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Abstract— Local planning for a differential wheeled robot is
designed to generate kinodynamic feasible actions that guide the
robot to a goal position along the navigation path while avoiding
obstacles. Reactive, predictive, and learning-based methods are
widely used in local planning. However, few of them can fit
static and crowd environments while satisfying kinodynamic
constraints simultaneously. To solve this problem, we propose
a novel local planning method. The method applies a long-term
dynamic window approach to generate an initial trajectory and
then optimizes it with graph optimization. The method can
plan actions under the robot’s kinodynamic constraints in real
time while allowing the generated actions to be safer and more
jitterless. Experimental results show that the proposed method
adapts well to crowd and static environments and outperforms
most state-of-the-art approaches.

I. INTRODUCTION

Differential wheeled robot planning can be achieved by
global and local planners. The global planner generates a
navigation path to a goal point. The local planner contin-
uously generates actions that guide the robot to follow the
navigation path until it reaches the goal point. During this
process, the actions generated by the local planner must meet
the kinodynamic constraints and keep the robot safe and
jitterless.

Tab. I shows several key features that should be sat-
isfied for applying local planning methods in differential
wheeled robots. First, planning methods need to obey the
differential constraints and the acceleration limitation. Then,
these methods should fit the static environments, which
means they need to be able to deal with irregular borders.
Meanwhile, they should also fit the crowd environments,
which means they should be able to interact with multiple
moving agents. Moreover, planning methods should be long-
sighted, which means they need to give a long horizon
planning result. Finally, planning methods should be able
to track the navigation path to ensure the robot converges to
the destination. However, as shown in Tab. I, most current
local planning methods can only meet some of the above-
mentioned features.

Therefore, we propose a novel local planning method
satisfying all the features in Tab. I. First, our method con-
structs time-varying distance fields [1] from the agents and
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TABLE I
FEATURES FOR LOCAL PLANNING METHODS APPLIED IN THE

DIFFERENTIAL MOBILE ROBOTS.

Method Differential
Constraints

Acc.
Limit

Static
Env.

Crowd
Env.

Long
Sighted

Track
Nav.

DWA [2] ! ! ! # # #

PCL-LSTM [3] ! ! ! # ! #

ESA [4] ! # # ! ! #

SOADRL [5] # # ! ! ! #

TEB [6] ! ! ! # ! !

KCP [7] ! ! ! # ! #

DC [8] ! # # ! ! #

Timed-ESDF [9] # # ! ! ! #
Our method ! ! ! ! ! !

occupancy grid map. Then, a Long-Term Dynamic Window
Approach (LT-DWA) is proposed to generate a long-time
horizon state-cost tree. Finally, a path with the least cost
in the tree is selected and optimized using the Elastic-Band
Model Predictive Control (EB-MPC) method to obtain the
planned trajectory.

In conclusion, this paper has the following contributions:
• The LT-DWA is proposed to generate the initial state

sequence.
• Time-varying distance fields are combined with the

MPC [10] to formulate the planning problem and the
EB method [11] is applied to solve it.

• The proposed local planner is open-sourced1. It can be
applied to static and crowd environments and outper-
forms current planning methods.

II. RELATED WORK

The local planner can be achieved by reactive, predictive,
and learning-based methods. Reactive methods directly build
the mapping from the robot’s current state to action, includ-
ing Dynamic Window Approach (DWA) [2], Reciprocal Ve-
locity Obstacles (RVO) [12], and RouteGAN [13]. Predictive
methods generate a continuous sequence of actions based on
the robot’s current state and predicted future conditions. For
example, the Timed Elastic Band (TEB) method proposed
by Rösmann et al. [6], the Dynamic Channel (DC) method
proposed by Cao et al. [8], and the Timed-ESDF method
proposed by Zhu et al. [9] are all predictive methods.
Learning-based methods use large amounts of data to map
from the robot’s current state to its action through imitation
learning or reinforcement learning. Learning-based methods

1https://github.com/flztiii/LT_DWA
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such as SARL [14], RGL [15], DSRNN [16], and ESA [4]
show state-of-the-art performance in crowd environments by
considering the crowd’s interaction [17], [18].

