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Learning Fluid Flow Visualizations
from In-flight Images with Tufts

Jongseok Lee!”*, W.E.J. Olsman®* and Rudolph Triebel

Abstract—To better understand fluid flows around aerial
systems, strips of wire or rope, widely known as tufts, are often
used to visualize the local flow direction. This paper presents a
computer vision system that automatically extracts the shape
of tufts from images, which have been collected during real
flights of a helicopter and an unmanned aerial vehicle (UAV).
As images from these aerial systems present challenges to both
the model-based computer vision and the end-to-end supervised
deep learning techniques, we propose a semantic segmentation
pipeline that consists of three uncertainty-based modules namely,
(a) active learning for object detection, (b) label propagation
for object classification, and (c) weakly supervised instance
segmentation. Overall, these probabilistic approaches facilitate
the learning process without requiring any manual annotations
of semantic segmentation masks. Empirically, we motivate our
design choices through comparative assessments and provide
real-world demonstrations of the proposed concept, for the first
time to our knowledge. The project website can be accessed via
the link: https:/sites.google.com/view/tuftrecognition/.

Index Terms—Aerial Systems: Applications; Computer Vision
for Automation; Object Detection, Segmentation and Categoriza-
tion; Probability and Statistical Methods; Aerodynamics.

I. INTRODUCTION

VER the last decade, the performance of computer vision

techniques improved sharply, leading to new application
areas of robotics and automation. In particular, advances
in deep learning introduced several frameworks capable of
visualizing complex 3D flow phenomena [1]]. Such advances in
aerodynamics are relevant for aerial robotics, which requires
fundamental understanding of the underlying physics behind
the flow phenomena. The efficient design of novel systems [2],
safe operations of UAVs [3]], and reducing noise in rotary wing
systems [4], are a few examples that illustrate the subject’s
relevance in the current aerial systems research.

To advance our understanding of fluid flows around complex
aerial systems in real flights, this work focuses on visualizing
their local fluid flow topology via the application of tufts — one
of the oldest and simplest experimental methods to visualize
the flow on a surface. Tufts and their variants like flow cones
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Fig. 1. Tufts are placed on an in-flight vehicle such as aircraft. Visual sensors
capture the video sequences, and semantic segmentation of tufts is performed
with learning algorithms for visualizing the local flow topology.

are small pieces of wire or rope that are attached to a surface,
aligning themselves with the local flow velocity [3]]. Typically,
the orientation and shape of the tufts are captured with a
camera and the images are analyzed to obtain insight into
the local flow topology on the surface [6], [7]. Examples are
notably found in many works of aerodynamicists [6]], [8], [7].

In this paper, we propose a learning system to advance
the applicability of tufts for in-flight fluid flow visualizations.
Given in-flight images with tufts, our system automatically
generates semantic segmentation masks of individual tufts for
flow visualizations (Fig. [I). In contrast to a manual analysis
by aerodynamicists [5]], the proposed system enables automa-
tion. Such automation has the added benefit of flexibility,
reproducibility, lack of human bias, and scalability to the
vast number of images and tufts per image. Moreover, this
concept is not restricted to controlled environments, where
model-based computer vision techniques such as template
matching, homography, and application of static masks may be
sufficient [7]], [8]. The proposed system thereby scales the ap-
plications of tuft methods to challenging environments outside
the laboratories, where large changes in lighting conditions,
perspective, and background scenes are inevitable.

The development of such a system is motivated by a large
amount of challenging data we collected for concrete applica-
tions of flow visualization. Our data consists of (a) in-flight
images from the tail surface of a helicopter, which we collected
using another manned helicopter flying in close formation, and
(b) the images from a UAV flying in the stratosphere, i.e., the
flight sequence back-and-forth from ground to approximately
20 km altitude. Importantly, these images are challenging
for model-based computer vision techniques due to large
variations between the different images. Moreover, annotated
training data is not readily available for semantic segmentation.
The problem also involves classifying small objects, i.e., tufts,
which have the same appearance, but different labels (Fig. [2).
Therefore, the applicability of end-to-end supervised deep
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Fig. 2. Top: helicopter tail rotor (the Fenestron duct). Bottom: wing area of a
UAV, captured approximately 20 km altitude. For example, some tufts (wires
or ropes) are zoomed in. Different class labels are given to each individual
tuft. The goal is semantic segmentation of these small and repetitive objects
with similar appearance, but different class labels.

learning techniques, like Mask-RCNN, may also be limited.

