
Natural Language Specification of Reinforcement Learning Policies
through Differentiable Decision Trees

Pradyumna Tambwekar
pradyumna.tambwekar@gatech.edu

Andrew Silva
andrew.silva@gatech.edu

Nakul Gopalan
ngopalan@gatech.edu

Matthew Gombolay
matthew.gombolay@cc.gatech.edu

Abstract— Human-AI policy specification is a novel proce-
dure we define in which humans can collaboratively warm-
start a robot’s reinforcement learning policy. This procedure
is comprised of two steps; (1) Policy Specification, i.e. humans
specifying the behavior they would like their companion robot
to accomplish, and (2) Policy Optimization, i.e. the robot apply-
ing reinforcement learning to improve the initial policy. Existing
approaches to enabling collaborative policy specification are
often unintelligible black-box methods, and are not catered
towards making the autonomous system accessible to a novice
end-user. In this paper, we develop a novel collaborative frame-
work to allow humans to initialize and interpret an autonomous
agent’s behavior. Through our framework, we enable humans
to specify an initial behavior model via unstructured, natural
language (NL), which we convert to lexical decision trees.
Next, we leverage these translated specifications, to warm-
start reinforcement learning and allow the agent to further
optimize these potentially suboptimal policies. Our approach
warm-starts an RL agent by utilizing non-expert natural
language specifications without incurring the additional domain
exploration costs. We validate our approach by showing that
our model is able to produce >80% translation accuracy, and
that policies initialized by a human can match the performance
of relevant RL baselines in two domains.

I. INTRODUCTION

Significant progress has been made in recent years towards
developing collaborative human-AI techniques that allow
humans to specify a robot’s desired behavior or policy,
a mapping from the state of the world to actions the
autonomous agent or robot should take [1]–[3]. However,
the proliferation of such human-machine interaction hinges
on the development of accessible and interpretable modes
for interacting with these autonomous systems. Yet, while
humans can provide helpful guiding behaviors for policy
specifications, humans have finite cognitive capabilities [4]
and may only be able to provide good but supobtimal policy
specifications [5]. As such, these interactive agents need to
be capable of autonomously improving upon the user’s initial
policy specification, e.g. via Reinforcement Learning (RL).
In this paper, we present a novel collaborative technique
that enables humans to (1) specify intelligible policies from
unstructured natural language, (2) optimize these specified
policies using RL.

To facilitate more accessible human-AI interactions, re-
cent work has advocated for a shift from “model-centered”
approaches towards deliberate design of “human-centered”

All authors were affiliated with the School of Interactive Computing,
Georgia Institute of Technology, Atlanta, GA, 30332, while conducting this
research

systems focused on human-interactions [6], [7]. Collabo-
rative policy-learning techniques require a similar degree
of human-centricity to efficiently integrate autonomous sys-
tems or robots in society [8]. However, many contemporary
approaches to policy specification do not effectively cater
to novice end-users and are unable to provide a means of
interpreting an autonomous system’s behavior [9]–[11].

Natural language provides an accessible means of inter-
facing with an autonomous agent or a robot for a novice
user [12], [13]. Prior work demonstrated increased user sat-
isfaction when natural language is used as the interface [14].
Experienced users can leverage their expertise to quickly
learn how to program robots through a complex interface;
however, novice users may struggle or be demotivated [15].
Therefore, we propose a methodology by which novice
users can specify their desired behavior through simple and
unstructured english language sentences, thus catering to the
needs of a more diverse set of users. Policy acquisition
through natural language is a well-studied area of research
in recent years. Prior work can be broadly divided into either
symbolic or connectionist approaches [16]. However, given
the lack of interpretability in connectionist methods [17]–
[19] and the lack of fine-tuning in symbolic methods [20]–
[22], it is difficult to specify policies that are comprehensible
to a human trainer and can improve over time.

To address these issues, we propose a Human-AI collabo-
rative policy synthesis architecture that bridges the benefits of
both connectionist and symbolic approaches. Our framework
consists of a (1) novel deep learning framework, called
HAN2Tree, which learns to translate user-generated language
descriptions of policies to lexical decision trees (symbolic),
and a (2) Differentiable Decision Tree (DDT) [23] model to
represent and optimize the human-specified policy with pol-
icy gradients (connectionist) given a user-defined task com-
pletion signal (i.e., a reward function). Unlike standard deep
learning models, DDTs can be discretized after training into
intelligible decision tree policies for users to inspect [24]. We
empirically demonstrate that optimized policies initialized
via our natural language translation technique outperforms
or matches the performance of relevant baselines across two
domains by utilizing language specifications from novice
users. Our contributions are as follows:

1) We present a data collection protocol alongside the
largest known dataset mapping natural language instruc-
tions from humans to lexical decision trees (400 policy
specifications).

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

ar
X

iv
:2

10
1.

07
14

0v
4

 [
cs

.L
G

]
 2

0
M

ay
 2

02
3

Fig. 1. In our Human-AI collaborative policy synthesis approach, we first convert policy descriptions to lexical decision trees. Each decision tree is
encoded as a differentiable decision tree to initialize the RL policy followed by proximal policy optimization to optimize the policy.