MPC-formed planning: Modeling the local planning
problem in MPC form and then solving the problem through
optimization is an effective approach [10], [19], [20]. The
mathematical models established by these methods are often
non-convex, so the initial guess significantly influences the
planning result. However, obtaining a feasible initial guess
in a crowd environment is challenging. For example, Brito et
al.’s method [10] uses the expansion of the previous planning
result as the initial guess for the next planning episode, which
is difficult to guarantee the feasibility of the initial guess in a
crowd environment. Therefore, in our method, we introduce
a robust method for generating a feasible initial guess and
combine it with the MPC-formed planning method.

DWA methods: The DWA has many applications as a
planning method that considers kinodynamic and environ-
mental constraints simultaneously. Its fundamental idea is to
sample in the feasible control space and then evaluate in the
state space. Brock et al. [21] improve the DWA’s evaluation
function. Ogren et al. [22] combine the DWA with global
planning and prove the global convergence of their method.
However, none of their methods can address the short-sight
of the DWA in a single planning episode. A solution is to
use multi-step DWA, but another problem will arise: the
exponential expansion of the state space. If the exponential
expansion of the state space of the multi-step DWA can be
solved, it can be applied to generating the feasible initial
guess, which our method does.

Distance field: The distance field adequately represents
the environment and is widely used by various planners [1],
[23], [24]. Oleynikova et al.’s method [23] introduces the
distance field in the static environment. Chen et al.’s and
Ngo et al.’s methods [1], [24] are proposed to construct the
distance field in the crowd environment and prove its effec-
tiveness. Therefore, we introduce the distance field into the
MPC-formed planning method to improve the effectiveness
of the planner.

III. PROBLEM FORMULATION

The state and system dynamics of the robot are defined as
follows.

s = (x, y, θ, v, ω)T , u = (av, aω)
T ,

ṡ = f(t, s,u) = (v cos θ, v sin θ, ω, av, aω)
T ,

(1)

where, x and y indicate the position in 2D space, θ is
orientation, v and ω are linear and angular velocities, av
and aω are linear and angular accelerations.

The robot’s radius is defined as R. The robot’s state at time
t0 is defined as sinit. Since all the inputs can be transformed
into the coordinate system with the robot state as the origin,
without losing generality, it can be considered that sinit =
0T ×vinit×winit. The navigation path connecting the robot’s
current and goal points is defined as P = {pp}Pp=0, where
pp = (xpp , ypp , θpp)

T indicates the pth point’s position and
orientation on the navigation path. The agents are defined

as O = {oo}Oo=0, where oo = (xoo , yoo , vxoo , vyoo , roo)
T

indicates the oth agent’s center position, velocity, and radius.
The occupancy grid map is defined as B = {bb}Bb=0, where
bb = (xbb

, ybb
)T indicates the bth occupied grid’s position.

In this way, the local planning problem can be described
as follows. The local planning is to calculate the state
sequence s(t), t ∈ [t0, t0 + T ] within a fixed time T , so that
s(t) minimizes the cost function c(s(t),P,O,B, T ) while
satisfying Eq. 1. For simplification, the problem is discretized
in the time domain, where T is divided into N frames time
segments ∆T . Then, s(t) can be defined as S = {si}Ni=0

(si = s(t0 + i∆T )), and the local planning problem can be
defined as follows.

min
S

c(S,P,O,B)

s.t.


s0 = 0T × vinit × winit,
si+1 = si +∆Tf(t0 + i∆T, s,u),

∀i ∈ [0, N − 1],
si ∈ SE(2)× [vmin, vmax]× [ωmin, ωmax],
ui ∈ [amin

v , amax
v ]× [amin

ω , amax
ω ],

(2)

where, function f(·) is the same as Eq. 1, vmin and vmax

are the robot’s minimum and maximum linear velocities,
ωmin and ωmax are the robot’s minimum and maximum
angular velocities, amin

v and amax
v are the robot’s minimum

and maximum linear accelerations, amin
ω and amax

ω are the
robot’s minimum and maximum angular accelerations. In our
method, the cost function c(·) is the weighted summation of
the collision risk cost cc(·), navigation following cost cn(·),
and jitter cost cj(·), which are defined in section IV. The
collision risk cost aims to improve the robot’s safety, which
means a lower collision rate and a longer distance to the
borders. The navigation following cost punishes the robot
from deviating from the navigation path. The jitter cost aims
to reduce the robot’s jitter, which means a smaller change in
the orientation, linear velocity, and angular velocity.

