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Autonomous Marine Vehicles
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Abstract—This paper reports an investigation into the problem
of rapid identification of a channel that crosses a body of
water using one or more unmanned surface vehicles (USVs). A
new algorithm called Proposal Based Adaptive Channel Search
(PBACS) is presented as a potential solution that improves
upon current methods. The empirical performance of PBACS
is compared to that of lawnmower surveying and Markov
decision process (MDP) planning with two state-of-the-art re-
ward functions: Upper Confidence Bound (UCB) and Maximum
Value Information (MVI). The performance of each method is
evaluated through a comparison of the time it takes to identify
a continuous channel through an area using one, two, three, or
four USVs. The performance of each method is compared across
ten simulated bathymetry scenarios and one field area, each with
different channel layouts. The results from simulations and field
trials indicate that on average multi-vehicle PBACS outperforms
lawnmower, UCB, and MVI-based methods, especially when at
least three vehicles are used.

Index Terms—Multi-Robot Systems, Marine Robotics, Swarm
Robotics, Cooperating Robots, Distributed Robot Systems

I. INTRODUCTION

AUTONOMOUS marine vehicles are important tools for
many applications in both civilian and military contexts.

One such application is Rapid Environmental Assessment
(REA), where a vehicle provides information about the phys-
ical environment in an area of interest. This information is
then used to inform future missions. In a riverine environment
with unknown bathymetry, this can entail quickly identifying
a channel that can provide a navigable path through the area
as illustrated in Figure 1a. We refer to this as the rapid
channel identification problem. This paper will focus on the
development of a new algorithm to efficiently address this
problem. We compare this new method to other state-of-the-
art approaches and investigate the utility of using multiple
vehicles in the solution.

The simplest way to survey an area is with a lawnmower
search pattern. This is the most exhaustive method and will
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Fig. 1. (a) Illustration of the rapid channel identification problem; quickly
find a valid deep channel in an unknown environment that connects any of
the start areas (magenta) to any of the goal areas (green). (b) Three of four
Heron USVs equipped with low-cost single-beam sonar altimeters used for
field testing. (c-d) Demonstration of our approach to find: (c) a channel deeper
than 22ft and 23ft through the deep trench in the Charles River, and (d) a
channel deeper than 17ft in Lake Popolopen in New York. The bathymetry
map data for (a) and (c) is from [1]

provide a comprehensive overview of the environment. How-
ever, for this problem, we are interested in finding a specific
feature – a deep channel – rather than constructing a complete
map. To speed up this process, we employ adaptive sampling
strategies and robust multi-vehicle task allocation when more
than one vehicle is available.

Using adaptive sampling and task allocation methods, we
present the Proposal Based Adaptive Channel Search (PBACS)
algorithm. To the best of the authors’ knowledge, we are the
first to demonstrate a decentralized multi-vehicle approach
to the channel identification problem, a unique but impor-
tant challenge in marine engineering. The PBACS algorithm
builds upon a combination of state-of-the-art methods in
several areas: non-parametric environmental modeling (Fast
Gaussian process regression (GPR) [2]) with decentralized
bathymetry map fusion (modified decentralized Kalman con-
sensus (MDKC) [3]), and multi-objective behavior optimiza-
tion by interval programming (MOOS-IvP [4])). The new
PBACS algorithm employs an intuition regarding the structure
of this particular type of exploration problem with directed
search and market-based allocation in a way that outperforms
other methods on average. Our approach is fully decentralized,
and we have evidence that the advantages of the method can
be realized with just one vehicle or with a cooperative group.
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A. Contributions

The contributions of this research are the following:
• The PBACS algorithm, a new specialized method for

solving the rapid channel identification problem.
• Monte Carlo simulation studies to evaluate the utility

of using different amounts of vehicles for PBACS, and
to demonstrate better performance than both lawnmower
and myopic Markov decision process (MDP) path plan-
ning.