2) We develop a novel machine learning architecture to
parse natural language instructions into lexical decision
trees (HAN2Tree).

3) We show that our method outperforms relevant baselines
and obtains a translation accuracies of 86.30% and
80.38% across two domains and demonstrate that these
translated trees can successfully warm-start RL.

II. RELATED WORK

We provide an overview of research in the areas of
instruction following and interpretable ML.

Language to Policies – Traditional language-based pol-
icy specification involves translating natural language to a
predicate-based language for planning [25]–[28]. For ex-
ample, the sentence “move to the left” could map to the
predicate move(a) ∧ dir(a, left). This process involves a
high degree of feature engineering as both the grammar
and the formalizing of the predicate specification require
expert design. Some deep learning-based approaches seek to
alleviate the dependency on a specified grammar [20], [22].
However, these approaches still require hand-engineering in
the form of expert-specified predicates. Similar approaches
also consider mapping language directly into an agent’s
policy [17], [29], [30] or adapt these methodologies to
multi-modal systems via language and image conditioned
imitation learning [31], [32]. These approaches condition an
agent’s policy via a combined learned embedding of the state
and language instruction. We differentiate ourselves from
these approaches by providing a means of human-centered
policy specification that is simulatable and accessible, while
also allowing for gradient-based policy improvement. In this
context, simulatability references the model’s ability to be
simulated by a human [33].

Interpretable ML – Prior work has defined interpretabil-
ity as “the ability to explain or to present in an under-
standable way to humans” [34]. One such approach is to
visualize the intermediate outputs of a neural network [35]–
[37]. These intermediate outputs are usually in the form of
post hoc visualizations of intermediate gradients or feature
maps to elicit the decision making process of a deep neural
network. However, there is ongoing debate over whether
these latent representations in a high-dimensional space
actually correspond to the meanings assigned to them [38],
[39]. Other forms of interpretability include providing post-
hoc explanations to provide a rationale for the black-box de-

cision making process of a model [40]–[43]. Popular policy
explanation methods include model-based methods, such as
constrastive explanations [44], [45], to consolidate competing
hypotheses regarding a model’s decision making process, or
plan-based methods, such as policy summarization [46], [47],
which provide a means of summarizing the key details of a
learned policy. However, these post-hoc processes are often
non-trivial, and the explanations generated may not represent
the conceptual model of the machine.

Recent works on interpretable RL have developed archi-
tectures which non-experts can utilize to specify and interpret
RL-policies through an inherently interpretable design, e.g.
decision trees [48], [49]. Such approaches function as “white-
box” methods, wherein the explanations provided, and in-
terpretable capabilities come from the transparent design
of the architecture itself. However, such approaches, when
applied to policy specification, require humans to manually
specify all propositional rules corresponding to an entire
decision tree, which may be place a high cognitive burden
on end-users in complex real-world domains. Combining
the compositional structure of decision trees with natural
language initialization is more conducive to accessible policy
specification. While language may not always be preferred to
initializing trees directly, it is important to cater to a variety
of end-users, some of whom may prefer language.

Filling the Gap – The existing scope of prior work
lacks accessibility for non-experts or does not allow for
optimization of sub-optimal specifications. Overcoming these
limitations, our approach takes steps towards democratizing
interactive-AI systems through a transparent, simulatable
methodology where end-users can warm-start the agent and
interpret the final policy, without expert knowledge or inten-
sive training procedures to learn the domain.

III. PRELIMINARIES

Differentiable Decision Trees (DDT) – Initially intro-
duced for classification and regression [23] and later ex-
tended to RL [49], DDTs are parameterized decision trees
that can be optimized through backpropagation. In a DDT,
the nth node of the tree, Dn, contains a set of weights,
~pn ∈ P , and comparator values, cn ∈ C. At each decision
node, the input state, X , is combined with the weights
and comparator values and passed through a sigmoid, σ,
approximating reasoning of a decision tree, Dn = σ[Γ(~pTn ∗
~X − cn)], where Γ is a scaling constant which throttles the

decision making threshold. Every leaf node, ~li ∈ L, contains
probabilities (i.e. li,a ∈ [0, 1] such that

∑|A|
a=1 li,a = 1) for

each output action, a ∈ A, and a path from the root of the
tree to its position. The action probabilities in ~li are weighted
by the path probability of reaching ~li, which is determined
by the output of all decision nodes in the path. The weighted
probabilities from all leaves are summed to produce the final
output, which is a distribution across all actions, serving as
an agent’s policy, Π.

Language Modelling - Recurrent neural networks (RNN)
are often employed to encode sequences with temporal
dependencies [50], such as language. A specific configuration
of RNNs, sequence-to-sequence networks (Seq2Seq), have
been utilized to great success for language tasks like machine
translation, dialogue generation, semantic parsing, etc. [51].
Seq2Seq networks are comprised of an encoder, which
generates a fixed size representation of the input, and a
decoder, which sequentially models the probability of the
next word in the sequence, p(xi|Xj<i, h). Attention was
proposed as a means of improving the model’s capability
to remember long-term dependencies [52], [53]. These ap-
proaches produce alignment scores between the words in the
input with respect to each word in the output, to produce
more contextually grounded predictions. Recent work further
expanded on attention-based networks by building sequence
encoders built entirely with attention, i.e. Transformers,
such that the entire text input is encoded in parallel, via
self-attention [54]. Transformers such as BERT [55] and
GPT [56] are now widely being deployed to solve language
applications that deal with large-scale datasets.