To this end, we propose a semantic segmentation pipeline
that addresses the aforementioned challenges. The key idea
is to divide the problem of semantic segmentation into three
steps, namely (a) active learning-based object detection using
uncertainty sampling, (b) uncertainty-driven label propagation
for object classification, and (c) weakly supervised instance
segmentation with so-called uncertainty maps. In the paper,
we describe in detail, how these probabilistic approaches
allow the training of the overall pipeline without requiring
any annotations of semantic segmentation masks. Instead, we
reduce the annotation efforts to the labeling of fewer bounding
boxes, and only a single image where all the class labels
are specified. Empirically, several comparative assessments are
presented within these three steps, which motivates our design
choices. Lastly, quantitative and qualitative assessments of the
proposed concept are provided as final demonstrations. We
note that our focus is on examining the feasibility of computer
vision techniques for the proposed application concept, while
aerodynamic results will be presented in a future publication.

In summary, the contributions of this paper are (a) a novel
application concept of learning flow visualizations from in-
flight images with tufts, (b) a semantic segmentation pipeline,
based on probabilistic approaches, for addressing the practical
challenges of our scenario, (c) the collection and sharing of
in-flight images from the manned helicopter and stratospheric
UAV flights, and (d) several experimental results to validate

each component of the system, including quantitative and
qualitative characterizations of the overall performance.

II. RELATED WORK

In-flight Flow Visualization Techniques Due to the trans-
parency of fluids, their flow patterns are invisible to humans.
Thus, several experimentation methods have been devised to
visually acquire the flow patterns. In wind tunnel facilities,
which replicate the interaction between air and flight models
by blowing air using large tubes, certain mediums like smoke,
oil flows, particles, etc., have been combined with optical
measurement techniques to visualize the air flows. Likewise,
such technologies are being applied to aerial systems in-flight,
as a way to obtain data from real flights. Here, flow cones
and tufts, oil flows, liquid crystals, sublimating chemicals,
and smoke are often used [5]. Amongst these methods, for
simplicity and low cost, this work automatizes tufts methods.

Automatic Tuft Recognition for Flow Visualization Over
the past decades, the applications of tufts were mostly on
qualitative flow visualizations where the images are manually
analyzed by aerodynamicists [5]]. Recently, however, quantita-
tive analysis via image processing methods are also being ex-
amined. Vey er al. [[7] and Wieser et al. [6] manually specified
the position of each tuft and its geometric orientation, and used
mean angles to perform line integration convolution. A rule-
based system is developed, where given the masks and anchors
of the surface containing tufts, threshold-based foreground
extraction, and color-based identification schemes are used [9]].
Steinfurth et al. [§]] assumed the location of each tuft to be
known, and applied the Prewitt method for shape extraction.
These works provide strong evidence that gaining quantitative
insights from tufts are a viable option. Our main novelty is
a learning-based solution, which relaxes the assumptions of
rule-based systems. With this, we demonstrate the real-world
applicability at the scale of real manned helicopter flights and
stratospheric missions of a UAV.

Reducing the Annotation Efforts End-to-end semantic
segmentation models heavily rely on large amounts of anno-
tated training data, which are often not readily available. In
such cases, the generation of synthetic data is a compelling
option, where annotations are readily available. However,
tufts are deformable and hence, the supports for such objects
are limited along with the well-known problem of sim2real
gap [10]. Other alternatives are semi-supervised models [IT]],
which utilize only a small number of annotations, while
weakly supervised models [12] use some weaker form of
labels. In our approach, we heavily build upon the advances in
these two domains. The proposed three-step pipeline exploits
active learning for bounding box detection as foreground ex-
tractor of tufts. Here, a small number of single-class bounding
boxes are relatively easier to annotate. Then, label propagation
is devised by combining classical image matching, uncertainty
estimates [13], and the idea of key-frames for multi-class se-
mantics. The final step involves instance segmentation, where
we employ weakly supervised learning models [14]. In this
way, we demonstrate how probabilistic approaches help in
real-world applications with limited annotated data.