IV. METHOD

A. Framework

The framework shown in Fig. 1 is proposed to solve the
local planning problem. In step one (Section B), the local
planner generates the N -frames time-varying distance fields
{di(·)}Ni=0. (di(·) : R2→R is a mapping from the Cartesian
plane to the real number set.) Then, the planner calculates the
reference navigation path {pi}Ni=0. (pi = (xpi , ypi , θpi)

T ∈
SE(2).) {pi}Ni=0 and {di(·)}Ni=0 are required in the following
state cost and optimization objective function calculations.
In step two (Section C), the planner applies LT-DWA to
generate an initial state sequence. In step three (Section D),
the planner uses the EB-MPC method to optimize the initial
state sequence. According to the optimized state sequence,
the controller generates control commands. The local planner
updates at a fixed frequency until the robot reaches the goal
point.
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Fig. 1. This figure shows the local planner’s framework. The example of the time-varying distance fields is shown in the upper left. The example of the
reference navigation path is shown in the bottom left, where the green line indicates the navigation path, the blue line indicates the reference navigation
path, the colorful circles indicate agents, and the red arrows indicate the agents’ velocities. The example of the LT-DWA is shown at the bottom, where
the left side indicates the expanded states in the different frames, the blue curves on the right side indicate the projection of the state-cost tree on the
Cartesian plane, and the red curve indicates the selected state sequence. The example of EB-MPC is shown on the right, where the upper part indicates
the connection relationship of a node in the graph optimization, and the green curve in the lower part indicates the optimized state sequence.

Real scene Distance field

Agent

Static occupancy grids

𝑅𝑅

R+𝜂𝜂

Agent velocity

Fig. 2. In this figure, the left part shows the scenario and the right part
shows the first frame of its corresponding time-varying distance fields. The
colorful circles indicate agents, the red arrows indicate agents’ velocities,
and the black region indicates the occupancy grid map.

B. Reference Navigation Path and Time-Varying Distance
Fields

The reference navigation path {pi}Ni=0 is obtained accord-
ing to the navigation path P . The point on the navigation
path, which has the minimum euclidean distance to the
robot’s current state 0T on the Cartesian plane, is selected
as the reference navigation path’s beginning point p0. Then,
the ith point pi on the reference navigation path is the
point on the navigation path, whose arc length to p0 along
the navigation path is i∆Tvmax max(cos θp0 , 0). θp0 is the
orientation gap between p0 and 0T . This expression expects
that when the difference between the orientation of the robot
and the navigation path is significant, the robot should adjust
its orientation first. Otherwise, it should follow the navigation
path at the maximum speed.

The time-varying distance fields {di(·)}Ni=0 are calculated
according to the agents O and the occupancy grid map B.

The ith frame distance field di(·) is determined by the agent
distance field dOi (·) and the occupancy grid map distance
field dBi (·), whose calculation is as follows.

di(·) = max(wdod
O
i (·), wdbd

B
i (·)),

where, wdo and wdb are preset weights.
dOi (·) is calculated as follows, referring to Chen et al.’s

method [1].

dOi (x, y)= max
∀o∈[0,O]

exp
−
(

lox(x,y,i)2

2σ2
x

+
loy(x,y,i)2

2σ2
y

)
,

where,

lo(x, y, i) =
∥∥∥(x

y

)
−

(
xoo

+ i∆Tvxoo

yoo
+ i∆Tvyoo

)∥∥∥,
α = atan2

( y−yoo
−i∆Tvyoo

x−xoo
−i∆Tvxoo

)
− atan2

( vyoo

vxoo

)
,

lox(x, y, i)= lo(x, y, i)∗cosα, loy(x, y, i)= lo(x, y, i)∗sinα,

σx =

 1
3

(
roo+R+η+β

∥∥(vxoo

vyoo

)∥∥), −π
2 <α< π

2 ,

1
3(roo

+R+η), else,

σy =
1

3
(roo +R+ η),

where, η and β are preset parameters. As shown in Fig. 2, this
distance field comprises multiple two-dimensional normal
distributions with offset. The normal distributions’ centers
are ith frame agents’ centers, whose ranges are determined
by η and offsets are determined by the agents’ velocities and
β.