Hierarchical Attention Network - The Hierarchical At-
tention Network (HAN) is a specific RNN architecture, that
was shown to be successful for encoding larger language
sequences. The HAN consists of two RNN layers. The first
layer takes in embeddings, wit, for the tth word in the ith

sentence in the input and applies self-attention to create a
sentence embedding, si (Equations 1-3).

si =
∑
j

αjthij (1)

αit =
exp(hit

ᵀWw)∑
j exp(hij

ᵀWw)
(2)

hit = GRU(hit−1, wi:k<t) (3)

Here, hit is the hidden vector corresponding to word t
for sentence i. Ww represents a weight vector for the self-
attention layer and αit corresponds to the importance weight
for the hidden state of word t in sentence i. The embedding
for sentence i is calculated by a weighted combination of
the hidden states for every word in the sentence. The second
layer of RNNs re-applies hierarchical attention (Equations 1-
3) on sentence embeddings to produce the final hidden vector
(H) for the language description

Sequence to Tree model - A relevant model to this paper
is the sequence to tree (Seq2Tree) network [57]. Seq2Tree
incorporates a special non-terminal token to decode a tree
structure. Each time the model predicts a non-terminal token,
the RNN cell is re-conditioned on the non-terminal token

as well as the current hidden vector of the decoder, hd.
For example, if the model predicts a non-terminal y4, after
three tokens < y1, y2, y3 >, the RNN cell is re-conditioned
on these tokens and the model begins generating tokens
< y5, . . . , yn > using this new RNN cell. A recurrent neural
network is trained to maximize the likelihood of predicting
the target sequence a (< y1 . . . yn >), given a hidden
vector from the encoder he. For a Seq2Seq network, the
likelihood is p(a|he) = p(y1, . . . , yn|he), as all tokens are
predicted sequencially. In the case of this Seq2Tree example,
where the a non-terminal is predicted at y4, the likelihood is
p(a|he) = p(y1, y2, y3, y4|he)p(y5 . . . yn|hd). The decoding
process of a Seq2Tree network terminates when all non-
terminal sequences have led to an end-of-sequence token.

IV. POLICY SPECIFICATION AND OPTIMIZATION

Human language can be verbose and unstructured. A
successful approach to encoding human-specified policies
needs to be theoretically capable of handling document-sized
inputs, and identify the individual parts of the instructions
pertaining to relevant components of the behavior. For the
task of Policy Specification, we develop an architecture,
HAN2Tree, that leverages the Hierarchical Attention Net-
work as an encoder and extends the Tree Decoder proposed
in the Seq2Tree paper (see Figure 2).

The ability of the HAN encoder to explicitly learn word-
level and sentence-level dependencies allows us to better
identify which parts of a disorganized language description
are relevant to the policy. A language description is encoded
into a vector, H , and provided as an input to the Tree
Decoder. Unlike that of Seq2Tree [57], in our Tree Decoder,
each non-terminal prediction creates two separate branches
to facilitate a decision tree-like structure (see Figure 2). At
each decoding step in the Tree Decoder, we reapply attention
by learning the alignment weights of the hidden vector of the
decoder with respect to the hidden vector corresponding to
each sentence in the input. By extending the decoder from
the Seq2Tree model, each branch of our decoder is able to
specifically focus on information from its predecessors while
using relevant information from the natural language input
via attention.

We define the target language as the set of all possible
decision nodes or leaves for a given domain. For our ex-
perimental domains (Section V), we specify a dictionary
of all possible predicates a priori. Translating from natural
language into a structured decision tree of these predicates,
we are able to optimize the translated policy by encoding it
as a DDT, i.e for Policy Optimization. We create a mapping
between each lexical predicate to a set of weights, pn
and comparator values, cn, as described in Section III, to
initialize the DDT through a lexical tree generated by our
network. This intermediate decision tree representation also
provides an intelligible modality for a user to visualize their
specified policy, should they want to modify or re-specify
the policy prior to optimization (see Figure 4). We can then
apply proximal policy optimization [58] to improve upon
the initial policy specification. Through our approach of

Fig. 2. This figure depicts our HAN2Tree architecture. The left side of the image represents the HAN encoder and the right side of the image represents
the Tree decoder. Each sentence in the language description, consisting of n words (w0−wn), is input into the HAN encoder. The encoder is comprised of
two layers of GRU cells [51], or Gated recurrent units, which are a type of RNN-cell. The encodings for each word in the sentence are then passed into the
first word-level attention layer to generate an embedding for each sentence (the attention weights for this layer are represented by α). Next, the sentence
embeddings pass through another layer of GRU cells, and a second sentence-level attention layer (the attention scores for this layer are represented by β)
to generate a final encoding for the entire input (H). This vector is then passed to the Tree Decoder to generate the decision tree. At each step, the GRU
cell predicts the next predicate in the tree (p∗i). When a non-terminal token is predicted by the GRU cell, two new branches are created. Decoding stops
when all branches predict end of sequence tokens or the maximum depth is reached.

translating natural language into neural network structure and
parameters, our HAN2Tree framework facilitates a crucial
extension to prior work [49] by accommodating the needs of
a larger set of end-user needs, i.e. specification via language.

