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Multi-Abstractive Neural Controller: An Efficient Hierarchical
Control Architecture for Interactive Driving
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Abstract—As learning-based methods make their way from
perception systems to planning/control stacks, robot control
systems have started to enjoy the benefits that data-driven
methods provide. Because control systems directly affect the
motion of the robot, data-driven methods, especially black box
approaches, need to be used with caution considering aspects
such as stability and interpretability. In this paper, we describe
a differentiable and hierarchical control architecture. The pro-
posed representation, called multi-abstractive neural controller,
uses the input image to control the transitions within a novel
discrete behavior planner (referred to as the visual automaton
generative network, or vAGN). The output of a vVAGN controls
the parameters of a set of dynamic movement primitives which
provides the system controls. We train this neural controller with
real-world driving data via behavior cloning and show improved
explainability, sample efficiency, and similarity to human driving.

I. INTRODUCTION

With robotic and autonomous driving applications expand-
ing from structured environments (factory floors, warehouses,
etc) to open environments (road, homes, etc), traditional
optimal planning/control methods will be insufficient in han-
dling the large variety of edge-cases as manual specifica-
tions for them is intractable. Data-driven methods such as
imitation learning have shown promising results in learning
generalizable and capable robot control policies from human
demonstrations. However, enabling blackbox policies such
as neural networks to consistently produce stable behaviors
outside of the training data distribution remains a challenge,
hindering their adoption in safety-critical applications such
as autonomous driving. In this work, our aim is to address
the following question: “can we design a robot control policy
representation that (1) is explainable in its decision making
process, (2) is resilient to unstable behaviors , and (3) is
trainable end-to-end using expert demonstrations?”

Combining model-based planning and control with learning
components allows the robot system to have the stability
and safety properties of model-based controllers while com-
plexity and uncertainty of the environment (elements that
are challenging to manually and exhaustively integrate into
model/rule-based components) can be delegated to the data-
driven components. Most efforts in this space integrate learn-
ing into a certain component of a motion planner including
the cost function [1l], dynamics [2], the solver [3]], [4] and
constraints [S]. Less work has been done to integrate learning
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one level up the planning stack - into the behavior planner.
The concept of a multi-abstractive neural controller provides
an initial effort to fill this gap and expand the learnability of
a robotic planning/control stack into the high-level discrete
planning domains.

In this paper, we start by referring to the classical plan-
ning/control stack where a discrete behavior planner (com-
monly in the form of a finite state machine) feeds high-
level decisions (along with additional environment feedback)
into a motion planner, which in turn outputs controls for the
dynamic system. Our approach is to design a differentiable
architecture of this stack, and define their interfaces such
that its structure can be learned from data. We refer to
this representation as the multi-abstractive neural controller.
Figure |1 | illustrates the desired architecture.

For the behavior planner, we introduce the visual automaton
generative network (VAGN) - a differentiable automaton that
takes in visual features and learns its transition structure from
demonstration data. We adopt dynamic movement primitives
(DMP) [6] as the motion controller (for its stability properties
and simplicity) and introduce a novel method that interfaces
vAGN with DMP that significantly improves the stability of
the controlled system. To summarize our contributions, we

o introduce VAGN - an automaton planner with learnable
latent structure;

« introduce the multi-abstractive neural controller - a hier-
archical robot control representation that interfaces vVAGN
with DMP through DMP parameter control;

o demonstrate in a real world driving dataset that the
proposed neural robot controller achieves high sample
efficiency while balancing safety, optimality and comfort.

In this work, we focus on applying the neural controller on
autonomous driving applications.

II. RELATED WORK

Joint learning and planning. Constructing learnable plan-
ners have been looked at in the past. The authors of [7] use
a ResNet50 to extract features from camera images which
are used to predict the acceleration and metric components
of Riemannian motion policy (RMP). Similarly, [8] use learn-
ing components to generate parameters the model predictive
controller. In [1f], the authors use a neural network to generate
cost maps from LiDAR and map inputs which are used to rank
trajectory samples. In [2]], the authors use neural networks
to approximate the dynamics used in an model predictive
controller (MPC). On a different line of idea, the authors of
[3] propose to learn the update rules for the model predictive
path integral (MPPI) planner. In [9], the authors use reinforce-
ment learning to learn short horizon policies and probabilistic
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Fig. 1 : A differentiable planning and control representation. By designing the discrete behavior planner and motion controller as
differentiable components and connecting them such that their structure can be learned from demonstrations, both generalizability from
data-driven methods and stability from model-based methods can be achieved with a more efficient control representation.