LEE et al.: LEARNING FLUID FLOW VISUALIZATIONS FROM IN-FLIGHT IMAGES WITH TUFTS 3

i . Detection of tufts

3. Segmentation of tufts

Fig. 3. An overview of our pipeline. Instead of supervised learning, using deep models, we devise a semantic segmentation pipeline with (a) detection of tufts
for foreground extraction, (b) classification for semantic information, and then (c) instance segmentation. We note that deep learning-based object detection and
segmentation methods can also classify different objects. However, in our real-world application scenario, training data is not readily available, and labeling
annotation masks is very costly. Thus, the proposed pipeline is to reduce the annotation efforts down to labeling of fewer bounding boxes, and only a single

image where all the class labels of each tuft are specified, i.e., no annotations of semantic segmentation masks are required.

III. DATA, TASK, AND CHALLENGES

In this section, we provide brief information about data
collection, task definition, and associated challenges.

Data Generation We performed flight experiments with
EC135-ACT/FHS helicopter equipped with 56-81 tufts, while
the Bol05 helicopter was used as a camera platform. The
resolution of captured images was 6000x4000 pixels. The
goal of this first scenario is to analyze the complex in-flight
aerodynamic behavior of the anti-torque device known as
Fenestron or fan-in-fin [4]. As a second scenario, we gathered
the data from a stratospheric UAV [15] with 19 tufts on its
wing. These images were captured with a GoPro during the
approximately 145 minutes long flight to the stratosphere,
i.e., the atmosphere at about 20 km altitude. This dataset is
to show the generality of our method. Stratospheric flight is
also an area where the flow phenomena cannot be completely
reproduced in wind-tunnels [16]. We refer to the project
website for more details on data collection from test flights.

Task Definition From flight testing, we typically acquire
thousands of images under different conditions, from which,
useful aerodynamic data can be extracted. Such information
can be obtained automatically by a processing methodology
that recognizes the exact shape of the tuft in pixels. Moreover,
in order to examine the temporal behavior of each individual
tuft, the same tuft in many images is to be classified. In other
words, we are interested in the flow topology of an aerial sys-
tem, and so, each individual tuft must be monitored separately
over time. Therefore, from a computer vision perspective, the
problem involves semantic segmentation as described in Fig.
We note that after processing the images, aerodynamic results
can be presented as streamlines on the surface [6] or polar
histograms for individual tufts [7]. Here, streamlines are the
velocity vector fields of airflow while the polar histograms
of the airflow directions are for quantitative data. Therefore,
fulfilling the herein-defined computer vision task allows fluid
flow visualization as well as quantitative characterizations.

Challenges with In-flight Data Observing the collected
data from real flights, we find that first, the rule-based sys-
tems [7]], [6], [9], [8] cannot be directly applied, because
we cannot assume known masks and anchors due to large
variations in perspectives, relative positions, and illuminations
between images. Clearly, if the sizes and locations of fore-
ground masks change between the images, we cannot assume
static masks and anchors. These large variations in perspective
and position are caused by different relative positions of the
following helicopter, to enable a view inside the Fenestron
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Fig. 4. The proposed pool-based active learning with coarsely annotated pool
data. The initial coarse annotations are generated manually with the aid of
feature-based image matching.

duct. Positional shifts also occur due to unintended movements
of the following helicopter by turbulence and gusts. While
supervised learning techniques are current golden standards for
semantic segmentation, generating large amounts of manual
annotations is not feasible, e.g., one could imagine annotating
semantic segmentation masks for thousands of images as in
Fig. [2] Hence, the direct applicability of end-to-end super-
vised deep learning techniques is limited. Lastly, the problem
involves classifications of objects (tufts) with similar appear-
ance, but different labels depending on their relative location.
To address this, we conceive that appropriately combining
model-based techniques may be a solution rather than learning
such patterns from data only.

