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Abstract— This paper presents a data-driven method for
constructing a Koopman linear model based on the Direct
Encoding (DE) formula. The prevailing methods, Dynamic
Mode Decomposition (DMD) and its extensions are based
on least squares estimates that can be shown to be biased
towards data that are densely populated. The DE formula
consisting of inner products of a nonlinear state transition
function with observable functions does not incur this biased
estimation problem and thus serves as a desirable alternative
to DMD. However, the original DE formula requires knowledge
of the nonlinear state equation, which is not available in
many practical applications. In this paper, the DE formula
is extended to a data-driven method, Data-Driven Encoding
(DDE) of Koopman operator, in which the inner products are
calculated from data taken from a nonlinear dynamic system.
An effective algorithm is presented for the computation of
the inner products, and their convergence to true values is
proven. Numerical experiments verify the effectiveness of DDE
compared to Extended DMD. The experiments demonstrate
robustness to data distribution and the convergent properties
of DDE, guaranteeing accuracy improvements with additional
sample points. Furthermore, DDE is applied to deep learning of
the Koopman operator to further improve prediction accuracy.

I. INTRODUCTION

Dynamic Mode Decomposition (DMD) was presented as
a method to produce linear models from data generated
through nonlinear dynamical processes by using Singular
Value Decomposition (SVD) [1]. Later, this method was
developed further to create Extended Dynamic Mode De-
composition (EDMD), which introduced the concept of using
observable functions, nonlinear functions of state variables,
as a method of augmenting the state space [2]. EDMD refer-
enced the Koopman Operator as justification and a theoretical
underpinning for lifting the state space. In his seminal work,
Bernard Koopman showed the existence of this operator that
transforms nonlinear systems into linear systems [3]. Another
extension of DMD has shown the viability of using DMD
for control on non-autonomous systems [4]. This enabled
complex nonlinear Model Predictive Control (MPC) to be
converted to linear MPC [5], leading to numerous studies
utilizing the methodology to real systems [6]–[9].

To improve the accuracy of the models based on the
Koopman Operator, two avenues of research have formed.
The first avenue regards the selection of the observable
functions used for constructing a lifted state space, as these
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functions are a key ingredient in creating an accurate linear
model. Various methods have been developed, including deep
neural networks for learning effective observable functions
[10]–[12] and optimization [13]. However, an efficient se-
lection of observables does not solve all the issues that arise
when attempting to construct an accurate linear model. For
example, it is known that unstable modes are involved in
Koopman-based DMD models and their extensions although
the underlying nonlinear systems are known to be stable.
The second avenue of research involves the formulation
of the linear transition matrix. Extensive studies have been
done to create stable linear models to remedy the situations
where an outright use of DMD would lead to the creation of
an unstable linear model [14]–[17]. Recently, an extension
of DMD, called Robust Dynamic Mode Decomposition
(RDMD), utilizes statistical measures to suppress the effect
of outliers on modeling the linear Koopman matrix [18].

A fundamental difficulty in constructing a proper linear
model is data dependency. Least Squares Estimation (LSE),
involved in all DMD based methods, often produces a
significant bias due to the distribution of the dataset. To
eliminate this dependency on data distributions, the current
work takes an alternative approach to LSE.

Recently, a new formulation of the Koopman Operator,
termed Koopman Direct Encoding (DE), was produced [19].
This method directly encodes the nonlinear function of state
transition using observables as basis functions to obtain
a Koopman linear model. Inner products of observable
functions in composition with the nonlinear state transition
function are used to construct the state transition matrix
without use of LSE. While DE theoretically guarantees
the exact linear model, it requires access to the nonlinear
state equations, which are often not available in practical
applications. The current work aims to fill the gap between
DE and data-driven approaches.

There are four significant contributions presented in this
work. The first is the conversion of the DE formula of the
Koopman Operator to a data-driven formula. The second is
a computational algorithm and proof of its convergence to
the true inner products that constitute the DE formula. The
third is numerical experiments that provide evidence that the
proposed method, unlike EDMD, does not exhibit biases
to data distribution, but can produce consistently higher
accuracy compared to EDMD. Finally, the DDE algorithm
is utilized in modeling a high order nonlinear system in
combination with deep learning.
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II. KOOPMAN OPERATOR AND THE DIRECT ENCODING
METHOD

In this section, we give a brief overview of the Koopman
Operator and dynamic mode decomposition, and introduce
the direct encoding method for obtaining a Koopman oper-
ator directly from nonlinear dynamics.