dBi (·) is calculated as follows.

dBi (x, y) = (Relu(η − δ))2,

δ = min
b

Relu
(∥∥(x− xbb

y − ybb

)∥∥−R
)
, ∀b ∈ [0, B],



Algorithm 1 Long Term Dynamic Window Approach
Input: Reference Navigation Path {p}Ni=0, Time-Varying

Distance Fields {di(·)}Ni=0.
Output: State-Cost Tree T .

1: Add Layer T0 = {Node(0T , 0, null)} into empty Tree
T .

2: for i = 1, 2, · · · , N do
3: Ti ← ∅.
4: for Node n ∈ Layer Ti−1 do
5: Sc ← expandStates(n).
6: for State s ∈ Sc do
7: Push Node(s, 0, n) to Layer Ti.
8: if len(Ti) > K

′
then

9: Ti ← voxelSampling(Ti).
10: for Node n ∈ Layer Ti do
11: Cost[n] = Cost[Parent[n]]+ calcCost(State[n],

pi, di(·), i).
12: if Ti is not ∅ then
13: Add Layer Ti into Tree T .
14: else
15: break

where, η is the same preset parameter. As shown in Fig 2,
this distance field is a quadratically decreasing function with
the distance to the boundary of the occupancy grid map.
The value of this distance field is zero, if the distance to the
boundary of the occupancy grid map is larger than η +R.

C. Long-Term Dynamic Window Approach

After obtaining the reference navigation path {p}Ni=0 and
the time-varying distance fields {di(·)}Ni=0, the next step is
to build a state-cost tree T to obtain the initial state sequence
Sinit for the following optimization. The tree is a set of N
layers, and the tree’s ith layer Ti is the set of ith frame
nodes. Each node n has three attributes: state (State[n]), cost
(Cost[n]), and parent node (Parent[n]). The construction of
the state-cost tree is shown in Alg. 1.

The root layer T0 can be obtained according to the robot’s
current state. Then, Ti is obtained as the exemplary diagram
in Fig. 3. All the nodes in the previous layer Ti−1 are
traversed. For each node n, state expansion is performed
according to n’s state State[n]. In this way, an expanded state
set Sc can be generated. The DWA achieves state expansion.
In detail, given a state s, the velocity space boundary of
the states in the next frame can be determined according to
the robot’s velocity and acceleration limitations. The limited
velocity space is uniformly sampled, and V × V samples
can be obtained. For each sample, an expanded state can
be calculated according to Eq. 1. Collision-free states are
selected from these expanded states, which make up Sc. A
new node without cost is added to Ti for each state in Sc.

When the states of all nodes in the previous frame are
expanded, the number of nodes in Ti is significant. Assuming
that the DWA can expand K states from one state each
time, the time complexity of calculating the tree with N

Tree’s
i − 1th layer

Collide

Wall

Expand
states

Voxel
sampling

In the 
same 
SE(2) 
voxel

Distance fields

Reference 
navigation path

Tree’s
ith layer

Cost
calc

Fig. 3. This figure shows an exemplary diagram of how to construct the
layer of the tree. The diagram includes state expansion, voxel sampling, and
cost calculation.

θ-axis

θ-axis

θ-axis

Fig. 4. This figure shows an example of the robot’s state distribution and
the sampled state distribution in the SE(2) space at the end of the long
horizon. The red points represent the robot’s state distribution, and the blue
points represent the sampled state distribution using voxel sampling.

frames is O(KN ). When N is large, this time complexity
is undoubtedly unacceptable. In order to solve this problem,
after using the DWA to expand all the states in the current
frame, we perform voxel sampling to ensure that the total
number of states in the next frame is always around K

′
.

In this way, the time complexity is O(K
′
N). The voxel

sampling process is as follows. The SE(2) space boundary
of all nodes in Ti is calculated, and subsequently, the SE(2)
space within the boundary is voxelized to W×W×W voxels.
Each node is located in one voxel. A node is randomly
sampled in each voxel, and the sampling result can be
obtained.