V. EXPERIMENTAL DOMAINS

We chose the taxi and highway domain, which are anal-
ogous to sub-tasks within autonomous driving. Autonomous
driving is of keen interest in the robotics community [59].

Taxi Domain – We adapt the Taxi domain [60] as our
first domain. Our domain consists of three locations: the
airport, village and city. Passengers are always available at
the city, however they may encounter traffic. Whereas at the
village, there will be no traffic, but there may be a wait for
passengers. The state space consists of the taxi’s location,
the traffic towards the city, and the village wait time. Actions
consists of driving to a destination or waiting for a passenger.

Highway Domain – The highway domain was initially
proposed by [61] for apprenticeship learning. The highway
consists of three lanes, with the traffic all moving in the
same direction [62]. The state space is comprised of the [x,
y, ẋ, ẏ] vectors for the four closest cars to the agent. (x, y)
corresponds to the position of the car and (ẋ, ẏ) represents
the velocity of the car in the x and y directions. The agent is
rewarded for safely traversing the highway at a high velocity
and is given a negative reward for crashing.

VI. DATA COLLECTION

To collect our dataset, we employed Mechanical Turk to
crowdsource a novel supervised learning dataset for policy
specification. The objectives of our data collection were
to: (1) Collect free-form natural language which accurately
describes policies that lead to plausible behavior; and (2)
Facilitate a varied set of policies specified to ensure that our
model is not biased towards specific strategies.

To collect the requisite data, we built a Qualtrics survey
[63] and deployed it on Mechanical Turk under a protocol
approved by an Institutional Review Board (IRB). We did
not collect demographics information for our study. Any
participant between the ages of 18 - 65 from an English
speaking country was eligible to participate in our study.
However, we had no way of enforcing these constraints
through Mechanical Turk. Participants did not interact with
the domain; rather, users received pictures of the domain
(Figure 3). Our interface contained a binary tree of depth four
consisting of fifteen empty text-fields (Figure 3). Participants
were asked to fill in the tree using a collection of predicates
to specify their desired policy. After creating a tree, partic-
ipants were instructed to submit a natural language descrip-
tion of their specified tree. Collecting language after trees
was a deliberate design choice in order to elicit language
descriptions that were relevant to the participant-specified
tree. Each submitted response was carefully evaluated ac-
cording to a pre-defined rubric, and only the data points
where the instructions described the policy specification were
included in our final dataset. Our rubric included checks for
whether the majority of the decisions in the tree-policy were
references in the language descriptions. We also checked
for whether information included in the description was
copied from external sources, parts of the study itself, or
was completely irrelevant to the policy specified, e.g. “Trees
are great, I liked working with trees. I enjoyed this task. . .”
Minor edits were made to the submitted data based on
correctness and grammar. Our study collected 400 policy
specifications (Text + Tree).

A. Dataset Preparation
We augmented our dataset by applying synonym replace-

ment and back-translation on the policy descriptions. Back-
translation is a common method in language augmentation
which leverages machine translation models to translate a

Fig. 3. Figures (a) and (b) show the highway and taxi domains. Figure (c) provides a depiction of the interface we developed to collect decision trees
corresponding to natural language descriptions of policies. Turkers could drag and drop options from a list of possible actions/decisions to generate a tree.

TABLE I
MEANS (STANDARD DEVIATIONS) FOR TREE AND TOKEN-WISE ACCURACY WITH 5-FOLD CROSS-VALIDATION. WE REPORT THE AVERAGE 5-FOLD

ACCURACY ACROSS THREE 5-FOLD RUNS TO BETTER COMPARE S2T AND H2T, SINCE THE RESULTS OF THESE MODELS WERE VERY SIMILAR.

Taxi Highway
Tree Acc Token-wise Acc Tree Acc Token-wise Acc

Seq2Seq 76.54% (0.33) 90.35% (0.11) 65.11% (0.96) 88.12% (0.11)
Seq2Tree 86.04% (0.64) 94.83% (0.23) 80.11% (0.27) 91.58% (0.23)

Seq2Tree (BERT Enhanced) 81.84% (1.26) 93.07% (0.50) 77.17% (0.65) 90.38% (0.67)
HAN2Tree (ours) 86.30% (0.55) 95.23% (0.12) 80.38% (0.48) 92.83% (0.36)

sentence to a different language and then translate it back to
english. This serves as a means of syntactically changing
a sentence while retaining the same semantic meaning.
After augmentation, our entire dataset totalled 978 and 998
examples for the Taxi and Highway domains, respectively.
Language is highly variable modality, in that two potential
users could describe the same behavior in completely differ-
ent ways. Augmenting our data adds some of this variation to
our corpus and makes our model more robust to real-world
language. Our source and target vocabulary size amounted
to 1283 and 20, respectively, for the Taxi domain and 1162
and 20, respectively, for the Highway domain. The source
vocabulary size represents the total number of words uti-
lized in the language descriptions, and the target vocabulary
represents the number of action/decision predicates among
the trees in the dataset. We applied a 70/30 split on our
augmented dataset to create our training and validation sets.
While training, words with a frequency of less than 5 were
replaced by an unknown token. 1

VII. RESULTS

In this section, we empirically validate the advantages
of our approach to warm-starting policy optimization with
natural language-based policy initialization. First, we show
that our approach (HAN2Tree) generates lexical decision
trees from language with high accuracy, outperforming rel-
evant baselines (Section VII-A). Second, we demonstrate
that we can bootstrap policies through natural language to
outperform reinforcement learning baselines (Section VII-B).