A. Least Squares Estimation of the Koopman operator

Consider a discrete-time dynamical system, given by

xt+1 = f(xt) (1)

where x ∈ X ⊂ Rn is the independent state variable vector
representing the dynamic state of the system, f is a self-
map, nonlinear function f : X → X , and t is the current
time step. Also consider a real-valued observable function
of the state variables g : X → R. The Koopman Operator
K is an infinite-dimensional linear operator acting on the
observable function g :

Kg = g ◦ f (2)

where g ◦ f is the composition of function g with function
f : (g ◦ f)(x) = g(f(x)).

A common data-driven method for constructing the op-
erator is Extended Dynamic Mode Decomposition (EDMD)
[2], where observables that are experimentally obtained or
simulated from the governing equation of the system are
augmented by including real-valued observable functions
of the independent state vector xt. Collectively, a high-
dimensional state vector is formed.

zt =


g1(xt)
g2(xt)

...
gm(xt)

 (3)

where m is the order of the lifted state corresponding to
the number of observable functions. Underpinned by the
Koopman Operator theory, EDMD assumes the existence
of a linear state transition matrix A relating zt+1 to zt,
and determine A by solving a least squares regression that
minimizes the Sum of Squared Error (SSE).

A = arg min
A

∑
t

||zt+1 −Azt||2 (4)

Singular Value Decomposition (SVD) is used for the least
squares optimization.

B. Direct Encoding of the Koopman Operator

An alternative to the least squares estimate and EDMD is
to obtain the exact A matrix by directly encoding the self-
map, nonlinear state transition function f(x) with an inde-
pendent and complete set of observable functions through
inner product computations. This Direct Encoding method is
introduced next, while the full proof can be found in [19].

Let us first consider the case where g1, g2, g3, ... are
orthonormal basis functions spanning a Hilbert space H.
We assume that the self-map nonlinear function f(x) is

continuous and that the composition of gj with f is also
involved in the Hilbert space.

gj ◦ f ∈ H ∀j (5)

This implies that the function gj ◦ f can be expanded in
[g1, g2, g3, ...].

gj ◦ f =

∞∑
k=1

〈gj ◦ f, gk〉gk (6)

Concatenating g1, g2, g3, ... and g1 ◦ f, g2 ◦ f, g3 ◦ f... in
infinite dimensional column vectors, respectively,

z̄t =

g1(xt)
g2(xt)

...

 , z̄t+1 =

g1[f(xt)]
g2[f(xt)]

...

 (7)

eq. (6) can be written in matrix and vector form.

z̄t+1 = Āz̄t (8)

where Ā is an infinite dimensional matrix consisting of the
inner products involved in eq. (6),

Ā =

〈g1 ◦ f, g1〉 〈g1 ◦ f, g2〉 . . .
〈g2 ◦ f, g1〉 〈g2 ◦ f, g2〉 . . .

...
...

. . .

 (9)

Eq. (8) manifests that the state lifted to the infinite dimen-
sional space z̄t makes linear state transition with matrix Ā.

The observables g1, g2, g3, ... were assumed to be or-
thonormal basis functions in the above derivation. This
assumption can be relaxed to an independent and complete
set of basis functions spanning the Hilbert space. Hereafter,
let [g1, g2, g3, ...] be an independent and complete set of basis
functions spanning the Hilbert space.

It can be shown that the time evolution of lifted state zt
is given by a constant matrix Af for the independent and
complete set of basis functions [g1, g2, g3, ...].

zt+1 = Afzt (10)

The matrix Af can be computed directly from the self-
map, state transition function f(x) and an independent and
complete set of observables [g1, g2, g3, ...] through inner
product computations. Post-multiplying the transpose of zt
to both sides of eq. (10) and integrating them over X yield:∫

X

z(f(x))zT (x)dx = Af

∫
X

z(x)zT (x)dx (11)

which can be written as

Q = AfR (12)

where

Q =

〈g1 ◦ f, g1〉 〈g1 ◦ f, g2〉 . . .
〈g2 ◦ f, g1〉 〈g2 ◦ f, g2〉 . . .

...
...

. . .

 (13)

R =

〈g1, g1〉 〈g1, g2〉 . . .
〈g2, g1〉 〈g2, g2〉 . . .

...
...

. . .