• Multiple field deployments of the MDP approaches using
up to three unmanned surface vehicles (USVs), and de-
ployment of the PBACS approach using up to four USVs.
Heron USVs made by Clearpath Robotics are shown in
Figure 1b, and we report two successful demonstrations
in the field where we found channels in the Charles River
(Figure 1c) and Lake Popolopen in New York (Figure 1d).

II. RELATED WORK

A. Gaussian process (GP) and Path Planning

GPR is frequently used in marine adaptive sampling for
spatial modeling of the estimated environment, which is then
used to inform path planning. Berget et al. [5] use GP
methods to track suspended material plumes. The model is
updated continuously throughout the mission, and the path
planner uses this estimation to drive the unmanned vehicle
to information-rich areas. In Fossum et al. [6], GP modeling
is used for adaptive sampling of phytoplankton by modeling
the distribution of chlorophyll-a - a common indicator of
phytoplankton activity. Yan et al. [7] use GPR analysis to
guide online path planning for an AUV in an effort to locate
hotspots in the field. Another work to use GP methods is
Stankiewicz et al. [8], where an AUV uses adaptive sampling
to explore an area and identify hypoxic zones. The algorithm
identifies regions of interest that exhibit some local extrema
and concentrates sampling there.

B. Classes of Adaptive Sampling Problems

Prior work in marine adaptive sampling can be separated
into three broad categories: 1.) source localization methods
as described by Bayat et al. in [9], which include gradient
descent [10] and partially observable Markov decision process
(POMDP) [11], 2.) front/boundary determination, which have
been demonstrated with single vehicles [12], [13] and multiple
vehicles [14], and 3.) feature tracking and mapping such as the
work of Bennett et al. [15], where a simulated AUV is used to
adaptively map bathymetric features like trenches or specific
contours. Of these categories, the channel-finding problem
explored in this paper is most closely related to the last, but
is not specifically addressed in the literature.

C. Multi-Vehicle Considerations

One of the main considerations in multi-vehicle missions is
their formation. When the vehicles all explore the entire field,
they can be in fixed formations such as in a leader-follower
strategy employed by Khoshrou et al. [16] and Paliotta et al.
[10], or more flexible approaches such as generating different

sailing directions for each vehicle, as proposed by Yan et al.
in [7].

When the field is explicitly divided, the divisions can either
be predetermined or dynamic. An example of the latter is
Kemna et al. [17], where dynamic Voronoi partitioning is
used to divide the field among a group of AUVs. In general,
flexible formations and dynamic divisions are more robust to
single vehicle failures, which is part of the motivation for our
approach.

Information sharing is a critical component of multi-vehicle
systems, and communications can be range restricted or other-
wise time-varying, especially in the marine domain. To address
this problem, we use consensus protocols and algorithms for
multi-vehicle coordination developed by Ren et al. [18] and
Alighanbari et al. [3]. In particular, we use the robustness
properties of the MDKC developed by Alighanbari et al. [3],
which removes potential biases that occur when the agents in
the network are not fully connected.

In many cases, vehicles need to coordinate new tasks/roles
that arise as the mission progresses. One class of algorithms
for solving this problem of task allocation is auction-based
algorithms, also referred to as market-based algorithms. The
implementations of these algorithms can rely upon a central-
ized repository, as described by Bertsekas [19]. They can also
be distributed, as described by Michael et al. [20] and Zavlanos
et al. [21], which can be augmented with a consensus protocol
to resolve conflicts [22], [23].

D. Multi-robot systems (MRS) for other applications

Recently, solutions to the general problem of collaborative
exploration of an entire 3D map have been demonstrated with
aerial vehicles [24] and a mix of aerial and ground vehicles
[25]. However, our decentralized approach is designed to
concentrate search in areas where a channel may still be viable.
Furthermore, although the CERBERUS system in [25] was
the most successful in the DARPA Subterranean Challenge,
the system used a centralized map server as the arbiter of
information transmitted among the individual robots. Other
decentralized approaches such as those reported in [26] and
[27] use low-level control, which requires accurate models
of the dynamics of each agent or conservative estimates that
reduce optimality. In the case of marine vehicles, these models
are more complex, and they operate in environments that are
stochastic due to wind, waves, and currents [28]. Due to these
limitations, we instead implement multi-objective optimization
via MOOS-IvP and control at the individual level. Finally,
we emphasize our repeated experimental demonstrations of a
multi-robot system in the field; the vehicles perform decentral-
ized estimation and planning with limited computing power,
low-cost single-beam sonars, and communication limitations.