road map for global navigation. The authors of [10] learn
hierarchical task planners using imitation learning, but their
planner structures are either untrainable or hard to interpret.
Most of the work in the this space aim to learn certain
component of a motion planner (dynamics, cost, optimizer,
etc), but little work is done to develop learnable (discrete)
behavior planners. Our work fills this gap by introducing
a differentiable automaton with learnable transition structure
(often a challenge to manually design). Then using CNN as
the input processing unit, it is common practice to visualize its
feature maps for explainability purposes. The class activation
map [11], [12] is one such method which we have adopted
in this work. In addition, the visual backpropagation method
[12], [[13] is also commonly used in self-driving applications.

Neural state machines. While little work has been done
in learnable behavior planners, differentiable state machines
have been developed in the field of visual question answering
(VQA) and natural language processing (NLP). In [14]], [15]],
the authors propose the neural state machine - a scene graph
constructed from images that is able to make inferences based
on natural language instructions. In [[16], the authors introduce
the differentiable weighted finite-state transducers to express
and design sequence-level loss functions (used in handwriting
and speech recognition). The authors of [[17] proposes an
approach to learn causal Bayesian networks from data. And
finally, the authors of [[18] learn a neural state machine used
for character-scene interactions. Because these works are not
tailored to robotic planning applications, they lack one or more
of the following features that prevents them from being readily
available as behavior planners, (a) the inability to learn state
transition structures (b) the requirement of having ground truth
graphs (or data-to-graph distribution) as supervision, (c) not
using an underlying graph structure ([18] uses a 3 layer fully
connected gating network). Our work addresses these problem
and is demonstrated to be effective in the self-driving domain.
The neural hybrid automaton (NHA) proposed by [19] learns
a hybrid control system and is perhaps the closest to our
work. However, NHA requires state estimates (e.g. position,
speed, etc) as input whereas our method takes images as
inputs. Explainability for general machine learning methods is
discussed in [20]], [21]. In this work, we focus on explainable
learning systems for planning and control.

III. BACKGROUND
A. Linear Dynamic Movement Primitives (DMP)

A DMP [6]] consists of a second order point attractor system
added with a forcing function as below

T@:ay (By(g_y)_y)+f(svx‘9y)7 T =azr (1)
where g is the goal state; o, and 3, define the behavior of
the second order system;r is a time constant; x is a phase
variable controlling the influence of the forcing function on
the point attractor system. Appropriately setting 7, ay, 8, the
convergence of the underlying dynamic system to y = g is
ensured [22] and the system is stable with respective to the
goal. The first part of Equation (I) is often referred to as
the transformation system. The transformation system serves
to stably guide the robot to the goal with a trajectory jointly
controlled by the point attractor and the forcing function. The
second part (first order system of x) is the canonical system
which controls the decay of x and hence reduces the effect
of the forcing function as the robot gets close to the goal.
f(s,x|0,) (s can be additional state information) is a learnable
forcing function often in the form of a linear combination
of N nonlinear Radial Basis Functions (RBFs). This allows
the robot to reach the goal state by following a desired path
influenced by f(-).

B. Quaternion Dynamic Movement Primitives

The DMP introduced in the previous section generates only
linear movement. As orientation is just as important in defining
robot motion, the authors of [23] introduced the equivalent of
Equations (1) and (2) for unit quaternions q = [v,u] € &3
(S? is a unit sphere in R*, v € R, and u € R?). as follows

™ = aq (B,210g? (g, *d) —n) +£,(s, 2/0,)

.1
T4=5m*q

2

where g, € S* denotes the goal orientation, the quaternion
conjugation is defined as ¢ = v+ u = v — u, and * denotes
the the quaternion product

a1 *q2 = (v +uy) * (v2 + uz)

3)
= (’Ul'UQ — uT1u2) + (vlug “+ vouy +ug X 112)



1 € R3 is the scaled angular velocity w and treated as unit
quaternion with zero scalar (v = 0). The function log?(-) :
8% — R3 is given as

aurccos(v)ﬁ7 u#0
log?(q) = T , )
{ 0 0 0 } ,  otherwise
where || - || denotes ¢, norm. Equation (4) can be integrated
as
ot n(t
q(t + dt) = Exp? <2 "9) *q(t), (5)

where d; > 0 denotes a small constant. The function Exp?(-) :
R3 — 83 is given

cos([[wl]]) + sin([|w[) &y, @ #0

Expt(w) = 1+[0 0 O]T

) (6)
otherwise.