On the other hand, we assume that the data is acquired
either from videos or similar image capturing. Furthermore,
the analysis is intended for offline and therefore, the run-
time or efficiency is not an important criterion as far as our
pipeline is computationally tractable. On the contrary, the
system-level requirements are (1) to maximize the accuracy
while (2) reducing manual efforts in producing annotations.
Given these primitives, the next section presents our solution
to the aforementioned practical challenges from real flights.

IV. THE PROPOSED LEARNING PIPELINE

As depicted in Fig. 3] we propose to break this challenging
problem into three feasible sub-problems. We introduce our
solutions to each individual problem next.

A. Tuft Detection

In this step, the objective is to locate the presence of objects
with a bounding box, and further classify the located object
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Fig. 5. Given an annotated image as a source image, we propagate the labels
to the target image via image matching. Due to various perspective changes,
having multiple source images with annotations can increase the accuracy
of image matching. For example, image a would match image e easier than
image b. Likewise, image b can easily match image f.

in an image. This task is typically performed by a neural
network trained in a supervised manner. Hence, bounding box
annotations are required for training. Although generating such
annotations are more affordable than labeling for semantic
segmentation, our goal is to reduce the manual human efforts
as much as possible.

To this end, we propose a pool-based active learning
framework with coarsely annotated pool data. An overview
is provided in Fig. [ In the first stage, we manually annotate
a single image and propagate this annotation to other images
via image matching. Like this, we automatically generate a
large pool of coarsely annotated images. For some images, this
will work, for many it will not. In any case, it only requires
manual correction of a user instead of generating annotations
from the stretch. With this initial training data for supervised
learning, an object detector can be trained. Here, we simplify
the detection task by leaving out the classification task, i.e.
we treat different tufts as a single class "Tuft". This avoids
the problem of detecting objects with the same appearance but
different class labels and increases the instances of supervised
data points. Moreover, annotating bounding boxes for a single
class is less time-consuming.

The next stage then involves an active learning loop. Here,
our algorithm queries a user for new annotations from a pool
of data. Often, the subset of data is queried/selected with
measures of uncertainty [17], i.e. the most uncertain data to
neural networks are prioritized [10]. With the newly obtained
data, existing train data are extended, and the network is
retrained. Repeating the loop, active learning automatically
selects the most informative data for the network to learn
from. The proposed pipeline uses coarsely annotated pool
data (Fig. ). As such coarse annotations are error-prone, our
pipeline involves a user for corrections, only when selected by
the active learning algorithm. In this way, we reduce human
supervision more. What further motivates active learning is
the proposed simplification of object detection into a single
class. As such, active learning is well suited as we can avoid
under-performance in multi-label set ups [10].

Concretely, two crucial components are uncertainty estima-
tion for neural networks and a selection criterion for label

query. The former is a framework, which is based on Bayesian
formulation [I8], [13]. Given any trainable parameters of
neural networks 6 and training data D, these frameworks
estimate the weight posteriors p(@|D). Then, the prediction
uncertainty p(y*|x*, D) can be quantified:

Mf@ﬂD%j/MWMﬁmmmDM& )

for a output y* from a new input x*. If applied to object
detectors, we obtain a probabilistic object detector (POD)
[19] that delivers the calibrated probabilities of class labels
and the covariance matrices of the associated bounding box
locations. This information is then used in generating the label
queries. For this, we utilize the information scores for both
classification U; s and regression U .4 tasks respectively
for all object instances j in an image [10]:

IC]
Ujrs = Y H(p(cilz*, D)) & U reqg = H (p(blz*, D)),
=1

which rely on the Shannon Entropy #(-) by assuming categor-
ical distributions over the classes c¢; and Gaussian distributions
for the bounding boxes b (a set of two-pixel coordinates
describing a box). These scores can then be aggregated per
image to select the most uncertain data.

B. Tuft Classification

Having obtained the bounding boxes of all tufts with a
single class "Tuft", the goal is to classify them into their unique
identification labels, like "Tuft W1", "Tuft W2", etc.