 (14)



Because the observables are independent, the matrix R is
non-singular. Therefore, the matrix Af is given by

Af = QR−1 (15)

This formula for obtaining the matrix Af directly from the
governing nonlinear state equation with the function f(x)
and the independent observables through inner products,
which are guaranteed to exist in Hilbert spaceH, is the Direct
Encoding method.

III. DATA-DRIVEN KOOPMAN ENCODING

The prevailing method for construction of the Koopman
Operator, EDMD, is based on LSE and SVD. This method,
however, cannot provide a consistent estimate; the result is
highly dependent on the distribution of data as the Koopman
Operator is being approximated [20]. This dependency on
distribution occurs because a core assumption of LSE is
that the model structure is correct; when this assumption is
violated, LSE is unable to create an unbiased estimator [21].
As the Koopman operator is truncated in practical use, this
assumption does not hold.

Non-uniform data distributions inevitably occur in prac-
tical applications. For a nonlinear dynamical system with a
stable equilibrium, for example, data collected from exper-
iments and/or simulation of the system tend to be dense in
the vicinity of the equilibrium, as all trajectories that begin
within a region of attraction converge to the equilibrium.
Because LSE applies equal weighting to all data points,
the model is heavily tuned to the behavior of the densely
populated region.

The Direct Encoding method described previously enables
us to obtain the exact linear state transition matrix A through
inner product computations. As the formulation is based
on integration over the entire state space, there is no bias
towards particular parts of the domain.

However, the original form of the Direct Encoding method
utilizes the nonlinear state equation, i.e. the self-map f(x),
to compute the inner products. In practical applications, such
a nonlinear function is not always available; only data are
available. The objective of this section is to establish a com-
putational algorithm to obtain the A matrix by numerically
computing the inner products, 〈gi, gj〉, 〈gi ◦ f, gj〉, from a
given set of data.

The method presented consists of three operations.
• The integral of the inner products is reduced in range

from the entire state space to the dynamic range encap-
sulated by the data.

• The dynamic range is discretized with data points.
• The inner product integral is reduced to a weighted

summation of the integrand evaluated at each data point
multiplied by the volume ∆v associated to each point.

Naturally, if data are densely populated in a small region, the
discretized integral interval is small and thereby the volume
also becomes small. Similarly, the volume tends to be larger
where the data are sparse. In the summation, the integrand
evaluated at individual data points are ”weighted” by the

size of the volume. This numerical inner product calculation
prevents overemphasis of clustered data.

A. Inner Product Computation
We present the data-driven encoding method (DDE) as

an alternative data-driven method to DMD for calculating
a finite order approximation of the Koopman Operator. The
objective of this method is to compute the matrices R and
Q in (13) and (14) from data. This entails the computation
of inner products:

〈gi, gj〉 =

∫
X

Gij(ξ)dξ (16)

〈gi ◦ f, gj〉 =

∫
X

Fij(ξ)dξ (17)

where

Gij(x) = gi(x)ḡj(x), Fij(x) = gi[f(x)]ḡj(x) (18)

are assumed to be Riemann Integrable; the functions are
bounded and continuous [22].

There are two data sets used for the inner product com-
putation. The first data set is

DN = {xi | i = 1, · · · , N ;xi ∈ X} (19)

Note that all the data values are finite, |xi| <∞. As such, the
integral interval of the inner products is finite in computing
them from the data. To define the integral interval, we
consider the dynamic range of the system, XD, determined
from the data set DN . See Fig.1. The dynamic range XD

is defined to be the minimum domain in the space X that
includes all the data points in DN , XD ⊃ DN , and that is
convex. Namely, for any two states in XD, x, x′ ∈ XD,

ξ = αx+ (1− α)x′ ∈ XD (20)

where 0 ≤ α ≤ 1. Each data point xi is mapped to f(xi),

Fig. 1: Illustration of the dynamic range of a dataset defined by
the convex hull containing all points in the set, partitioned using a
triangulation method. The data points are in black and the convex
hull that encapsulates all data points is in grey.

following the state transition law in eq.(1). We assume that
the transferred state, too, stays within the same dynamic
range XD. Collecting all the transferred states yields the
second data set.

Df
N = {f(xi) | i = 1, · · · , N ;xi ∈ DN} (21)

Df
N ⊂ XD (22)



This implies that the state space of the nonlinear system
under consideration is closed within the dynamic range XD.

With this dynamic range, we redefine our objective to
compute the inner products over XD.