1Similar language-to-structure datasets [57], [64], [65], typically include
language sequences which are almost 1/10th the length of those of our
datasets, as our language inputs describe entire policies rather than a single
command (GeoQuery - 7.56, ATIS - 10.97, Scholar - 6.69, Taxi - 81.37,
Highway - 92.03). To the best of our knowledge, no pre-existing dataset is
comparable to ours, in terms of size of samples or correspondence of data.

A. Policy Specification from Language
We hypothesize that (1) no related network will be able to

outperform our HAN2Tree architecture (2) training models
from scratch is more suitable to our specialized task on
a small dataset when compared to leveraging pretrained
embeddings on large-scale internet corpora. We employ K-
fold cross validation accuracy as our evaluative measure. The
effectiveness of our model depends on how accurately it
is able to generate decision trees from language, therefore
we employed a standard classification measure utilized in
prior work. To evaluate our Policy Specification method
(HAN2Tree), we employ the following baselines:

1) Seq2Seq: We trained a Seq2Seq network with attention
[52] to generate flattened representations of trees.

2) Seq2Tree: An extension of the architecture presented by
[57], with a binary Tree Decoder.

3) Seq2Tree (BERT enhanced): The Seq2Tree baseline
augmented with pretrained BERT [55] embeddings.

We include a “BERT enhanced” baseline to leverage
large-scale pretraining for our encoder, allowing us to see
what benefits may be gained by equipping our network
with this prior knowledge. We chose to leverage BERT as
a feature encoder as prior work has shown that a fused-
embedding structure is more effective means of incorpo-
rating BERT [66]. Therefore we applied the methodology
used by the ELMO architecture [67] to incorporate BERT
embeddings into the encoder of the Seq2Tree baseline. We
report the 5-fold cross validation accuracy for each of our
baselines (Table II). Tree Accuracy is the percentage of
trees that exactly matched the target tree, and the token-wise
accuracy reports the per-token accuracy of the model. Our
best-performing approach achieved a mean tree accuracy of
86.30% (0.55) in translating natural language to decision
trees in the Taxi domain. We do note that the Seq2Tree

Fig. 4. Two examples of trees correctly and incorrectly parsed by our system. The red box corresponds to the incorrect part of the tree predicted. The
model replaced “Drive to the City”, with a longer expression which first checked the wait time before driving to the city.

approach achieves a comparable performance to HAN2Tree
in both domains. However, our approach, remains a better
fit for real-world applications, due to its capacity to more
effectively process large text inputs. Despite attention, and
updated RNN architectures, RNN models still struggle to
retain long-term dependencies for larger input sequences.
The HAN encoder explicitly separates words and sentences
in order to split up the input into meaningful segments
to mitigate some of these issues. Particularly in instances
with free-form language descriptions of policies, which could
feasibly be comprised of ∼1000 words, it is important that
the network has the ability to effectively segment the input
and model the dependencies of each segment.

The performance of the BERT-enhanced baseline is unable
to match either the Seq2Tree or HAN2Tree approaches. We
hypothesize that due to the size of our dataset, adapting
the information learnt from BERT’s large-scale pretraining
methodology is more challenging than learning the specific
information required for this task from scratch. We acknowl-
edge that the benefits of using a BERT enhanced structure, or
the entire pretrained BERT transformer as an encoder, would
increase in situations where data for this problems is more
abundantly available. However, we leave this point to future
work given the challenge of creating a large enough dataset
for such a trend to possibly become evident. Sample outputs
from our approach are shown in Figure 4.

B. Policy Optimization through RL

In this section, we show that leveraging language to
specify policies as DDTs is a viable method for policy
learning. We hypothesize that (1) utilizing natural language
initializations from non-expert participants does not inhibit
policy learning for DDTs, and that (2) policies initialized
through language, via lexical decision trees, can be suf-
ficiently optimized to match or outperform those without
language initialization. We compare our approach, a DDT
initialized by natural language, with the following baselines:

1) NN (PPO): A neural network (NN) with three fully-
connected layers, a baseline used in prior work [49].

TABLE II
THIS TABLE DISPLAYS THE MEDIANS AND STANDARD ERRORS FOR THE

INITIAL AND MAXIMUM ROLLING REWARDS FOR DDTS ACROSS

TRAINING RUNS. THE WINDOW-SIZE FOR BOTH THE INITIAL AND

MAXIMUM ROLLING REWARD WAS 100.