To achieve this, we propose an algorithm with uncertainty-
driven label propagation. We provide the entire description of
the pipeline in Algorithm [I} Intuitively, given an annotated
image that contains all the class labels, we can propagate
the labels by means of matching this annotated image to
the current test image. Due to the temporal nature of our
data (like videos), we avoid learning the classification of
objects with a similar appearance. Yet, we have to deal with
certain challenges such as image matching can fail under
severe perspective changes, illumination, etc. (see Fig. 5. Our
algorithm is designed to address such challenges, while still
reducing the annotation efforts down to one single image.

Specifically, in Algorithm [I] the inputs are current test
image Ir and their corresponding outputs of probabilistic
object detection p(y* | *,D),b, and the outputs are class
labels for each bounding box {c; }le. Additionally, we use
the so-called key-frames, i.e., a set of available images with
annotations {IS,i}fil- For this, we initially annotate one
single image: K = 1, and update until a specific desired
number of annotated images is reached. As to reduce the
manual annotations by humans, the key-frame update will
be performed automatically. The algorithm achieves this by a
criterion that assesses the reliability of automatically generated
annotations. We stress that annotations with multi-class labels
are more expensive than single-class labels with bounding
boxes only. Finally, we take the total L number of tufts as
another input since in our application scenario, the number of
tufts on an aerodynamic vehicle is known.
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Algorithm 1: Tuft Classification Algorithm with Uncertainty Driven Label Propagation

input : Ip: the current test image from a video stream; p(y™* | «*, D), b: outputs of probabilistic object detection; &* = I and b <
Elp(y* | =*,D)] {I S,i}f{:f The key-frames as a set of source images with annotations; L: The total number of tufts.
output: {c; }lez The class labels for each bounding box; {ITyi}f{:tlz New key-frames after evaluating results on the current image I7.

1 begin
2 /+ Key—-frame based Image matching x/
3 for all the K images in the key-frames do
4 ‘ T;,C; < image_matching(Ig ;, IT) Vi ; // Image matching; Results in transformations T; and costs Cj
5 end
6 T < arg min({Ci}iKzl); // Select the result with the least cost
7 {c]'}f:1 < label_propagation(b, T') ; // Label all L bounding boxes using Hungarian algorithm
8 /* Is the results reliable? Multi-criteria decisions (MCD) are based on (1) If all L tufts are

detected, (2) If the confidence is high, and (3) If the matching costs are low. */
9 RS + MCD(p(y* | #*,D), C;, L) ; // Evaluate the Reliability Score (RS)
10 if RS is True then

K+1 . K L ) .

1 ‘ {IT,i it eupdate_keytrame({Is,i}izl,IT, {Cj}jzl, b) . // Update if reliable more than a threshold

12 end

3. Output mask

1. Input image

Fig. 6. Tuft segmentation. We predict the segmentation masks using D-
LinkNet. The network is trained in a weakly supervised manner.

For the main body of Algorithm ] we first match the current
image with images from the key-frames, which contain anno-
tations of class labels. This results in multiple transformations
and their costs, one pair each per source image. We pick a
single source image Ig; with the lowest matching cost or
error. Then, using this, we propagate the labels by keeping the
available boxes from the input, while obtaining the multi-class
labels by examining the overlapping areas and nearest points
from the matching results. We use a Hungarian algorithm to
assign each tuft one and exactly one label. This results in
the first output of the algorithm: {c; }le. As the final step,
we project the obtained results using three criteria, namely
the number of detections, uncertainty of the bounding box
predictions, and the error of image matching. These three
criteria capture the reliability of the obtained results, and the
key-frames are updated only when the results are deemed more
reliable than a pre-specified threshold. Intuitively, the obtained
results can be re-used as the source image for matching with
the next images, only if reliable or accurate via quantified
uncertainty estimates.

In this way, the idea of keyframes mitigates the failures
of image matching, as the keyframes consist of multiple
source images from different conditions. By further combining
a decision-making criterion, we can automatically generate
source images within the key-frames. This reduces any manual
annotations of costly multi-class labels.

C. Tuft Segmentation

Given the locations of each tuft and their class labels, we
now perform instance segmentation. So, within the cropped

—

1. Cropped images 3. Uncertainty maps

Fig. 7. Generation of annotations for tuft segmentation. A classical curve
detection is combined with uncertainty masks (gray). The loss does not use
any pixels within the uncertainty maps.