Rij =

∫
XD

Gij(x)dx (23)

Qij =

∫
XD

Fij(x)dx (24)

The integrals can be computed by partitioning the domain
XD into many segments X1, · · ·XP , as shown in Fig. 1.

XD =

P⋃
p=1

Xp (25)

We generate these segments by applying a meshing technique
to the data set DN , where the n-dimensional coordinates
of individual data points are treated as nodes of a mesh.
Delaunay Triangulation, for example, generates a triangular
mesh structure with desirable properties [23]. As illustrated
in Fig. 1, each triangular element is convex and has no
internal node. The volume of the dynamic range V (XD)
is the sum of the volumes of all the elements.

V (XD) =

P∑
p=1

∆vp (26)

Accordingly, the integral Rij in eq.(23) can be segmented to

Rij =

P∑
p=1

∫
Xp

Gij(x)dx (27)

Suppose that the p-th element has Kp nodes, as shown in
Fig.2. Renumbering these nodes 1 through Kp,

{x[kp]
∣∣∣x[kp] ∈ Xp; kp = 1, · · · ,Kp}, p = 1, · · · , P (28)

The integrand Gij within the p-th element can be approx-
imated to the mean of the Kp nodes involved in the p-th
element.

Gij(x; p) ≈ Ḡij,p =
1

Kp

Kp∑
kp=1

Gij(x[kp]), x[kp] ∈ Xp (29)

If Delaunay Triangulation is used, Kp = n+ 1. See Fig. 2.
Substituting this into (23) yields the approximate value of
Rij .

R̂ij =

P∑
p=1

1

Kp

Kp∑
kp=1

Gij(x[kp])∆vp (30)

where
∆vp =

∫
Xp

1 · dx (31)

Similarly, each component of the matrix Q can be com-
puted by using the same meshing.

Q̂ij =

P∑
p=1

1

Kp

Kp∑
kp=1

Fij(x[kp])∆vp (32)

Fig. 2: Visualization of the integrand calculation process. The
volume of the partition is encapsulated by the data points is denoted
as ∆vp. With this grouping, the value of Gij is calculated for each
point and the average among this group is computed, Ḡij,p. In turn,
this value, weighted by the volume of this partition, is summed
across other partitions (not shown) to approximate the value of the
element Rij .

Note that Fij is evaluated by using the data points in both
Df
N and DN ,

Fij(x[kp]) = gi[f(x[kp])]ḡj(x[kp]) (33)

where f(x[kp]) ∈ Df
N .

B. Convergence

Consider the center of each partition, x̄p =
∫
Xp
xdx/∆vp,

and the distance between x̄p and each point, x[kp]:

∆x[kp] = x̄p − x[kp] (34)

See Fig.2. The maximum distance from the center of the
partition to each point that makes up the partition is

|∆xp| = max{|∆x[1]|, ... |∆x[kp − 1]|, |∆x[kp]|} (35)

Consider a sequence of refining the approximate inner prod-
uct integral R̂ij by increasing data points N . We can show
that, as the number of partition P tends infinity and the
maximum subintervals |∆xp| approach zero, the approximate
inner product integral R̂ij converges to its true integral.

Rij = lim
P→∞
|∆xp|→0

P∑
p=1

1

Kp

Kp∑
kp=1

Gij(x[kp])∆vp (36)

This formulation takes the form of weighted sums, specif-
ically Riemann sums. Given functions that are bounded and
continuous over the subdomain of interest, sequences of this
form are known to have a common limit and thus converge
upon refinement to the Riemann integral value over that
subdomain, according to Numerical Integration theory [22,
Section 1.5].



C. Algorithm

In the prior section, integrals (30) and (32) are presented
as summations over partitions. This computation can be
streamlined by converting the summations over partitions to
the one over nodes. Consider node 3 associated to data point
x3 in Fig.1, for example. This node is an apex of the 5
surrounding triangles. This implies that integrand Gij(x) is
calculated or recalled 5 times in computing (30) and (32).
This repetition can be eliminated by computing volume ∆vk
associated to node k, rather than partition p : ∆vp. Namely,
we compute

∆vk =

P∑
p=1

∆vp
Kp

I(k, p) (37)

where I(k, p) is a membership function that takes value 1
when node k is an apex of triangle p, that is, node k is
involved in partition p. Using this volume as a new weight
we can rewrite (30) and (32) to be

R̂ij =

K∑
k=1

Gij(x[k])∆vk (38)

Q̂ij =

K∑
k=1

Fij(x[k])∆vk (39)

Using this conversion, the computation can be streamlined
and cleanly separated into three steps, as shown by pseudo-
code in Algorithm 1. The steps are: (1) Graph Creation:
data are connected to create partitions of the domain using
a mesh generator: lines 3 to 8, (2) Weighting Calculation:
calculation of the weights for each data point: lines 10 to 17,
and (3) Matrix Calculation: the calculation of the R and Q
matrices to find the matrix A, lines 19 to 21.