Taxi Highway
NN Initial 0.8 ± 0.43 -3.79 ± 0.03

Random Initial 3.45 ± 0.28 -1.49 ± 0.18
Natural Language Initial (Ours) 4.04 ± 0.32 -1.28 ± 0.27

NN Best 8.22 ± 0.04 -0.36 ± 0.30
Random Best 8.26 ± 0.12 9.81 ± 0.43

Natural Language Best (Ours) 8.79 ± 0.17 10.00 ± 0.41

2) Random DDT: A randomly initialized DDT initialized
with eight leaves adopted from prior work [49].

In Table VII-B, we depict the initial and maximum rolling
rewards for each baseline. For the NL baseline, we report the
average of the initial and maximum rolling reward across the
best 5 trees generated through natural language initializations
out of a selection of 10-15 trees. The rolling reward was
computed across 100 episodes. We find that the best NL
model achieves a higher average in terms of the best per-
forming model as well as the initial model compared to the
random and FC baselines. The Random DDT baseline also
outperforms the NN baseline, which is likely due to helpful
inductive bias seen in prior work [49]. The average initial
performance was also found to be higher for DDTs initialized
by language rather than randomly initialized DDTs. It is
interesting to note that the relative initial performance with
respect to the random baseline is greater within the taxi
domain (+0.6) rather than the highway domain (+0.2). The
drop in initial performance between the taxi and highway
domain, indicates that the loss in translation accuracy affects
the quality of the policy initializations. In future work, we
hope to expand our approach to a larger dataset in order
to overcome this translation cost. However, by successfully
initializing DDTs through natural language, and matching
the performance of prior work, we facilitate the first such
methodology, combining symbolic and connectionist con-

cepts, where humans can program and visualize their desired
policies through free-form natural language.

VIII. LIMITATIONS AND FUTURE WORK

In this work, we assume that specifying policies via
natural language is preferable to directly specifying policies
as decision trees through a graphical user interface. While
this assumption is supported by prior work [68], it would
be interesting to see if this assumption bears out in practice.
In future work, we hope to study which modality, between
natural language and decision trees, is more suitable for
allowing non-experts to specify robot policies.

Another important limitation pertains to the size and scope
of our dataset. In our data-collection protocol, participants
were limited to specifying trees of depth four to reduce
their cognitive load during the study. Based on analysis from
pilot studies, trees of depth four were ascertained to be the
deepest trees needed to describe the majority of behaviors
possible for our domains. However, trees of depth four
may be insufficient for other domains. In such cases, one
would have to restructure the data-collection UI to collect
variable size decision trees, but our approach would still be
applicable. With respect to the dataset, we also acknowl-
edge the presence of an inductive bias pertaining to the
method of data collection. Since we collected language after
participants submitted their trees, participants were more
likely to produce language that reflected the tree structure.
It might be possible that our approach will not perform
as well on language instructions collected “in the wild.”
However, we maintain that the building blocks presented
in this approach will be crucial for future work towards
developing a simulatable model for in-the-wild policies.

IX. CONCLUSION

In this paper, we bridge relevant symbolic and connec-
tionist methods, developing a human-centered, interpretable
framework for policy specification through natural language,
policy improvement via reinforcement learning. Furthermore,
we showcase a data collection methodology that can be
used to collect decision trees, of any size, and the natural
language descriptions corresponding to these trees for any
given domain. Utilizing this protocol, we crowd-sourced
the largest known corpus mapping unstructured, free-form
natural language instructions to lexical decision trees. Our
novel machine learning architecture, called HAN2Tree, was
the first approach capable of generating lexical decision trees
from language while outperforming a model that leveraged
pretrained embeddings. We demonstrate the utility of using
language specifications from novice users by showing that
our approach outperforms or matches relevant baselines
without natural language initialization. We hope that this
work promotes a greater emphasis on building accessible
machine learning systems which can cater to the needs of
the diverse sets of users they may interact with.

X. ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research
under N00014-19-1-2076, the National Science Foundation

under IIS-2112633 and FMRG-2229260, and a gift to the
Georgia Tech Research Foundation by Konica Minolta.

REFERENCES

[1] L. Chen, R. R. Paleja, and M. C. Gombolay, “Learning from
suboptimal demonstration via self-supervised reward regression,” in
4th Conference on Robot Learning, CoRL 2020, 16-18 November
2020, Virtual Event / Cambridge, MA, USA, ser. Proceedings of
Machine Learning Research, J. Kober, F. Ramos, and C. J. Tomlin,
Eds., vol. 155. PMLR, 2020, pp. 1262–1277. [Online]. Available:
https://proceedings.mlr.press/v155/chen21b.html

[2] S. Chernova and A. L. Thomaz, “Robot learning from human teach-
ers,” Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, vol. 8, no. 3, pp. 1–121, 2014.

[3] A. J. Shah, P. Kamath, S. Li, and J. A. Shah, “Bayesian inference of
temporal task specifications from demonstrations,” 2018.

[4] R. Selten, “Bounded rationality,” Journal of Institutional and Theoret-
ical Economics (JITE)/Zeitschrift für die gesamte Staatswissenschaft,
vol. 146, no. 4, pp. 649–658, 1990.