There are two reasons why voxelization is performed in
the SE(2) space instead of the state space. The first is to
reduce the space dimension and achieve lower computational
complexity. The second is that the attributes of the state in the
SE(2) space are more important than those in the velocity
space. The former has a direct relationship to the robot’s
safety, while the latter only has an indirect relationship.
Fig. 4 shows an example of the robot’s state distribution
and the sampled state distribution in the SE(2) space at
the end of the long horizon. It can be seen from the
figure that the blue points distribution is consistent with the
red points distribution. Therefore, the representation of the
robot’s SE(2) properties at the horizon’s end can be achieved
using voxel sampling.

After voxel sampling, the number of nodes in Ti will be
acceptable for real-time performance. At this time, the cost
of each node n in Ti can be calculated, which includes two
parts. One is the cost of its parent node, and the other is
its state s’s cost. When calculating the cost of s, only the
collision risk cost cc(·) and the navigation following cost
cn(·) are considered. The reason is that cn(·) and cc(·) are



related to s’s SE(2) space attributes, while the jitter cost
cj(·) is only related to the velocity space attributes. In the
previous step, the sampling is performed in the SE(2) space,
so the calculation of cj(·) does not make much sense here.
In conclusion, given the ith frame point on the reference
navigation path pi = (xpi

, ypi
, θpi

)T and the ith frame time-
varying distance field di(·), the cost of the ith frame state
s = (xs, ys, θs, vs, ωs)

T can be calculated as follows.

calcCost(s,pi, di(·), i)=γi(cc(s, di(·)) + cn(s,pi)),

cc(s, di(·))) = wcdi(xs, ys),

cn(s,pi)=wnocno(s,pi)+wnacna(s,pi)+wntcnt(s,pi),

(3)

where,

cno(s,pi)=((xs−xpi) cos θpi+(ys−ypi) sin θpi)
2,

cna(s,pi)=(−(xs−xpi
) sin θpi

+(ys−ypi
) cos θpi

)2,

cnt(s,pi) = (1− cos(θs − θpi
))2,

(4)

γ is decline rate, wc, wno, wna, and wnt are preset weights.
The reason for setting the decline rate is uncertainty in the
movement of agents in the crowd environment, and the cost
in the long-term future has low reliability. The cost cno(·) is
to penalize the longitudinal distance between s and pi and
the cost cna(·) is to penalize the lateral distance between s
and pi. The combination of the two costs can be used to
evaluate the distance between s and the reference navigation
path in the Cartesian plane, which is more flexible than
directly calculating the distance between s and the reference
navigation path [25]. The cost cnt(·) is to penalize the
orientation gap between s and pi.

After T is built, the nodes in the Nth layer TN of the
tree are traversed, and the node with the minimum cost is
selected. We iteratively backtrack the node’s parent until the
tree’s root node is reached. Finally, the initial state sequence
Sinit can be obtained. In the complex environment, when the
N

′

th layer of the tree is built, it may be empty sometimes. In
this case, building a complete N layer tree is given up and
a N

′−1 layer tree is obtained. Then, Sinit also degenerates
from N frames to N

′ −1 frames. In the worst case, this
method will degenerate into the DWA.

D. Elastic-Band Model Predictive Control

After obtaining the initial state sequence Sinit, the next
step is to optimize it using the EB-MPC method. We define
the state sequence optimization problem in the MPC form
[10] and solve the problem using the EB method [11].

The optimization model used has been given in Eq. 2,
which is an MPC-formed model. The expression of the
objective function c(S,P,O,B) is as follows.

c(S,P,O,B)=
N∑
i=1

γi(cc(si, di(·))+cn(si,pi)+cj(si,si−1)),

where, γ and cc(·) is the same as Eq. 3. cn(·) adds an
additional cost cnv(·) on the basis of Eq. 3, whose expression
is as follows.

cnv(s,pi) = wnv(vs −min(vmax,
√

2amaxϵpi))
2,

where, wnv is preset weight, vs is s’s linear velocity, ϵpi
is

arc length between pi and the navigation path’s endpoint.
This expression aims to make the robot’s speed tend to the
maximum value when it is far away from the goal point.
Otherwise, the speed tends to zero. cj(·) is the jitter cost,
whose expression is as follows.