III. ENVIRONMENTAL MODELING

We represent the bathymetry data in a discrete set of m
grid-cells. We define the vectors z⃗ ∈ IRm and σ⃗ ∈ IRm

+ as the
depth and the variance (respectively) of each cell. The location
of the center of the ith cell is denoted as x⃗i ∈ IR2.
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A. Single-Beam Depth Sensor

We assume the depth directly below each vehicle can be
measured by a single-beam acoustic depth sensor. For field
work, we used the Ping Sonar Altimeter and Echosounder
made by Blue Robotics for its low cost and commercial
availability. A simulated sensor with comparable accuracy and
noise was used for simulation studies.

The sensor was mounted onto the bottom plate of each
Heron USV at the lowest possible depth that it remains
submerged at all times without contacting the dock. The
sensor was mounted directly below the GPS sensor in order
to ensure that the distance readings are associated with the
correct position. The sensor was then connected to the Heron’s
payload autonomy computer and integrated into the MOOS
system described in Section VI. We set the sampling rate of
the sensor to 10 Hz.

B. Efficient GPR

We use GPR on each vehicle to calculate an estimate for
the bathymetry field within the grid from the collection of
local measurements. The GPR implementation used in this
system is adapted from the ”Fast GPR” developed by Das
et al. [2]. The Fast GPR aims to speed up computation by
developing estimators on subsets of the dataset. Using the
standard implementation of GPR on a dataset of size N
yields O(N3) time complexity. By choosing k subsets of size
Ns < N , the time complexity of Fast GPR is reduced to
O(kN3

s ). One limitation of this method is that the variance
becomes skewed, but we address this minor complication in
Section IV-B with the threshold in (5).

We use the Gaussian kernel

K(x⃗i, x⃗j) = exp
(
− d(x⃗i, x⃗j)

2l2

)
, (1)

where d(x⃗i, x⃗j) is the Euclidean distance. We determined
experimentally that l ≈ 28.8ft works well in field testing.

C. Decentralized Map Fusion

For multi-vehicle coordination, we use the Modified Decen-
tralized Kalman Consensus (MDKC) reported by Alighanbari
and How [3]. Although we extensively test our approach with
USVs that can more easily communicate, our approach is
intended to be used in multi-vehicle systems that include
unmanned underwater vehicles (UUVs), which have limited
communications while submerged. For that reason, we use
a periodic consensus to combine estimates of the map from
each vehicle in a way that requires limited communication
bandwidth, works without a fully connected communications
graph, and is robust to intermittent communication failures.

A consensus can be reached even if the group does not
form a fully connected graph, which happened periodically
during field operations as vehicles temporarily drop out of
communication.

For n agents A = {Ai, ...,An}, the solution for an agent
Ai at time t+ 1 is given by:

Pi(t+ 1) ={[Pi(t) +Q(t)]−1

+

n∑
j=1

(gij(t)[µj(t)Pj(t)]
−1)}−1 (2)

z⃗i(t+ 1) = z⃗i(t)

+ Pi(t+ 1)

n∑
j=1

{gij(t) · [µj(t)Pj(t)]
−1

· (z⃗j(t)− z⃗i(t))} (3)

µj(t) =

n∑
k=1,k ̸=j

gkj(t) (4)

where Pi is the covariance matrix assembled using the radial
basis function kernel (1) and the grid variance σ⃗, Q(t) is the
process noise (used only when a vehicle becomes completely
disconnected and must complete the consensus on their own),
z⃗i is the agent’s own information, gij is the adjacency matrix
of the communication graph between agents Ai and Aj , and
µj(t) is a scaling factor associated with agent Aj .