[5] M. Kaiser, H. Friedrich, and R. Dillmann, “Obtaining good perfor-
mance from a bad teacher,” in Programming by Demonstration vs.
Learning from Examples Workshop at ML, vol. 95, 1995.

[6] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza, “Power to
the people: The role of humans in interactive machine learning,” Ai
Magazine, vol. 35, no. 4, pp. 105–120, 2014.

[7] U. Ehsan and M. O. Riedl, “Human-centered explainable ai: Towards a
reflective sociotechnical approach,” arXiv preprint arXiv:2002.01092,
2020.

[8] A. Sciutti, M. Mara, V. Tagliasco, and G. Sandini, “Humanizing
human-robot interaction: On the importance of mutual understanding,”
IEEE Technology and Society Magazine, vol. 37, no. 1, pp. 22–29,
2018.

[9] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, “Using
reward machines for high-level task specification and decomposition
in reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2018, pp. 2107–2116.

[10] P. Nilsson, S. Haesaert, R. Thakker, K. Otsu, C.-I. Vasile, A. Agha,
R. Murray, and A. Ames, “Toward specification-guided active mars
exploration for cooperative robot teams,” in Proceedings of Robotics:
Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[11] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith,
“Teaching multiple tasks to an rl agent using ltl,” in Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent
Systems, 2018, pp. 452–461.

[12] N. G. Buchina, P. Sterkenburg, T. Lourens, and E. I. Barakova, “Natu-
ral language interface for programming sensory-enabled scenarios for
human-robot interaction,” in 2019 28th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN). IEEE,
2019, pp. 1–8.

[13] R. Liu and X. Zhang, “A review of methodologies for natural-
language-facilitated human–robot cooperation,” International Journal
of Advanced Robotic Systems, vol. 16, no. 3, p. 1729881419851402,
2019.

[14] H. A. Napier, R. R. Batsell, N. S. Guadango, and D. M. Lane, “Impact
of a restricted natural language interface on ease of learning and
productivity,” Communications of the ACM, vol. 32, no. 10, pp. 1190–
1198, 1989.

[15] P. J. Hayes, “The utility of natural language interfaces (panel session),”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 1985, p. 19.

[16] P. Smolensky, “Connectionist ai, symbolic ai, and the brain,” Artificial
Intelligence Review, vol. 1, no. 2, pp. 95–109, 1987.

[17] V. Blukis, Y. Terme, E. Niklasson, R. A. Knepper, and Y. Artzi,
“Learning to map natural language instructions to physical quadcopter
control using simulated flight,” arXiv preprint arXiv:1910.09664,
2019.

[18] D. Misra, A. Bennett, V. Blukis, E. Niklasson, M. Shatkhin, and
Y. Artzi, “Mapping instructions to actions in 3d environments with
visual goal prediction,” arXiv preprint arXiv:1809.00786, 2018.

[19] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
166–175.

https://proceedings.mlr.press/v155/chen21b.html

[20] D. Arumugam, S. Karamcheti, N. Gopalan, L. L. S. Wong,
and S. Tellex, “Accurately and efficiently interpreting human-robot
instructions of varying granularities,” in Robotics: Science and
Systems XIII, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, July 12-16, 2017, 2017. [Online]. Available:
http://www.roboticsproceedings.org/rss13/p56.html

[21] A. Boteanu, J. Arkin, S. Patki, T. Howard, and H. Kress-Gazit, “Robot-
initiated specification repair through grounded language interaction,”
arXiv preprint arXiv:1710.01417, 2017.

[22] N. Gopalan, D. Arumugam, L. Wong, and S. Tellex, “Sequence-to-
Sequence Language Grounding of Non-Markovian Task Specifica-
tions,” in Proceedings of Robotics: Science and Systems, Pittsburgh,
Pennsylvania, June 2018.

[23] A. Suárez and J. F. Lutsko, “Globally optimal fuzzy decision trees for
classification and regression,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 12, pp. 1297–1311, 1999.

[24] A. Silva, M. Gombolay, T. Killian, I. Jimenez, and S.-H. Son,
“Optimization methods for interpretable differentiable decision trees
applied to reinforcement learning,” ser. Proceedings of Machine
Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108.
Online: PMLR, 26–28 Aug 2020, pp. 1855–1865. [Online]. Available:
http://proceedings.mlr.press/v108/silva20a.html

[25] H. Kress-Gazit and G. E. Fainekos, “Translating structured English to
robot controllers,” Advanced Robotics, vol. 22, pp. 1343–1359, 2008.

[26] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
parse natural language commands to a robot control system,” in
Experimental Robotics. Springer International Publishing, 2013, pp.
403–415.

[27] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller,
and N. Roy, “Understanding natural language commands for robotic
navigation and mobile manipulation,” in Proceedings of the National
Conference on Artificial Intelligence, 2011.

[28] J. Thomason, A. Padmakumar, J. Sinapov, N. Walker, Y. Jiang,
H. Yedidsion, J. Hart, P. Stone, and R. J. Mooney, “Improving
grounded natural language understanding through human-robot dia-
log,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 6934–6941.