cj(si,si−1)=wωω
2
i+wav

(vi−vi−1

∆T

)2

+waω

(wi−wi−1

∆T

)2

,

where, wω , wav , and waω are preset weights, si =
(xi, yi, θi, vi, ωi)

T . There are three items in the jitter cost.
The first item is to penalize high angular velocities for
reducing the shaking of the robot’s orientation. The second
item is to penalize high linear accelerations for reducing the
jitter of the robot’s speed. The third item is to penalize high
angular accelerations for reducing the vibration of the robot’s
angular velocity. The above three items work together to
reduce the jitter of the robot.

After obtaining the complete definition of the optimization
model, it can be seen that the optimization model Eq. 2 is
sparse for the optimization variable S, so the EB method
can be used to solve it [26], whose process is as follows.
Each state si in the optimization variable S can be regarded
as a node, and the objective function and constraints in the
optimization model Eq. 2 can be regarded as edges. In this
way, a graph can be constructed, as shown on the right side
of Fig. 1. According to Eq. 2, there are only unary edges and
binary edges in the constructed graph. Subsequently, Sinit is
applied to initialize the graph, and the g2o framework [27] is
used to perform graph optimization. The algorithm used for
graph optimization is the Levenberg-Marquardt. At last, the
optimized state sequence Sopt can be obtained. Compared
with Sinit, Sopt can make the robot have less jitter.

V. EXPERIMENTAL RESULTS
The experiments are conducted in crowd, static, and hybrid

environments to verify our method in different scenarios.
In addition, we design an ablation study to verify the
effectiveness of submodules. The testing robot is designed
as a differential wheel robot. The robot’s shape is set as a
0.3 m radius circle, and its sensing range is limited to 3.5 m.
The robot’s linear velocity is set from 0 to 1 m/s, its angular
velocity is set from -1 rad/s to 1 rad/s, its linear acceleration
is set from -1 m/s2 to 1 m/s2, and its angular acceleration is
set from -1 rad/s2 to 1 rad/ s2.

A. Crowd Environment Tests

In this experiment, the ORCA simulated scenarios as the
ESA [4] and the pedestrian trajectory dataset [28] are both
used for testing. The testing scenarios are updated at a
frequency of 5 Hz.

For the ORCA simulated scenarios, 10, 15, and 20 agents
are set in the environment, respectively. Each agent is a circle
with a radius of 0.3 m, its moving policy is the ORCA, and
its maximum speed is 1 m/s. The robot is invisible to all
the agents [4], [14], [15]. In each test, the agents are on a
circle with a radius of 5 m and moves to the targets, which
are their opposite position of the circle with disturbance.



(a) 10 agents ORCA (b) 15 agents ORCA (c) 20 agents ORCA (d)  Stu03 dataset

Fig. 5. This figure shows four examples of the robot navigating in different crowds using the proposed method. The dark green circles indicate the robot,
the colorful hollow circles indicate other agents, the curves of different colors indicate the moving trajectories of the corresponding agents, and the values
near the circles indicate the corresponding time. The more transparent the circle, the earlier the time.

TABLE II
COMPARISON OF DIFFERENT METHODS IN CROWD ENVIRONMENT

TESTS.

Method 10 agents
ORCA

15 agents
ORCA

20 agents
ORCA Zara01 Zara02 Stu03

DWA 0.3% 0.3% 0% 62.3% 55% 14%

ORCA 25.6% 11% 8.3% 76.6% 72.6% 22.3%

LSTM-RL 51.3% 34.6% 20% 60% 49.3% 1.6%

SARL 84.6% 61.6% 41% 69.6% 15.3% 0%

ESA 75.3% 56.3% 35% 67% 60% 13%

Ours 89.3% 81% 76.6% 92% 93% 68%

Meanwhile, the robot is also on the circle and regards the
opposite position as the goal point, as shown in Fig. 5.