Both mappings become one-to-one, continuously differen-
tiable and inverse to each other if the input domain of the malzg—
ping log?(-) is restricted to S® except for —1+[ 0 0 0 |,
while the input domain of the mapping Exp?(w) should fulfill
the constraint ||w|| < 7.

IV. MULTI-ABSTRACTIVE NEURAL CONTROLLER

In this section, we introduce the general architecture of
the multi-abstractive neural controller with its three main
component, (1) a CNN-based visual predicate extractor that
learns and outputs visual features meaningful for high-level
behavior planning; (2) a differentiable graphical planner with
learnable structure and (3) a DMP with parameters controlled
by the output of the behavior planner. The overall architecture
is illustrated in Figure we refer to our controlled vehicle
as the ego vehicle, and vehicles in traffic as the ado vehicles.

A. Visual Predicate Extractor

The purpose of the visual predicate extractor is to learn a
feature vector where each of its element corresponds to the
existence of a semantic feature in the input image (e.g. lane,
stop sign, etc). Let X be the input image, here we use a bird’s
eye view image (BEV) with traffic components semantically
colored. We perform the following operations to obtain the
visual predicate feature vector

fY = ConvEncoder(X)

7
p’ = Linear(GlobalAveragePooling(f”)). ™

In the equation above, ConvEncoder(-) is a set of convo-
lution layers applied to the image. Its output is a set of feature
maps to which we apply global average pooling [24] to. This
serves to identify whether certain components exists in the
image (i.e. pedestrians, intersections, etc). Lastly we apply a
linear transformation to the output of the pooling layer. This
allows each element in p* to contain a weighted sum of all
the identified features, which provides richer information to
the downstream planner. The architecture of this component is
inspired by the class activation map [25]. As shown in Figures
2 and 3, the visual predicates constitute the explainability
components of VAGN that serves to illustrate the neural
controller’s internal decision making process.

B. Visual Automaton Generative Network (VAGN)

Given the visual predicates p¥ € R™ and the number
of automaton nodes N (as a hyperparameter), the current
automaton state q, € IRY is represented as an N-vector with
each entry corresponding to the probability of being in g;
(g can be seen as the hidden state equivalent of an LSTM).
As an example, for an automaton with 3 states [q1,q2, g3,
q =[0.4,0.3,0.3] is the state distribution of this probabilistic
graph. The learnable parameters of vVAGN is its set of weighted
transition matrices YW € RM*V*N The vAGN update law
is as follows

W= ST (py x W) ®)
i€{0,M—1}
q, = softmax (ReLU(Wp“)) Qg 9)

along column

The dimension of W is such that each element of p; € p
has a corresponding W; € W € R™*¥. In Equation @),
WP’ e RV*Y indicates the combined influence of the visual
predicates on the transition of g probabilities. In Equation (9)),
we first apply a ReLU(+) to WP" to preserve only the positive
transitions. Softmax is applied to ensure that the columns of
WP" sum to one (the sum of probabilities of transitioning
out of any ¢ state to another state is 1). Finally, the resultant
transition matrix is applied to g,_; via dot product.

C. Interfacing vAGN with DMP

The most common way of learning with DMPs is to learn
the parameters of the forcing functions f(-) and f,(-) in
Equation (I)). This works well with finite horizon tasks where
the effects of the forcing functions diminish over time (with the
canonical system) and the system eventually reaches the goal
state. However, for potentially long/infinite horizon tasks (such
as driving), it is less obvious how the learned forcing functions
should scale. If they are always kept in effect, then the system
may never reach the goal state. As an alternative, instead of
adding the forcing function with point attractor system, we
propose to use the forcing function to learn parameters of the
point attractor system. As a result, Equations (I}) becomes

¥ = ay(s]6y) (By(sl0y)(g —y) —¥)

n= aq(5|9q) (ﬁq(5|9q)210gq (gq * Q) - 77) )
where  {ay(s|0y), By(s]6y), vy (s]6y), By(s|0,)} are  the
learned functions (the time constant 7 can be incorporated in

these 4 parameters). This can then be easily connected with
the output of vAGN by