IV. EXPERIMENTS

In this section, the DDE algorithm is implemented for the
sake of evaluating its validity and comparing its modeling
accuracy to EDMD. Consider a 2nd order nonlinear system
consisting of a pendulum with a nonlinear damper. See Fig.
3. The pendulum also bounces against walls with nonlinear
compliance. The state variables for this system are x =
[θ, θ̇]T , and the equation of motion can be written as:

θ̈ = −sin(θ) + Fk + Fc (40)

where Fk and Fc are wall reaction moment and damping
moment, respectively,

Fk =

{
−sign(θ) k(|θ| − π

4 )2 if |θ| ≥ π
4

0 if |θ| < π
4

(41)

Fc = −sign(θ̇) c θ̇2 (42)

where k = 200 and c = 1. We present a two part numerical
experiment for this system. The first experiment regards
variations in dataset size and distribution, and the second
experiment varies the usage of observable functions.

Fig. 3: Diagram of pendulum with with walls. (a) depicts the range
of the pendulum where the walls are equally angularly displaced
from the vertical. (b) depicts the forces exerted on the pendulum
due to contact with walls. (c) depicts the damping force exerted
onto the pendulum.

A. Dataset Variations

The datasets tested are of three types:
1) Uniform: These datasets are composed of a rectangu-

lar dynamic range which is sampled uniformly, like
an evenly divided grid. The range varies from θ =
[−0.8, 0.8] and θ̇ = [−2, 2], where the mass can hit the
walls and the damping can vary from 0 to a significant
value. See Fig. 3-(b), (c).

2) Gaussian: Data points are sampled with a finite-
support Gaussian distribution. The data are distributed
non-uniformly with their highest density at the peak

Algorithm 1: Algorithm for DDE in pseudocode
Input:

1 DN , Df
N

Output:
2 P : p, K: k, R, Q A
3 Graph Creation:
4 for xi in DN and corresponding f(xi) in Df

N do
5 Create node, k
6 Assign node attributes for current data point

k.xt = xt and k.xt+1 = xt+1

7 Append node to node list K.
8 end
9 then

10 Weighting Calculation:
11 Create list of triangles, P using Delaunay

Triangulation on node list K using k.xt
12 for p in P do
13 Calculate volume, V , of p
14 for k corresponding to Kp do
15 Update volume of each node

k.∆vk = k.∆vk + V
n+1

16 end
17 end
18 then
19 Matrix Calculation:
20 Find R and Q via (38) and (39)
21 Find A = QR−1



Fig. 4: Graph of connections for a trajectory dataset composed of
10000 points formed when utilizing the data-driven direct encoding
method. The lightly red shaded region denotes the dynamic range.
In the zoomed-in image, the difference in volumes associated to
different data points can be observed. Noting the difference in size
of the purple triangle versus the green triangle.

TABLE I: Sum of Squared Errors over dynamic range with varying
dataset sizes.

Dataset Size Total SSE SSE Variance
EDMD / DDE EDMD / DDE
Uniform Datasets

900 19.470 / 17.167 0.0094 / 0.0097
2500 17.995 / 16.471 0.0095 / 0.0103
10000 17.010 / 16.184 0.0099 / 0.0105
22500 16.698 / 16.133 0.0101 / 0.0105

Trajectory Datasets
1000 56.532 / 33.392 0.0349 / 0.0193
2500 33.330 / 25.064 0.0200 / 0.0130
5000 31.690 / 25.099 0.0195 / 0.0129
10000 30.184 / 25.101 0.0186 / 0.0129
25000 29.380 / 25.106 0.0181 / 0.0129

of the Gaussian placed at diverse locations. In addi-
tion, each dataset contains 100 data points uniformly
distributed along the boarder of the dynamic range
to guarantee the same dynamic range as the uniform
datasets. Samples outside the dynamic range are ex-
cluded.