For the trajectory dataset, the range of the pedestrian
trajectories in the dataset is recorded, and each pedestrian is
also regarded as a circle with a radius of 0.3 m. In each test,
the center points of the trajectories range’s upper and lower
boundaries are used as the starting and goal points. A starting
time is randomly selected to broadcast pedestrian trajectories
based on the dataset and ensure that the pedestrians do not
collide with the starting point at the starting time.

In the above scenarios, the robot uses the proposed
method, ORCA, LSTM-RL [29], SARL, and ESA methods
for planning, respectively. LSTM-RL, SARL, and ESA are
all reinforcement-learning-based methods and focus on con-
sidering the interaction of the crowd. For each scenario, 300
tests are conducted and the robot’s success rate is counted.
The test succeeds if the robot reaches the destination, and
fails if it collides with the agents, moves out of bounds, or
fails to reach the end within the specified time. The LSTM-
RL, SARL, and ESA methods are retrained in the same
environment as the ESA, and the difference is that the robot
is changed from the holonomic robot to the differential robot
during the training. When using the proposed method for
planning, the navigation path is the connection line between
the robot’s current and the goal points. The testing results
are shown in Tab. II.

According to the results in Tab. II, it can be seen that the

proposed method improves the success rate for all the testing
scenarios, compared with the current methods. In particular,
the proposed method’s success rate does not significantly
decrease as the environment becomes more complex, which
indicates that the proposed method has higher reliability
in complex environments. In addition, it can be found that
learning-based methods, such as SARL, perform well in the
ORCA environment while testing poorly on the pedestrian
trajectories dataset. The reason is that these learning-based
methods are trained in the ORCA environment, and the
data distribution of the pedestrian trajectories dataset and
the ORCA environment is quite different, so these methods
cannot fit the pedestrian trajectories dataset environment.
In contrast, the proposed method does not have the above
problems and has better generalization ability.

Furthermore, the examples that use the proposed method
to achieve crowd navigation in different environments are
shown in Fig. 5. This figure describes the movement process
of the robot in crowds using the proposed method. According
to Fig. 5(c), the robot first moves to the right to avoid agents
and then moves forward for a while. At about 13 seconds,
the robot slows down and turns towards the goal point, and
it finally arrives at the goal point at 23 seconds.

B. Static Environment Tests

In the static environment tests, the testing scenario is
shown in Fig. 6. The start and goal points are randomly
selected within the scenario, and the start and goal points
are ensured to keep a certain distance from the occupied
grid points. The A* algorithm with the Douglas-Peucker
algorithm [30] generates the navigation path. Then, our
method and the TEB method are applied to carry out
local planning along the navigation path, respectively. Each
method conducts 300 tests. Success rate, safety, jitter, time
consumption for a single plan, and navigation time from the
start point to the goal point are used as comparison metrics.
The success rate is measured by the success times that the
robot reaches its destination divided by the total testing times.
The safety is measured by the minimum distance between
the robot and occupied grid points. The jitter is measured by
the robot’s angular velocity, linear and angular accelerations.



TABLE III
COMPARISON OF DIFFERENT METHODS IN STATIC ENVIRONMENT

TESTS.

Method Succ.
Rate

Safety
(m)

Nav.
Time

(s)

Mean
Ang. vel.

(rad/s)

Mean
Lin. acc.
(m/s2)

Mean
Ang. acc.
(rad/s2)

Time
Consuming

(ms)

TEB 89.6 % 0.18 16.14 0.46 0.44 0.65 77.3 ± 43.8

Ours 97.3 % 0.27 18.43 0.44 0.43 0.58 94.5 ± 11.6

Start point

Goal point

Occupied points

Fig. 6. This figure shows an example of the static environment test. The
green curve is the robot’s moving trajectory using the proposed method and
the red curve is the robot’s moving trajectory using the TEB method.

