaluate
ERRA, we test its performance on 17 language-conditioned
manipulation tasks from seven scenes in both simulation
and real-world. These tasks cover time horizons, language
complexity, and variations over the robot and environment. Tab.
I details examples for each task family, which fall into the
following:

• Short-horizon: Short-horizon tasks are decomposed from
long-horizon tasks, which involve a straight language
instruction that needs to be achieved by a single motor
skill. The instruction and the action language have a one-
to-one correspondence in such tasks.

• Long-horizon: Tasks are specified by abstract natural
language instruction and achieved by a long sequence of
motor skills. The correspondence between the language
instruction and the action language is not one-to-one and
is affected by the environment and robot state. This tests
the ERRA’s ability to reason abstract instructions and to
plan with the environment’s causal relation.

• Hybrid: These tasks are the combination of multiple long-
horizon and short-horizon tasks, which have a higher
complexity than others.

Baseline comparisons: We compare with the following
approaches:

• Infer-all: It is similar to the architecture of SayCan [1],
in which all action languages are inferred together, and
then the robot executes them one by one without feedback
during the entire task planning and execution process.

https://robotll.github.io/ERRA/
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Fig. 5: Task performance in the simulation. From top to bottom, there are
14 short-horizon tasks, four long-horizon tasks, and three hybrid tasks.

TABLE II: simulation experiments

Method
Short-horizon Long-horizon Hybrid Total

Plan* Task** Plan Task Plan Task Plan Task

Infer-all 100% 94% 55% 46% 52% 31% 69% 57%

ERRA-w/o touch 83% 79% 48% 41% 42% 35% 58% 52%

ERRA 100% 94% 91% 81% 77% 64% 89% 80%
* Plan success rate. ∗∗Task success rate.

• ERRA-w/o touch: An ablated version of the ERRA
without the proprioceptive input (i.e., tactile information).
Both coarse-resolution and fine-resolution modules only
use the camera to observe environments.

• ERRA: We deploy the ERRA system to the robot, which
is the full non-ablated method we propose in this article.

Metric: We consider two evaluation metrics: plan success
rate (successful task planning/total attempts) and task success
rate (completed tasks/total attempts) for validating perfor-
mance. The plan success rate is measured by whether the
module of coarse-resolution inference correctly predicts all
action languages in a language-conditioned manipulation task,
assuming that the execution of motor skills is flawless. The
task success rate is calculated based on whether the target
manipulation task is completed. It requires the coarse-resolution
module to successfully plan each step and the fine-resolution
module to output the correct actions for the robot to complete
corresponding motor skills. For each task, we repeat the test
500 times in simulation experiments and ten times in real-world
experiments.

B. Simulation Results

Comparison to baselines: Tab. II shows the performance
of ERRA on different task families in the simulation. Across
all tasks, ERRA achieves a plan success rate of 89% and a task
success rate of 80%. In the Long-horizon and Hybrid families,
ERRA achieves 91% and 77% plan success rates, respectively.

Same instruction: Please clean the table
Same camera observation

Tactile: 1

Next: Put the object into the bin

Tactile: 0

Next: Grasp an object
Fig. 6: A case where two scenes have the same instructions and visual
observations but different next plans. Language and visual information are
insufficient to plan the next step without tactile signals.

TABLE III: generalization to unseen language instructions

Type
Short-horizon Long-horizon Hybrid Total

Plan Task Plan Task Plan Task Plan Task

Unseen Verb 99% 94% 77% 68% 51% 42% 76% 68%

Unseen Noun 100% 94% 80% 72% 55% 40% 78% 69%

Unseen Verb + Noun 99% 94% 52% 47% 34% 25% 62% 55%

Such results highlight the effectiveness of coarse-resolution
inference in enabling ERRA to reason and plan for tasks with
longer horizons. The plan and task success rate for each task
is fully illustrated in Fig. 5.

To demonstrate the importance of incorporating robot propri-
oception, we conduct an ablation experiment by excluding the
tactile information from inputs during ERRA training (denoted
as ERRA-w/o touch in Tab. II). The results show that the
planning performance of ERRA -w/o touch is reduced by up to
43% on the Long-horizon family and 35% on the Hybrid family.
This decline is attributed to the incomplete information required
for reasoning. In certain tasks, the relationship between state and
action language is not one-to-one, thereby rendering reasoning
impossible. An example of such a scenario is presented in Fig.
4.

We then investigate the effectiveness of the coarse-to-fine
inference design in the ERRA by comparing the ERRA with
an architecture in which the planning and execution are
independent (denoted as infer-all in Tab. II). Our results reveal
that ERRA outperforms the Infer-all by over 25% on the Long-
horizon and Hybrid families. Infer-all’s suboptimal performance
is due to its reliance on accurately inferring all action language
before executing corresponding motor skills, which increases
the difficulty of reasoning and planning. In contrast, the ERRA
utilizes closed-loop feedback by inferring the next step only
after the robot executes the previous step, leading to more
effective and robust task performance.