3) Trajectories: These datasets are composed of trajec-
tories, beginning from 100 initial conditions that are
simulated forward the same number of time steps. The
dynamic range of this dataset differs from the two other
dataset types.

The models constructed for DDE and EDMD use the same
observable functions. The observable functions chosen are
two dimensional radial basis functions (RBFs), uniformly
distributed between the maximum and minimum values of
each state variable in their respective dataset, and the state
variables. The total order of the system is 27th order with
25 RBFs and 2 state variables.

A trajectory dataset graph is generated using Delaunay
Triangles in DDE, shown in Fig. 4.

The accuracy of the models is tested through calculating
sum of squared errors (SSE) for one-step ahead predictions
over the dynamic range of the datasets. These error values
are calculated for a uniform grid of points, similar to that
used in the uniform datasets. A visualization of the SSE is

Fig. 5: Sum of Squared Error plots for various datasets. (a) and (b)
are EDMD models for Gaussian datasets; (a) uses a dataset that is
centered at [0, 0] and (b) uses a dataset that is centered at [0, 2]. (c)
DDE and (d) EDMD models using the trajectory dataset composed
of 2500 data points and using 25 RBFs. Circled in red are the
regions with greatest variation in SSE between models. Only the
dynamic range is shown in all plots.

TABLE II: Sum of Squared Errors over dynamic range for Gaussian
distributions with different centers. Centers of the distribution are
noted above each column.

Dataset Size
Total SSE

Center: [0, 0] Center: [0.8, 0] Center: [0, 2]
EDMD / DDE EDMD / DDE EDMD / DDE

Gaussian Datasets
1000 25.565 / 24.377 25.161 / 22.98 24.338 / 22.445
2500 24.991 / 23.739 25.421 / 22.747 24.221 / 21.590
5000 24.662 / 23.518 26.805 / 22.415 23.914 / 21.195
10000 24.395 / 23.085 28.424 / 21.825 25.770 / 21.052
25000 25.219 / 22.167 30.788 / 21.687 26.941 / 20.704

plotted in Fig. 5. The results of these calculations are shown
in Table I and II. In the computation, the dynamic range
is discretized, and the SSE value of each point is summed.
For the Gaussian datasets, the test is run for eight iterations
of each dataset to account for randomness and the average
result is noted.

TABLE III: Sum of Squared Errors over dynamic range with
varying order of lifted linear models.

# Observables Total SSE
EDMD DDE

Trajectory Dataset, 5000 points
27 31.690 25.099
51 36.657 21.637
83 28.437 13.613



B. Observable Function Variation

The second experiment varies the number of observable
functions selected, thus increasing the order. In this exper-
iment, the number of RBFs is varied through uniformly
increasing the density of the centers of the function over
the range of the dataset. The results are noted in Table III.
In the table, the number detailing number of observables is
the number of functions including the state variables.

C. Discussion

From these results we can make the following observa-
tions.

• All the numerical experiments show that DDE outper-
forms EDMD in total SSE.

• For uniform datasets, both models are nearly equivalent,
though DDE has slightly lower SSE in all cases, shown
in Table I. This result is expected as all data points are
weighted equally in a uniform distribution.

• EDMD models exhibit significantly different distribu-
tions of prediction error, depending on dataset distri-
bution. In Fig. 5-(a), the EDMD model learned from
a dataset with high density near the origin produces a
prediction error distribution that is low in accuracy in
the top-right and the bottom-left corners of the dynamic
range. In contrast, Fig.5-(b) illustrates that when using
EDMD to learn from data with high density at θ =
0, θ̇ = 2, the model results in low accuracy in the lower
half of the dynamic range. DDE does not exhibit this
high distribution dependency and achieves lower total
SSE, as shown in Table II.

• In the trajectory datasets in Table I, DDE is not only
lower in total SSE than EDMD but is also smaller in
variance. Fig. 5-(c) shows that DDE has a uniformly
low error distribution across the dynamic range, while
EDMD in Fig.5-(d) has two regions, as circled in the
figure, with significantly larger error. These regions
coincide with sparsity in the dataset, providing evidence
of EDMD’s bias towards regions of high data density
and explaining the difference in performance between
models for the non-uniform datasets.