IV. CHANNEL SEARCH

Here we present our main algorithm, a more specialized
method for solving the channel identification problem. There
are two stages to this approach: an exploratory sweep and
a search along candidate paths. A simplified version of the
process is illustrated in Figure 2, and the proposal algorithm
is reproduced in Algorithm 1.

A. First Stage - Exploratory Sweep

The first stage of PBACS is an exploratory sweep of the
area. Other adaptive sampling works have also employed an
initial exploratory lawnmower sweep to seed the remainder
of the search [15], [10]. For our problem, we can use such
a sweep to help save time by eliminating areas that do not
meet the necessary depth criteria, thereby directing the search
toward more likely channel regions (Step 1 in Figure 2). For
a single-vehicle mission we set the initial sweep to cover
the start area of the grid, and for a two-vehicle mission we
cover the start and end goal areas. The sweep area for each
subsequent vehicle is an equally spaced line in between.

B. Second Stage - Path Exploration

The second stage after the sweep is the path exploration
stage, shown in Algorithm 1. Vehicles enter this stage after
they complete their initial sweep, and this transition often
occurs asynchronously due to the difference in transit times to
the initial sweep locations.

The goal of this stage is to identify and explore candidate
paths that may still be viable. Each vehicle proposes a path
between the start and goal regions that may be part of a
viable channel (Step 2 in Figure 2). These candidate paths
can be generated using any path planner; here we used a
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Fig. 2. The simplified steps of PBACS.

common variant of the A* planner which searches for a path
that connects any of several start and goal locations.

The depth along a candidate path must not be shallow, and
we capture this criterion in our search problem with simulated
obstacles. Grid-cells are considered obstacles only if they have
a sufficiently low variance and are too shallow. This way,
candidate paths are made up of cells that are either certainly
deep enough, or that we are uncertain about how deep they
actually are. The variance threshold for considering a shallow
grid-cell to be an obstacle is calculated dynamically as a
percentage of the range between the current minimum and
maximum variance across the grid, i.e.

σth = σmin + η(σmax − σmin). (5)

where the probability distribution is computed using the
MDKC algorithm as described in Section III-C. This threshold
must be set high enough to exclude shallow grid-cells with low
variance, typically those that have been directly measured by
at least one vehicle. The threshold should also be low enough
to not exclude shallow grid-cells with high variance, typically
those that were interpolated. We experimentally determined
η = 0.33 to be sufficient for both simulation and fieldwork.

Upon completion of each GPR estimate and consensus, the
path is rechecked to ensure that no new obstacles were found
on it and that it is still optimal (Steps 2 and 3 in Figure 2).
If a more optimal and obstacle-free path is found, the vehicle
switches to this path (Step 3 in Figure 2). We periodically
check for the existence of a valid continuous channel, which
marks the end of the mission (Step 4 in Figure 2).

Algorithm 1 Pseudocode of the main PBACS algorithm
Global variables

pcurr vector of waypoints of current path
[p1, p2, . . . , pN ]

Np number of waypoints/vertices in path p
P vector of tuples (pi, ci, ti) containing re-

ceived proposals, costs, and time received

1: procedure PBACS
2: initialize won← false
3: repeat
4: Handle incoming messages, proposals, checking

for new consensus map data from GPR and
MDKC processes

5: if new consensus data then
6: Build search grid from z⃗(t), Pi(t), σth (5)
7: chnl fnd← check for channel ▷ A*
8: waited← time since last prop > twait

9: if ¬chnl fnd and ¬won and waited then
10: won = CHECKPROPOSALS(P)
11: if ¬won then
12: pnew ← find candidate path ▷ A*
13: if pnew ̸= [ ] then
14: cond1 = pcurr has new obstacles
15: cond2 = Npcurr > Npnew

16: if cond1 or cond2 then
17: pprop ← pnew

18: else
19: pprop ← pcurr

20: end if
21: else
22: exit, use MDP planning
23: end if
24: cprop ← min distance to pprop