2. Curve detection

images from each bounding box, we group the pixels that
belong to the object, separating the objects of interest from
the background. This differs from applying the segmentation
method on the whole image directly.

Our pipeline involves a network that predicts a segmentation
mask of tufts given a cropped input image (Fig. [6). To train
this network, we first employ a line extraction via a curve
line detector [20], which generates a coarse result. Then,
D-linknet [14] is learned from the coarse segmentation as
a weaker form of annotation. In this way, we can perform
instance segmentation without annotations of segmentation
masks. Concretely, first, a curve detection [20]], is adopted
because it extracts curvilinear structure by utilizing an explicit
model for line and their surroundings, as opposed to a simple
model of only a line. Then, we train D-LinkNet, which has
been originally developed to extract long and thin objects in
the context of remote sensing. The architecture adopts the
widely used encoder-decoder structure with dilated convolu-
tions to connect the pre-trained encoder to the decoder, while
the intermediate layers use a series of dilated convolutions in
order to deal with tiny objects in an image and maintain the
spatial details at each scale. The network is trained using the
scribble-based weakly supervised loss function [21], i.e., the
partial binary cross entropy (PBCE) loss, with what we call
the auxiliary loss (AL):

L(Y, S) = PBCE(Y, S) + AL(Y, S), )

where Y is the curve mask from the curve detector and S is
the prediction mask of the CNN. The PBCE is defined as,

PBCE(Y, S) = — > Y,log(S,) + (1 — Yz )log(1 — S,),

rEwW
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Fig. 8. The results of object detection for five different methods. Higher the
better for mAP metric.
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Fig. 9. The results of active learning for different sampling strategies. Higher
the better for the curves.

where z stands for a pixel in w - the regimes that are known,
i.e. the pixels that belong to either the background or the
object. This is provided by the curve detector, but we also
apply a buffer along the detected line and set it as an unknown
regime (see Fig. [7]). As the PBCE loss is defined in the
regimes that are known as foreground and background, the
network learns to generate these regimes by minimizing the
loss. Intuitively, the network can learn from examples where
the curve detection performs well, in order to separate between
the foreground and background of tufts, and such patterns of
lines persist within the unknown regimes. Finally, an additional
loss function, AL, is used for improvements, which we ablate
within our experiments in Section

V. RESULTS

Now, our quantitative results are presented for each individ-
ual step. Final performance is then examined. The implemen-
tation details can be found on our project website.

Results on Tuft Detection We examine if certain object
detectors are more suited for the given data. For this, we
manually annotate 1000 images each for both the helicopter
and the UAV data, and randomly choose 500 data points for
training and the other 500 images for testing. For the evalu-
ation, the commonly used mAP is used. The selected models
are RCNN, RetinaNet, efficientDet-vO (edetd0), efficientDet-
v3 (edetd3) [23]] and DETR [24]], which are all widely applied
detectors. All the implementations are based on open-source
code from Pytorch and Detectron2 and are trained with the
ResNet backbone. We use the batch size of two and a learning
rate of 0.001 and 0.01 are chosen for the helicopter and the
UAV data respectively. The results of model comparisons are
shown in Fig. |8| We find that edetd3 yields the highest mAP
for the helicopter data, while RCNN achieved the highest
mAP for the UAV data. While the results of each model
differ depending on the data, we find that DETR and edetdO
under-performs as they are not designed for small objects.
In our scenario, we find that detectors for small objects with
adaptable anchors are desirable.