(10)

[Z] = DMP(FC(q), 9. 9,) (11)
where FC(q) = {ay, By, oy, By} is a set of fully connected
layers transforming the vAGN states to the DMP parameters.
The parameters ¢, 6, becomes the upstream network param-
eters (those of VAGN and CNN). Note that Equation (IT)
outputs accelerations. We use linear and angular velocities
as controls, therefore we numerically integrate Equation (IT)
once to obtain the final output. Having the output of vVAGN
control the parameters of the DMP point attractor system run
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Fig. 2 : Multi-abstractive neural controller. The architecture contains three components, (1) a CNN-based visual predicate extractor that
learns and outputs visual features meaningful for high-level behavior planning; (2) a differentiable graph-based planner (vAGN) with learnable
structure and (3) a DMP with parameters controlled by the output of vVAGN.

the risk of rendering the tracking behavior unstable. The point
attractor system of the DMP can be rewritten as

j+ay+afy=0 (12)

where the constant term is neglected (does not effect stability
analysis). Equation (T2) is a typical second order system where
stability is determined by

(67

‘T avar
The system can become unstable when ¢ < 0 and periodic
when ¢ =~ 0. In our experiments, we have not run into this
particular problem because we used the sigmoid activation
when outputing o and 3, ¢ is always greater than zero.
Fortunately, during training and deployment we have not run
into the case where ( ~ 0. For the driving task that we are
targeting, the ego vehicle is tracking a moving target along
the center lane, and the parameters «, 3 are time varying
functions of the upstream network, therefore, the system under
our neural controller is resilient to unstable «, /3 values as
long as they don’t stay unstable for an extended period of
time. To avoid ¢ ~ 0, one can set § = «/4 such that the
system is always critically damped (at the cost of somewhat
limiting vehicle behaviors). One could also use an auxiliary
loss at training time to prevent the upstream vVAGN+FC from
outputing « and S that are too close together.
vAGN will thus serve to control the tracking “aggressive-
ness”’. We show later in the experiments that various driving
maneuvers can emerge from this combination and will also
discuss its limitations. Note also that [26] introduces an
alternative formulation of the forcing function that provides
better stability. This does not affect our neural controller as
we directly alter the point attractor’s parameters («, ) and
neglect the forcing function. This is to avoid instabilities as
a result of the forcing terms overturning the point attractor
terms. Such overturning can lead to crashes in driving tasks
(may cause less of a safety concern in manipulation tasks).

13)

Algorithm [I] describes the procedures of learning a multi-
abstractive neural controller from demonstrations.

Algorithm 1 Learning with Multi-Abstractive Neural Con-
troller
1: Inputs: number of VAGN nodes N; dataset X; number
of iterations I; learning rate ~y

2. GUAGN GCNN ¢ Tnitialize(N)

3: for i=1 ...I1 do

4: Sample a minibatch of m data samples (X, g,g,,a)

5: p¥ = VisualPredicateExtractor(X) >
Equation (7))

6: q' = UniformInit () or RandomInit ()

7: q = vAGN(pY, q') > Equation (9)

8: a = DMP(FC(q),9,9,) > Equation (TI)

9: L =MsE(a,a)

10: (071AGN7GCNN) «— (avAGN’QCNN) 7’}/%VL

11: end for

In Algorithm 1, the loop for ¢ = 1...I refers to iteration over
minibatches of data (not over time in a rollout). During train-
ing, we do not know the groundtruth g, therefore, we assume a
uniform or random q to pass into the vVAGN() module. This is
a preliminary resolution and yields reasonable results, but can
definitely be improved (for example by consuming groundtruth
q from a high-level behavior filter)