25: send pprop and cprop to other vehicles
26: else if won and pprop ̸= pcurr then
27: pa ← get closest waypoint in pprop

28: pcurr = GETDIRECTION(pprop, pa)
29: publish pcurr to waypoint behavior
30: end if
31: end if
32: end if
33: until channel found
34: end procedure

C. Path Search Direction

Once a vehicle has a new candidate path to explore, its first
waypoint on that path is the point with the shortest Euclidean
distance to its current position. Since this is most likely not an
endpoint of the candidate path, we must choose the direction
in which the vehicle will traverse the path. The first condition
we check is whether we have an unexplored endpoint. Due
to the preliminary sweep stage, this condition would only
happen in the single-vehicle case. The second condition is
checking which side of the path has a higher variance, so
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that the vehicle is directed toward less explored regions. This
is done by comparing the sum of the variances associated
with either direction, with an exponentially increasing discount
factor applied to points that are further away. The direction
with the higher reward is chosen. The vehicle traverses the
waypoints in this direction of the path until it reaches the
endpoint. If no obstacles are found, the vehicle reverses to
cover the other direction. An example of direction choosing is
illustrated in Figure 4.

Fig. 4. An example of a vehicle switching to a new candidate path, in a
mission where it aims to identify a continuous deep channel. The desired
channel depth is shown in red, and areas with no samples and high variance
are shown in blue. The vehicle has encountered an obstacle on pcurr , the
path it was exploring (left path), and has found pprop, a new candidate path
(right path). The blue arrow points in the direction of pa, the vehicle’s first
waypoint on the new path. There are two choices of directions in which to
traverse the path, pr (reverse/up) or pf (forward/down). Since pf would
pass through more high variance grid-cells, this direction is chosen.

D. Proposal Bidding
In the multi-vehicle case, vehicles allocate viable paths

among themselves by sharing their locally found path with
other vehicles as a proposal with an associated cost, and then
checking for conflicts. When vehicles update their consensus
estimate of the field, each vehicle finds the most optimal po-
tentially viable path. The vehicle then proposes this candidate
path to the other vehicles by placing a proposed bid with the
cost of transiting to the path. For the cost function, we use
the Euclidean distance to the closest point on the path. Each
vehicle compares its own proposal to the ones it receives from
the others. If there are no conflicts, the vehicle transits to this
path and uses a waypoint following behavior to survey along
the line. If there is a conflict, the vehicle with a lower-cost
bid wins. The losing vehicle must propose a new path and go
through another iteration of bidding with all other vehicles that
remain unassigned. The new proposal for subsequent iteration
rounds takes into account the assigned paths by considering the
cells in those paths to be obstacles, ensuring that new proposals
do not overlap with paths assigned in the previous iteration. In
the case where there are more vehicles than there are potential
paths, a vehicle with no path will revert to using an MDP-
based surveying mode to explore more of the field until a path
becomes available. The proposal process is repeated upon each
completion of a consensus.

V. EXISTING METHODS FOR COMPARISON
A. Lawnmower Survey

The most common method of surveying a region is with
a lawnmower pattern, also referred to as a boustrophedon

in coverage path planning [29]. However, the success of
lawnmower surveys in quickly identifying a channel is highly
dependent on the (lucky) choice of starting locations and
distributions of vehicles that fit the underlying map. In this
work, we are interested in approaches that do not rely on luck
and perform better in aggregate.

B. Markov decision processes

We can formulate the problem as an MDP [30]. An MDP
consists of the following: a set of states S with an initial
state s0, a set of actions in each state A, a transition model
P (s′|s, a) giving the probability that an action a in state s will
lead to state s′, and a reward function R(s).

A solution to the MDP is in the form of a policy π, where
π(s) gives the recommended action at state s. The optimal
policy π∗(s) for a state is given by:

π∗(s) = argmax
a∈A(s)

∑
s′

P (s′|s, a)U(s′) (6)

where U(s) is a utility function. This utility function can
be estimated using value iteration, which is computed by
iteratively applying a Bellman update.