• In the trajectory datasets, the total SSE converges for
DDE beginning with small dataset sizes. This result
implies that the elements in the R and Q matrices of
DDE, that is, the inner product integral computations,
converge as the data size and the data density increase.
This convergence is confirmed in Fig. 6, where several
elements of the Q matrix are plotted against the data
size.

• The second experiment, regarding variations in observ-
able function numbers demonstrates the effect of DDE
remains even for significant increases in observable
functions, referring to Table III. In all cases tested,
DDE significantly outperforms EDMD over the dy-
namic range, as expected for a non-uniform dataset.

Fig. 6: Change in values of diagonal elements in the Q matrix of
DDE with respect to trajectory dataset size. The specific elements
shown correspond to a state variable, Q0,0, and three RBF functions
of varying distances away from the equilibrium.

V. APPLICATION TO NEURAL NET KOOPMAN MODELING

The use of deep neural networks for finding effective
observable functions and constructing a Koopman linear
model has been reported by several groups [10]–[12]. This
method, sometimes referred to as Deep Koopman, is effective
for approximating the Koopman operator to a low-order
model, compared to the use of locally activated functions,
such as RBFs, which scale poorly for high-order nonlinear
systems. The proposed DDE method can be incorporated into
Deep Koopman, further improving approximation accuracy.

Fig. 7 shows the architecture of the neural network similar
to the prior works [10]–[12]. The input layer receives training
data of independent state variables. The successive hidden
layers produce observable functions; these functions feed
into the output layer consisting of linear activation functions.
This linear output layer corresponds to the A matrix that
maps the observables of the current time to those of the next
time step, i.e. the state transition in the lifted space. In the
Deep Koopman approach, the output layer, that is, the A
matrix, is trained together with observable functions in the
hidden layers. Using the observable functions learned from
deep learning, the output layer weights are replaced with the
A matrix obtained from DDE, captioned in Fig. 7.

The effectiveness of this Deep Koopman-DDE method
is applied to a multi-cable manipulation system [6]. A
simplified single cable version is utilized consisting of six
independent state variables. The network is constructed using
PyTorch, trained with an Adam optimizer, to generate 40
observable functions. These model concatenates the state
variables of the nonlinear system, resulting in a 46th order
model. Table IV shows parameters used for training the Deep
Koopman model. The training dataset is composed of 3000
data points drawn from trajectories. Table V compares the
Deep Koopman model to the proposed model that uses DDE.
Results are in terms of sum of squared error over a set of
test trajectories. A significant improvement is achieved by
incorporating DDE into the deep learning method.

Practical concerns arose from the use of Delaunay Tri-



Fig. 7: Feedforward neural network model used to generate ob-
servable functions. The final layer of the neural network is a linear
layer. In the standard Deep Koopman model this remains the same
after the model is fully trained. However, with the DDE model, this
final layer is recalculated using DDE by taking in the dataset used
to train the model.

TABLE IV: Neural network parameters and characteristics.

Parameters and Characteristics Value
Number of Hidden layers 3

Activation Functions, Both Hidden Layers ReLU
Width of 1st Hidden Layer 16
Width of 2nd Hidden Layer 16
Width of 3rd Hidden Layer 40

Learning Rate, α 0.01

TABLE V: Average SSE prediction error for trajectories in set of
test data for single winch system.

Modeling Method 1 Time Step 20 Time Steps
Deep Koopman only 0.2471 9.8610

Deep Koopman + DDE 0.2350 4.1131

angulation in this experiment. Specifically, the method was
found to be limiting and inconsistent for systems that are
eighth order or higher, due to computational cost and numer-
ical instability. Alternative numerical integration approaches
or alternative partitioning methods may be necessary when
applying the method to higher order nonlinear systems.

VI. CONCLUSION

In this work, a new data-driven approach to generating
a Koopman linear model based on the direct encoding of
Koopman Operator (DDE) is presented as an alternative
to dynamic mode decomposition (DMD) and other related
methods using least squares estimate (LSE). The major
contributions include: 1) The analytical formula of Direct
Encoding is converted to a numerical formula for computing
the inner product integrals from given data; 2) An efficient
algorithm is developed and its convergence conditions to the
true results are analyzed; 3) Numerical experiments demon-
strate a) greater accuracy compared to EDMD, b) lower
sensitivity to data distribution, and c) rapid convergence of
inner product computation. Furthermore, the DDE method
is incorporated to Deep Koopman, i.e. neural network based

methods for construction of the Koopman Operator, for
improving prediction accuracy.
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