V. EXPERIMENTS AND RESULTS
A. Setup

Nuscenes dataset. [27]] is a dataset for autonomous driving
based in Boston and Singapore. It contains 850 scenes each
20s long (sampled at 2hz, therefore a max of 40 steps),
containing 23 object classes and HD semantic maps with 11
annotated layers. We chose this particular dataset for the rich
semantics it provides which is well suited for rule definitions.
We will use 650 scenes for training and 200 scenes for
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Fig. 3 : An example execution trace. Within each sub-figure we also show the current VAGN state distribution (darker the color means
higher probability) and the saliency map indicating where each g-state is attending to. Color indicates the level of attention and ranks from
high to low as: yellow — red — cyan — magenta. To the right of each g-distribution plot we also show the semantically colored BEV
image sent as input to the network.(a) Ego vehicle drives in an open area with no nearby ado vehicles, VAGN attends mainly to the road
boundaries. (b) VAGN starts to notice more of ado vehicles. (¢) The ado vehicles cut in front of the ego vehicle and vAGN shifts part of
its focus to these vehicles. (d) The ego vehicle proceeds out of the roundabout and vAGN attends back to mainly road boundaries.

/ =
" \
T \\/,/
o \
A
f ,
ay \ / \\
|\ |
SN /\
" '\\ /\
Ba /
e AN = B /
* >5 ! )Time-S(e:)a =

(@)

=16

o RIS B

)

G-Distribution

I

Time-Step

q0 q1 92 q
® 15
TR
/}xf/ \
: |
AL

Time-Step
t=16

Time-Step

.
=17

.

(c) (

Fig. 4 : Explainability traces. (a) The evolution of DMP parameters over time. (b) The vVAGN state distribution and corresponding saliency
maps. (¢) Control output from our neural controller (blue) and human controls (red) with synchronized g-distribution. (d) BEV image input
at 3 timesteps. After step 15, the ego vehicle drives too close to the road boundary. As a result, vAGN shifts attention and the g-distribution
to reduce the DMP parameters, which in turn reduces the speed and steering to prevent collision.

validation. During close-loop evaluation, all agents are rolled
out synchronously and the ego agent’s motion is controlled by
our neural controller.

Methods of evaluation. We evaluate our method and
comparison cases with the following metrics. Percentage of
close encounters measures the average of times the ego
vehicles comes to the vicinity of ado vehicles in a scene
(safety measure). Acceleration is the maximum magnitude
acceleration during a scene (comfort measure). Similarity to
human driving is the L2-norm between the planner and human
trajectories (driving style measure). Goal distance is the ego’s
final distance to the goal. All metrics are the lower the better.
During evaluation, we control the ego vehicle with our learned
planner, the ado vehicles move according to the trajectories
recorded in the dataset with synchronized time. All results are
averaged over the validation set.

It is worth mentioning that, the four evaluation metrics
that we use are more trade-offs than objectives that can be
optimized concurrently. For example, a controller that achieves

a low goal distance over the evaluation scenes (within the
fixed time horizon) is bound to drive fast and hence obtain a
higher percentage close encounter and acceleration. Similarly,
a controller that achieves high human driving similarity may
obtain moderate scores on the other metrics. In our case,
our objective function is the MSE loss with respective to the
human ego vehicle’s controls, therefore we put high emphasis
on human driving similarity. In general planning and control
scenarios, it ultimately depends on the users’ preferences
(which to a certain level can be controlled by tuning «, 3).
Comparison cases. Five planner variants are used for
comparison. Qurs refers to the proposed method; Human refers
the human driver in the dataset; CNN refers to a planner
that maps BEV directly to controls (Implemented similarly
to [28]); and CNN-LSTM refers the previous planner with an
added LSTM component to keep track of history. RvS-G refers
to the goal conditioned offline RL via supervised learning
proposed in [29]]. For all planners, the same CNN backbone is
used to extract features from the rasterized BEV image (similar
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to achieve relatively high human driving similarity (low ADE) with a small percentage of training data.

to [30]]). For all cases other than Human, we use the same CNN
backbone to process the input BEV image. In the table, FC
denotes fully connected layer, F denotes number of filters, K
denotes kernel size, S denotes stride, U denotes number of
units in the fully connected layer. For CNN, we concatenate
the CNN features with the goal pose, which are passed through
2 FC layers that output speed and steering. For CNN-LSTM,
the flattened features of the CNN backbone with concatenated
goal pose are passed through 1 FC layer. The output of the FC
layer is passed to an LSTM (with 64 dimensional hidden state)
as input, which in turn provides speed and steering. This is a
modified architecture of [31] that is used for behavior cloning
of self-driving policies. RvS-G refers to the goal conditioned
offline RL via supervised learning proposed in [29]] which has
been shown to outperform a number of behavior cloning and
RL methods. In our implementation, we pass the goal and the
current BEV image into the same CNN feature extractor, the
concatenated feature vector is passed to the LSTM for control
generation. In addition to providing the current BEV image,
we also provide the goal BEV image as input.