For our implementation, we define the root state to be the
grid-cell corresponding to the vehicle’s current position and
heading. For the actions, to account for the underactuated
vehicle’s maneuverability we define three possible next grid-
cells based on the vehicle’s heading: ahead, ahead-left, or
ahead-right. The state transition model P (s′|s, a) captures
the uncertainty in the stochastic environment with wind and
waves, and the specific details are reported in [31].

An MDP can be implemented with different reward func-
tions. We compare the performance of two different functions,
UCB and MVI. UCB as a reward criterion is a common,
state-of-the-art choice in online decision-making [32]. An
alternative to UCB reward calculation is MVI, defined by
Flaspohler et al. [11], based on the Max-value Entropy Search
(MES) criterion defined by Wang et al. [33]. As shown by
Flaspohler et al., over time the MVI reward converges to the
global maximum, while UCB rewards high-value regions more
uniformly.

VI. IMPLEMENTATION DETAILS

We implemented our decentralized autonomy with MOOS-
IvP [4], an open source C++ robotic autonomy software.
The Mission Oriented Operating Suite (MOOS) is a robotic
middleware that uses a publish-subscribe architecture for com-
munication between separate processes (MOOS Apps). One of
these processes is the Interval Programming (IvP) Helm, which
provides behavior-based autonomy in the frontseat-backseat
paradigm.

A consensus manager MOOS App was created to manage
requests, iterations, and timeouts. An instance of the manager
runs on every vehicle to achieve fully decentralized estimation.
Due to the computational limits of the on-board computer,
another C++ class was written to handle asynchronous sensor
data and to efficiently distribute the computation for the Fast
GPR over several process cycles. For instance, on each round
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of sampling we computed the inverse of the covariance matrix
via the Cholesky decomposition and stored it for use in
subsequent process cycles.

Due to computational constraints of fieldwork hardware, we
implemented the MDP as a myopic planner with a limited
look-ahead depth. Based on this information, the vehicle de-
termines the current optimal path to take. The utility function
is recalculated once it reaches the next grid-cell.

VII. SIMULATED EXPERIMENTS

To test algorithm performance in simulation, we generated
six possible bathymetry scenario maps. For non-symmetric
bathymetry configurations, we also used mirrored versions
to check for biases that different orientations can introduce.
Including these mirrored versions, we tested a total of ten
scenarios, which are shown in Figure 5. Each area represents
a 500 meter by 750 meter rectangle with 20 meter by 20 meter
grid-cells. The grids are tilted to represent the path planning
algorithms not being dependent on a perfectly horizontal or
vertical grid, to account for possible shoreline bounds. The
depth values over all scenarios range from 6 feet to 26 feet.

Fig. 5. The ten bathymetry grid scenarios for simulation testing, where the
start and goal regions are along the upper and lower edges, respectively. The
x and y axis markers represent distances in meters.

We conducted a total of 640 Monte Carlo simulation trials at
a depth threshold of 20 feet, using one to four vehicles. These
trials were spread as follows: for each bathymetry scenario,
we ran one lawnmower mission per vehicle number and five
missions each of PBACS, UCB, and MVI per vehicle number.
Each vehicle’s speed is set to 2.4 m/s. For the two MDP
approaches, we use a look-ahead depth of 6 cells, recalculated
every time a vehicle enters a cell. Each mission ends either
when a channel path is found or when the time exceeds 8000
seconds, the length of time for a single vehicle to complete a
full lawnmower over the field.

A. Simulation Results

We only provide a general summary of performance due
to page length constraints; detailed results from each scenario
can be found in [31]. All four approaches consistently found
similar channel paths for all scenarios, with the exception

of timeouts for all single-vehicle MDP runs and intermittent
timeouts for two to four-vehicle MDP and single-vehicle
PBACS runs (Table I). Since all paths found are similar in
their shape and location, we can compare the success of the
missions based on the total time to find the channel and on
how much of this time was spent exploring the channel.