Generalization to unseen language instructions: We study
the ERRA’s generalization ability to unseen natural language
instructions. Specifically, we test the generalization of ERRA
at three levels of rephrased language instructions with novel
but similar words. First, we replace nouns in the language
instructions of tasks (e.g., “cut the banana” to “chop the
banana”), denoted as Unseen Verb in Tab. III. Second, we
replace verbs (e.g., “grasp the cola” to “grasp the can”), denoted
as Unseen Noun in Tab. III. Finally, we replace both nouns
and verbs in instructions(e.g., “close the drawer” to “shut the
cabinet”), denoted as Unseen Verb + Noun in Tab. III.
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Instruction: “Please put the cosmetic into the drawer”

Instruction: “Please put the can into the drawer”

Instruction: “Please put clean the table”

Instruction: “Please put all round objects into the bin”

A:

B:

C:

Action language: Open the drawer Grasp the cosmetic Put the cosmetic into the drawer Close the drawer Done

Action language: Grasp the can Put the can into the drawer Close the drawer Done

Action language:

Object slipped

Grasp an object Grasp an object Put the object into the bin Done

Action language:

Human added

Grasp a round object Put the round object in the bin Grasp a round object Put the round object in the bin Done

Fig. 7: Qualitative results of ERRA. A: Sequences of the robot successfully placing the object into the drawer at different settings (i.e., drawer is closed or
open); B: A sequence of the robot successfully recovering from its execution failure (i.e., object slip from gripper) and complete table cleaning; C: A sequence
of the robot adapting to the dynamic environment. (i.e., human places another round object).

As shown in Tab. III, ERRA’s generalization performance
degrades as the complexity of the task and the number of
unseen words in the instruction increase. Specifically, in the
Long-horizon family, changing either the verbs or nouns leads
to a 12% decrease in plan success rate, while changing both
results in a 40% decline. The decline in planning performance
also leads to a corresponding decrease in task success rate.
In contrast, ERRA remains stable in the Short-horizon family,
owing to the lower complexity of language abstraction and
task planning. Notably, we observe that the performance of
the Hybrid family drops by up to 35% on novel instructions
due to the challenging language instructions and task planning
involved. In conclusion, our findings suggest that the ERRA can
generalize to novel language instructions, but its generalization
performance is affected by the complexity of the task and the
number of unseen words in the instruction.

C. Real-world Experiments

We also evaluate ERRA’s performance in the real world.
ERRA achieves an average task success rate of 77% across
three task families. The results show that the model’s reasoning,
planning, and interaction abilities are transferable to real-
world scenes for solving long-horizon language-conditioned
manipulation tasks. Similar to the simulation results, ERRA
performs best (89% success rate) on Short-horizon tasks among
the three task families. The performance of ERRA decreases
as task complexity increases, achieving a success rate of 75%
on the Long-horizon family and 68% on the Hybrid family.
The running time for one step in the task is approximately 12
seconds, which includes the entire cycle time from network
inferences (less than 0.2 s) to robot execution.

Looking back to our initial example in Sec. I, “Please put the
cosmetic in the drawer,” we have demonstrated that ERRA is
able to discover whether the robot needs “Open the drawer” by

TABLE IV: real world results

Method
Task Success Rate

Short-horizon Long-horizon Hybrid Total

ERRA 89% 75% 68% 77%

reasoning the causal relation of the environment (See Fig. 7A)
and plan and execute a long sequence in the real world, which
include opening the drawer, grasping the cosmetic, putting the
cosmetic into the drawer and then closing the drawer. Note also
that the robot only has one arm, ERRA necessitates planning
the action in reasonable order (e.g., first, open the drawer
and then grasp the cosmetic, not the other way around). This
requires the ERRA to have strong abilities of long-horizon
reasoning and understanding of semantic knowledge in the
language instruction.

As shown in Fig. 7, ERRA manifests robustness to dynamic
environments. ERRA discovers a new round object added by the
human after the last object has been put in the bin and correctly
infers that the next action language is “grasp a round object”
rather than “Done” (See Fig. 7C). Such behavior is powered
by itself, benefiting from the closed-loop feedback provided by
the coarse-to-fine inference architecture. Such feedback also
allows the robot interactively recover from failure cases. Fig.
7B shows the ERRA response to its failure (object slip from
hand during the task execution).

V. CONCLUSION, LIMITATION, AND FUTURE WORK

We have presented a novel solution, ERRA, that utilizes
tightly-coupled probabilistic inferences at two granularity levels,
coarse and fine, for solving long-horizon language-conditioned
manipulation tasks. Through coarse-to-fine inferences, complex
manipulation tasks can be decomposed into concrete actions
and executed by the robot. Extensive controlled experiments
demonstrate the robustness and effectiveness of ERRA on
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manipulation tasks with long-horizon and abstract semantics.
Our work is not without limitations; first, limited by hardware
devices, the robot‘s position is fixed without the need for
localization and mapping, suggesting exciting opportunities for
extending the current work to the scene of mobile robots. Future
research can also benefit from the flexibility and efficiency of a
dual-arm system. While planning for the dual-arm system may
involve evaluating a larger number of potential actions, the
increased flexibility and redundancy provided by the additional
arm may result in more optimal final plans, compared to
our single-arm system. Finally, the proposed work relies on
simulated data to learn inference at both coarse and fine
resolutions, which is a significant advantage that avoids a more
time-consuming process, such as manual labeling. However, it
still needs to build simulation scenes carefully. One possible
opportunity is to develop a method that is able to learn from
online videos in which humans perform manipulation tasks
with long-term and abstract semantics.
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