B. Results and discussion

VAGN learns an explainable behavior planner that
attends to semantically meaningful regions on the BEV.
Figure [3 ] illustrates 3 time-steps during navigation of a round-
about. Within each sub-figure we also show the current vAGN
state distribution (darker the color means higher probability)
and the saliency map indicating where each g-state is attending
to. Color indicates the level of attention and is ranks from
high to low as: yellow — red — cyan — magenta. To the
right of each g-distribution plot we also show the semantically
colored BEV image sent as input to the network. In Figure [3]
[(@)(b), the ego vehicle is driving in an area of sparse traffic,
the 2 VAGN nodes with highest probabilities are g and ¢s
both of which focuses on the undrivable areas which helps
to prevent collision with those areas. As the ego comes to an
intersection with ado vehicles in front (Figure [3|c)), some
probabilities shift from ¢ to g3 where g3 puts more attention
of the ado vehicles. Finally, as the ego vehicle navigates out
of the aroundabout (Figure [37(d)), the g-states goes back to
attending the undrivable areas. Please see the video attachment
for full execution runs. Note that The meaning of each g-
state depends on the training and the g-states may not always
possess clear semantic meanings in human terms (i.e. turning,
accelerating, etc). The execution trace in Figure [3 | shows that
g2 corresponds to avoiding collision with the road boundary
(more weight on q3 when the ego vehicle comes close to the

road boundary). Whereas q3 corresponds to avoiding vehicle-
to-vehicle collision (from Figure 3-b to 3-c, q3’s weighting
increased as the ego vehicle comes close to the ados vehicles
in the roundabout.)

VAGN learns to modulate DMP parameters to exhibit
safe behaviors. Recall in Section [[V-C] we described that the
output of VAGN is used to control the DMP parameters which
in turn controls the “aggressiveness” of goal reaching. In
Figure [ | we show an example of how this is achieved. Figure
] (a) shows the evolution of the DMP parameters within a
scene execution. It is noticeable that there is an abrupt change
in the parameters starting from step 15. Figure [ |d) shows the
BEV input to the network, during steps 15, 16 and 17 the ego
vehicle is trying to make a left turn but comes very close to the
boundry of the road, therefore vAGN decides to focus on the
road boundries (shown by highest weighted nodes qo, q1, g4
and their corresponding saliency maps), which controls the
change in the DMP parameters. Figure [ [c) shows how the
shift in g-distribution effects the resultant speed and steering
(controls). From step 15 onwards, this shift has resulted in a
mild speed decrease and more aggressive steering relieve, both
of which steers the ego vehicle away from the road boundary.
Refer to the video supplementary for a complete execution of
this scene (along with others).

vAGN strikes a balance between safety and comfort, and
exhibits near human driving behavior. Table [[] shows the
close-loop rollout performance of all comparison cases over
the validation set. We evaluated each model with 3 random
seeds and Table || reports the mean performance with standard
deviation. Our method is able to achieve the best goal reaching
performance and similarity to human driving (ADE). Because
each scene rollout is fixed maximum time-step (20 seconds
sampled at 2hz or 40 steps defined by the dataset), driving
conservatively (high safety and comfort scores) is a trade-off
to goal achievement. We can see that CNN and RvS-G achieves
the best safety and comfort scores respectively but in turn
performs less than ideal in other metrics. In comparison, our
method exhibits safety and comfort level similar to that of the
human driver in the dataset.

The multi-abstractive neural controller achieves high
sample efficiency. Because of the DMP, our neural controller
already has a level of lane following capabilities built-in (even
before any training). Given this structure, we can expect our
controller to exhibit improved sample efficiency. This is shown
in Figure[5 [@) where we train on 4 different levels sub-training
set (evaluation is done on the full validation set). The results
show that our model is able to achieve relatively high human
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TABLE I: Performance Comparison