[29] D. Bahdanau, F. Hill, J. Leike, E. Hughes, A. Hosseini, P. Kohli,
and E. Grefenstette, “Learning to understand goal specifications by
modelling reward,” arXiv preprint arXiv:1806.01946, 2018.

[30] V. Blukis, N. Brukhim, A. Bennett, R. A. Knepper, and Y. Artzi, “Fol-
lowing high-level navigation instructions on a simulated quadcopter
with imitation learning,” in Proceedings of the Robotics: Science and
Systems Conference, 2018.

[31] C. Lynch and P. Sermanet, “Grounding language in play,” arXiv
preprint arXiv:2005.07648, 2020.

[32] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. B.
Amor, “Language-conditioned imitation learning for robot manipula-
tion tasks,” arXiv preprint arXiv:2010.12083, 2020.

[33] V. Belle and I. Papantonis, “Principles and practice of explainable
machine learning,” Frontiers in big Data, p. 39, 2021.

[34] F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-
pretable machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[35] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolu-
tional networks: Visualising image classification models and saliency
maps,” arXiv preprint arXiv:1312.6034, 2013.

[36] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-
standing neural networks through deep visualization,” arXiv preprint
arXiv:1506.06579, 2015.

[37] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black
box: Understanding dqns,” in International Conference on Machine
Learning, 2016, pp. 1899–1908.

[38] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digital Signal Processing,
vol. 73, pp. 1–15, 2018.

[39] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[40] C. Burns, J. Thomason, and W. Tansey, “Interpreting black box models
via hypothesis testing,” in Proceedings of the 2020 ACM-IMS on
Foundations of Data Science Conference, 2020, pp. 47–57.

[41] N. Frosst and G. Hinton, “Distilling a neural network into a soft
decision tree,” arXiv preprint arXiv:1711.09784, 2017.

[42] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez,

“Explainable reinforcement learning via reward decomposition,” in
IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019.

[43] L. Sanneman and J. Shah, “Explaining reward functions to humans for
better human-robot collaboration,” arXiv preprint arXiv:2110.04192,
2021.

[44] J. van der Waa, J. van Diggelen, K. v. d. Bosch, and M. Neerincx,
“Contrastive explanations for reinforcement learning in terms of
expected consequences,” arXiv preprint arXiv:1807.08706, 2018.

[45] J. Hoffmann and D. Magazzeni, “Explainable ai planning (xaip):
overview and the case of contrastive explanation,” Reasoning Web.
Explainable Artificial Intelligence, pp. 277–282, 2019.

[46] O. Amir, F. Doshi-Velez, and D. Sarne, “Summarizing agent strate-
gies,” Autonomous Agents and Multi-Agent Systems, vol. 33, no. 5, pp.
628–644, 2019.

[47] I. Lage, D. Lifschitz, F. Doshi-Velez, and O. Amir, “Exploring
computational user models for agent policy summarization,” in IJCAI:
proceedings of the conference, vol. 28. NIH Public Access, 2019, p.
1401.

[48] K. D. Humbird, J. L. Peterson, and R. G. McClarren, “Deep neural
network initialization with decision trees,” IEEE transactions on
neural networks and learning systems, vol. 30, no. 5, pp. 1286–1295,
2018.

[49] A. Silva and M. Gombolay, “Neural-encoding human experts’ domain
knowledge to warm start reinforcement learning,” 2020.

[50] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[51] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[52] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[53] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[55] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[56] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[57] L. Dong and M. Lapata, “Language to logical form with neural
attention,” arXiv preprint arXiv:1601.01280, 2016.

[58] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[59] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of
deep learning techniques for autonomous driving,” Journal of Field
Robotics, vol. 37, no. 3, pp. 362–386, 2020.

[60] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” Journal of artificial intelligence re-
search, vol. 13, pp. 227–303, 2000.

[61] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[62] E. Leurent, “An environment for autonomous driving decision-
making,” https://github.com/eleurent/highway-env, 2018.

[63] Qualtrics, “Qualtrics,” https://www.qualtrics.com, 2019.
[64] R. Jia and P. Liang, “Data recombination for neural semantic parsing,”

arXiv preprint arXiv:1606.03622, 2016.
[65] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer,

“Learning a neural semantic parser from user feedback,” arXiv preprint
arXiv:1704.08760, 2017.

[66] J. Zhu, Y. Xia, L. Wu, D. He, T. Qin, W. Zhou, H. Li, and T.-Y. Liu,
“Incorporating bert into neural machine translation,” arXiv preprint
arXiv:2002.06823, 2020.

[67] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv
preprint arXiv:1802.05365, 2018.

[68] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16,
no. 3, pp. 31–57, 2018.

http://www.roboticsproceedings.org/rss13/p56.html
http://proceedings.mlr.press/v108/silva20a.html
https://github.com/eleurent/highway-env
https://www.qualtrics.com

	I INTRODUCTION
	II Related Work
	III Preliminaries
	IV Policy Specification and Optimization
	V Experimental Domains
	VI Data Collection
	VI-A Dataset Preparation

	VII Results
	VII-A Policy Specification from Language
	VII-B Policy Optimization through RL

	VIII Limitations and Future Work
	IX Conclusion
	X Acknowledgements
	References