For active learning, we use the same setup as the model
comparison experiments, e.g., the metric, annotations, etc. Yet,

the splits of 0.2, 0.7, and 0.1 ratios are chosen for the test set,
the pool set, and the validation set respectively. Total ten active
learning loops are used to query up to 50 percent of the total
pool data. Three random seeds are repeated for different ini-
tialization of neural network training. For the baselines, we use
three different strategies. These are the randomized selection
from the pool set (random), and uncertainty-based sampling
with the state-of-the-art uncertainty quantification methods,
namely Monte-Carlo dropout (prob [18]) and Laplace Ap-
proximation (LA [13]). These baselines are to examine the
influence of uncertainty estimates. Moreover, as we simplified
the task to detect only one-single class, uncertainty estimates
are one of the influential variables to examine. The results of
active learning are reported in Fig.[9] Here, the queried data are
depicted in percentage to the total amount of data. The error
bars are depicted in shades. Overall, we examine that random
selection is outperformed by other methods, while LA results
in superior performance. This motivates the design choice of
our method. Moreover, the results show that about 50% of
overall data would result in 95% of the total performance.
This is due to the redundancy in the data and motivates the
use of active learning for reducing annotations.

Results on Tuft Classification For evaluating the tuft
classification task using uncertainty-driven label propagation,
we use the previously annotated 1000 images each for both
the helicopter and the UAV data. Here, only one multi-class
annotated image is used as a source, and other key-frames
are chosen with our decision-making criteria [ﬂ Then, all
the others are used for evaluation. The metric of mAP is
chosen, which captures both the classification accuracy and the
bounding box refinement. The number of keyframe images is
ablated from two to twelve in order to show that additions of
keyframes enable more accurate label propagation. To evaluate
the selection of keyframes, we compare our probabilistic
approaches to a random selection, which forms a baseline to
show that careful selection of the keyframes can increase the
accuracy of the label propagation.

Results are depicted in Fig. for both the helicopter and
the UAV data. First, we find that as the number of keyframes
increases, the accuracy also increases. This comes with in-
creased computational costs when compared to the use of one
single reference image. However, such costs can be justified
since the system requires not to be real-time. Second, we
observe that random selection of the keyframes can lead to a
decrease in the mAP metric because the keyframes are selected
from the output of the probabilistic object detector. Inaccurate
annotations as sources for image matching can deteriorate
the performance (also characterized by a high error bar in
a ‘single’ source image). On the contrary, our uncertainty-
driven mechanism improves the accuracy by selecting only the
bounding boxes that ‘the detector is confident about’. ‘LA’
again outperformed ‘prob’ in this case. Overall, the results
justify our design choices for reducing the number of required
annotations in tuft classification.

'We note that more key-frames can be chosen from the available sets of
annotations, at the cost of more manual efforts. But, our focus is to reduce
such efforts for improving the applicability of our concept.
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Fig. 10. Rand error [22], precision and recall are reported for the ten considered methods. The lower the better for the rand error, the higher the better for
the precision and recall. Favorable results are observed for our approaches (CD, PB, PP, PE, and BD) over four alternatives.
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Fig. 11. The results of tuft classification using the proposed label propagation.
Higher the better the curves.

TABLE 1
SEGMENTATION EVALUATION RESULTS. THE LOWER THE BETTER FOR

POINT DISTANCE. HIGHER THE BETTER FOR OTHER METRICS.

Completeness

Correctness

Quality

Point distance

Helicopter In-Flight Images

CD 0.890+0.002 0.832+0.002 0.761+0.003  0.208+0.002
BD 0.970+0.001 0.8814+0.009 0.8284+0.007  0.113+0.002
PB  0.963+0.001 0.889+0.003 0.840+0.002  0.085-+0.001
PE  0.930+£0.004 0.881£0.002 0.840+0.001  0.176+0.002
PP 0.957+0.003 0.889+0.004 0.841+0.005 0.085+0.002
Stratospheric UAV In-Flight Images
CD 0.2624+0.001 0.8104+0.002 0.6194+0.003  1.348-+0.002
BD 0.846+0.005 0.893+0.004 0.775+0.001 0.185+0.002
PB  0.801£0.003 0.898+0.010 0.760+0.004  0.132+0.003
PE  0.799+0.004 0.894+0.001 0.756+0.004  0.137+0.001
PP 0.809+0.005 0.902+0.010 0.762+0.007  0.127+0.002

Results on Tuft Segmentation For tuft segmentation, we
evaluate our approach against several baselines (from classical
image processing methods to deep learning) and perform
ablations on loss functions.