Model % Close Encounters Acceleration
mean + std mean + std
Human 19.0% 0.30
CNN 11.0% =+ 2.0% 0.92 £+ 0.32
CNN-LSTM 12.2% + 3.2% 1.20 £ 0.25
RvS-G 26.8% + 5.0% 0.22 + 0.05
Ours 16.2% + 1.3% 0.43 £ 0.10
Model Human Driving Sim. | Goal Distance
mean =+ std mean =+ std
Human n/a n/a
CNN 25.30 £ 8.20 14.20 £ 2.80
CNN-LSTM 19.23 £ 5.30 19.80 £ 3.10
RvS-G 14.25 £+ 2.80 3291 £ 6.30
Ours 5.87 + 1.40 8.20 + 1.50

driving similarity (low average displacement error) even when
trained with a small training set. Because of its structure, the
size of our model is also significantly smaller (more than 30%
less parameters) than comparison models as shown in Figure
[5{b). This is important for planning and control modules
as smaller models promote higher inference frequencies at
runtime.

vAGN facilitates the CNN feature extractor to learn
semantically meaningful visual predicates. Figure [6 | shows
visualizations of the feature maps (overlayed on the input BEV
image) from the visual predicate extractor. Color indicates
the level of attention and is ranks from high to low as:
yellow — red — cyan — magenta. In both examples, we can
see that the visual predicates attend to semantically meaningful
components of the road (lanes, road boundaries, ado vehicles,
etc). For the current design of the visual predicate extractor, we
have found empirically that the objects each visual predicate is
attending to evolves over time (during execution) and there are

Fig. 8 : Self-ablation study. vVAGN helps in learning coarse and
interactive maneuvers whereas DMP is responsible for accurate
and sample efficient navigation (e.g. reference path following). The
combination of the two addresses different components of driving

at times duplications (as shown in both figures). Looking into
this behavior will be future work. Overall, these predicates and
their corresponding feature vector provides the basis for vVAGN
to perform appropriate transitions which in turn controls the
DMP to output interactive behaviors.

Altering the number of q-states trade off between
explainability and performance. We treat the number of g-
states as a hyperparameter that requires tuning. The trade-off
is between explainability and performance (VAGN with less
g-states are more explainable, may learn more semantically
meaningful driving modes at each node, but with reduced
overall performance). To study the effect of VAGN size on
the neural controller, we conducted a study where the number
of g-states are varied from 3 to 12 at increments of 3
and the results are presented in Figure [7] The trend that
stood out is that with increasing number of g-states, human
driving similarity improves significantly. This is because as
number of weights (hence the representative power) of vVAGN
improves as the number g-states increase. The performance
of other metrics also improves with the number of g-states
(especially when #q > 3). However, the ego vehicle starts
to drive more aggressively at #g = 12 as shown by the
jump in acceleration. In summary, beyond a minimal number
of g-states, performance of VAGN can improve but tuning is
required to obtain the desired balance between performance
and explainability.

Within the multi-abstractive neural controller, VAGN
takes care of safety and interactive behaviors and DMP is
responsible for driving along lanes. In Figure[8] we study the
influence of the two main components - VAGN and DMP on
our hierarchical neural controller. As a reminder, our controller
follows a CNN — vAGN — DM P structure. In the figure,



Ours refers to the architecture with both components. vVAGN
only refers to CNN — vAGN — FC. DMP only refers
to CNN — DMP. The results for DMP only shows that
DMP contributes most to goal reaching and human driving
similarity, which is reasonable because DMP takes the main
responsibility for lane following. However, with only DMP,
the ego vehicle drives aggressively (shown in acceleration
and percentage close encounter to nearby cars). Meanwhile,
using VAGN improves the safety aspect of driving (lower
acceleration and close encounter) because it learns to attend
to road boundaries and ado vehicles and issues commands
to avoid them. But VAGN alone performs less ideally in
reaching the goal and human driving similarity is also worse.
In a nutshell, vAGN helps in learning coarse and interactive
maneuvers whereas DMP is useful for accurate navigation
(e.g. reference path following). The combination of the two
addresses different components of driving.

VI. CONCLUSION

In this work, we introduced the multi-abstractive neural
controller which is a differentiable representation of a simpli-
fied plan/control stack. Within which we introduced the visual
automaton generative network that acts as a behavior with
learnable structure. We show that just by using supervised
learning this policy representation is able to achieve high
sample efficiency and a well balanced performance in terms
of safety, optimality and comfort. Because of its structure, the
decision making process of VAGN is highly interpretable. We
show that it learns to attend to semantically meaningful regions
of the input image while making transitions among (learned)
modes of operations.
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