Finally, the testing results are shown in Tab. III.
It can be seen from Tab. III that the proposed method

has a 7.7 % improvement in the success rate, a 50 %
improvement in the safety and a 10.7 % decline in terms
of angular acceleration. This result shows that our method
has advantages in safety and jitter, compared with the TEB
method. Regarding navigation time, the proposed method
spends 14.1 % more time than the TEB method on average,
and part of the reason is that the proposed method tends
to choose longer trajectories to keep the distance to the
occupied grid points in order to ensure safety. Regarding time
consumption for a single plan, the TEB method consumes
18.2 % time less than the proposed method on average.
However, the TEB method’s time consumption is unstable.
When the number of occupied grid points is large, its time
consumption will increase significantly. The TEB method’s
maximum time consumption can reach 630.1 ms in the
experiment, which cannot meet the real-time requirement.
In contrast, the proposed method’s time consumption is
relatively stable, and its maximum time consumption is 146
ms in the experiment, which can fully meet the real-time
requirement.

In Fig. 6, a static environment testing example is shown.
It can be clearly seen from the figure that compared with
the red curve, the green curve is farther away from the
occupied grid points and smoother. This figure demonstrates
that compared with the TEB method, the proposed method
can effectively improve safety and reduce jitter.

C. Hybrid Environment Demonstration

The proposed method is also tested in an environment with
both static and dynamic constraints, as shown in Fig. 7. The
agents in the environment follow the ORCA policy as Liu

(a)

(b)

(c)

(d)

Fig. 7. This figure shows a demonstration in the environment with both
static and dynamic constraints. The left picture shows the robot’s traveling
process. The right pictures show the robot’s linear velocity, angular velocity,
linear acceleration, and angular acceleration during the process.

TABLE IV
COMPARISON OF DIFFERENT METHODS IN CROWD ENVIRONMENT

TESTS.

Method Succ.
Rate

Time
Consuming

(ms)

Mean
Ang. vel.

(rad/s)

Mean
Lin. acc.
(m/s2)

Mean
Ang. acc.
(rad/s2)

Trad. 50.6% 77.13 0.36 0.51 0.57

Rand. 57% 76.20 0.37 0.51 0.57

No Opt. 67.6% 73.03 0.41 0.57 0.70

Complete 67.3% 103.53 0.35 0.29 0.38

et al.’s method [5]. In the figure, the black areas indicate
the obstacles, the colored hollow circles indicate the other
agents, and the green circles indicate the robot. It can be seen
that the robot successfully avoided the obstacles and agents,
and reached the goal point using the proposed method. It
can also be seen from the right side of the Fig. 7 that during
this process, the robot’s linear velocity, angular velocity,
linear acceleration and angular acceleration did not exceed
the limitation.

D. Ablation Study

The scenario used in the ablation study is basically the
same as the ORCA environment tests, but the difference is
that 25 agents were set up. In this experiment, the difficulty
of the test environment is increased to make the comparison
of results more distinguishable.

In the ablation study, the robot uses the proposed method
without EB-MPC optimization (No Opt.) to plan in the
testing scenario. Then, the voxel sampling is further replaced
by random sampling (Rand.) for planning. Finally, the tra-
ditional distance field similar to [31] is used for planning.
Each one is tested 300 times, and success rate, jitter, and
time consumption for a single plan are recorded. The testing
results are shown in Tab. IV.

According to the testing results, the success rate is in-
creased by 6.4%, when the proposed time-varying distance
fields are used instead of the traditional distance field. The
voxel sampling also improves 10.6% in the success rate than
the random sampling. This result can prove the effectiveness
of both in complex crowd environments. Furthermore, the
robot’s jitter can be significantly reduced almost without



reducing the success rate when adding the optimization
method. Especially in linear and angular accelerations, there
are reductions of 49.1% and 45.7%, respectively. In terms
of time consumption, replacing the distance fields and using
voxel sampling hardly caused an increase in time consump-
tion. Although the optimization method increases the time
consumption by 41.7%, it can still guarantee the real-time
performance of the method. In conclusion, all parts of the
proposed method are proved effective as expectation.

VI. CONCLUSIONS
This paper proposes a long-term dynamic window ap-

proach local planning method for differential wheeled robots.
This method can be applied to both crowd and static environ-
ments, and its planned state sequence in real time can ensure
the safety and reduce jitter of the robot while satisfying the
kinodynamic constraints. The limitation of the method is
that it does not consider the interaction between the crowd
or the interaction between the robot and the crowd, which
is the limitation of our method. In future work, we will
consider integrating the prediction of other agents [32], [33]
the interaction between the crowd in the planning to further
improve the performance.
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