To do so, we annotate 1000 segmentation masks for eval-
uation only. In the training steps, we use the curve detection
[20] on 1000 tuft patches. Batch size of eight was used with a
learning rate of 0.0002. For the baselines, Felzenszwalb [25]]
(FW), Quick [26] (QK), Watershed [27] (WS), Slic [28] (SC),
unsupervised [29] (US) and Curve Detection [20] (CD) are
chosen. These are the baselines that do not require segmenta-
tion masks, and open-source implementations exist for generic
segmentation tasks. Along with precision and recall, adapted
random error is used as an evaluation metric. Regarding the
ablations on AL, we include PBCE loss only (PB), with a point
distance (PP), with the edges (PE), and binary cross entropy

with dice loss (BD). For the metric, instead of the pixel-wise
intersect of union, we adapt a center-line quality metric, which
is (a) completeness — a measure of the percentage of true
prediction to all the labels, (b) correctness — a measure of the
percentage of true prediction to all other predictions, and (c)
quality — a measure on the percentage of true prediction to
all predictions and the labels. Moreover, we also use point
distance in pixels as another metric to evaluate how well the
algorithms are able to predict the start and the end point of
the tufts. We explain these measures on the project website.

The results are in Fig.[T0] We observe that for the rand error
[22]], the considered baselines perform poorly when compared
to the ablation models. The same is observed for the precision
while the recall is only slightly lower than the ablation models.
The best model in terms of the rand error and the precision
metrics is PP, which is the proposed method. In the recall
metric, PB outperformed PP. The ablation results are reported
in Tab. [l Again, we observe significant improvement in all
the metrics when compared to CD. From the experiments, we
however find that no single loss can be uniformly superior
when projected to four success criteria. One clear observation
is that the proposed learning method improves over the simple
curve detector, thereby validating the proposed approach.

Results on Final Performance Lastly, we evaluate the final
performance. Two supervised instance segmentation networks,
namely Mask RCNN and Cascaded-mask RCNN, are used
as baselines. Implementations were based on OpenMMLab
toolbox. For training, the default hyperparameters of Open-
MMLab are used, except that, the number of epochs had to
be increased to 300, and image dimensions were not resized
in order to deal with small objects. Both for training and
evaluation, we annotated 50 images each per dataset. We note
that these annotations are costly, i.e., approximately 2200 tufts
had to be annotated with semantic segmentation masks. Five
training-test splits of ratio 60-40 were used.

The results are reported in Tab where we observe
that the supervised instance segmentation networks perform
poorly. We attribute this to the lack of available training
data. When no abundant training data is available, the results
indicate that directly employing the end-to-end supervised
deep learning techniques may pose challenges. On the other
hand, with probabilistic approaches, we show how semantic
segmentation can be performed without requiring any manual
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Fig. 12. Final results are illustrated for the helicopter (top) and the UAV (bottom). The relevant portion of the images is zoomed in. Colored overlays
indicate the segmentation masks per class. Our method can perform the semantic segmentation tasks under severe perspective changes (as in helicopter data),
foreground changes of tufts, and lighting conditions. Model-based technique alone may fail as shown in Fig.

TABLE II
QUANTITATIVE RESULTS IN MAP. HIGHER THE BETTER. END-TO-END
NETWORKS TRAINED USING SMALL AMOUNTS OF DATA ONLY.

Mask RCNN Cascaded RCNN Ours
Helicopter 23.422+2.1822 11.1984+2.4028 60.729+2.1894
UAV 34.0324+1.2945  18.2544+0.5844  58.343+2.4532

annotations of semantic segmentation masks. For qualitative
results, Fig. [I2] and the accompanying video demonstrate the
overall performance, where we visually show that many of the
tufts can be segmented with the correct semantics.

VI. CONCLUSION

This paper presented a learning system to provide automatic
evaluations of in-flight images with tuft for flow visualization.
For the first time to our knowledge, we developed an automatic
tuft recognition system for flow visualization of aerial systems
during real test flights. To achieve this, we performed data
gathering using two real application scenarios, namely a full-
sized helicopter and a UAV flying in the stratosphere. Using
probabilistic approaches, we show how the annotation efforts
can be reduced significantly. Experimental results demonstrate
how the devised approaches can address the identified chal-
lenges.
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