On average, the PBACS algorithm identifies the channel
faster than the other methods for any number of vehicles
from one to four. As shown in Figure 6, the PBACS mission
durations are shorter than the lawnmower mission durations
on average, but there are some outlier cases of long PBACS
missions. The single vehicle case of PBACS times out or
is close to timing out for the very curved channel in the
Bathymetry 6 scenario and for one orientation of the “dead
end” channel in the Bathymetry 4 scenario. The two-vehicle
case of PBACS also has a long mission duration for the
Bathymetry 6 scenario. The three and four-vehicle cases
of PBACS consistently perform better than the three and
four-vehicle lawnmower surveys, except when a vehicle’s
lawnmower start location aligns with a straight channel. The
lawnmower is fastest when this alignment occurs, but since this
cannot be predicted ahead of time on a map with an unknown
bathymetry, the lawnmower method cannot reliably provide
this result. On the other hand, PBACS maintains the same
performance for a channel shape regardless of orientation. The
MDP-based methods take the most time to find the channel
on average and have much higher variability than the other
methods. We can attribute this in part to the limited depth of
search that is possible with on-board microprocessors.

Fig. 6. Means and ranges of mission times across all 10 simulated bathymetry
scenarios for the lawnmower, PBACS, and MDP approaches. The timed-out
missions listed in Table I are not represented in the figure. The dashed black
line shows the duration of a theoretical mission where the lawnmower covers
the entire field. This is not linear due to the field not being evenly divisible
by all of the vehicle amounts, and to account for consensus times. PBACS
has the fastest mission time on average.

TABLE I
FRACTION OF SIMULATED MISSIONS THAT TIMED OUT

Vehicles Lawnmower UCB MVI PBACS

1 0/10 50/50 50/50 13/50
2 0/10 12/50 5/50 0/50
3 0/10 5/50 3/50 0/50
4 0/10 6/50 6/50 0/50

The MDP approaches consistently had the highest fraction of mission time-
outs. Though single-vehicle PBACS missions had some time-outs, this was
reduced to zero in multi-vehicle runs.
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Another measure of mission success is a high percentage of
time spent on the final reported channel path. This means that
vehicles use the mission time more efficiently on the area of
the channel rather than exploring the entire field. In general,
more measurements in the channel area increases the accuracy
of the end result, given that surface conditions may skew
some measurements. As shown in Figure 7, the two MDP-
based approaches consistently have lower percentages than
the other two approaches, as the vehicles explore most of the
field before completing the mission. The lawnmower missions
are generally also low in percentage, with high outliers when
a vehicle’s start location aligns with a straight channel. The
PBACS missions have consistently higher percentages than the
rest of the approaches, with some low outliers including the
very curved channel in the Bathymetry 6 scenario.

Overall, the results shown here indicate that for these types
of environments the optimal amount of vehicles is three when
using PBACS. Using three vehicles avoids the possible long
mission durations of the one and two-vehicle cases. Adding a
fourth vehicle does not offer much improvement in mission
duration, and could potentially slightly increase it as well.
However, adding a fourth vehicle does reduce variability.
These numbers are based on a maximum of one bend in the
channel (scenario 6). If more bends were to be added, it is
possible that four or more vehicles would be optimal instead.

Fig. 7. Ratio of time the vehicles spent on the final channel path to the
total survey time across all 10 simulated bathymetry scenarios. The timed-out
missions listed in Table I are not represented in the figure. PBACS missions
generally have higher ratios than other approaches, as the vehicles are able
to concentrate more quickly on the channel region.

VIII. FIELD EXPERIMENTS

There were two sets of fieldwork trials. We first performed
a comparison study of the four methods with 28 trial runs in
a section of the Charles River adjacent to the MIT Sailing
Pavilion in spring 2022. The quantifiable results of these ex-
periments are provided in Section VIII-A. For the comparison
study, the survey area is a 170 meter by 260 meter rectangular
grid, with 10 meter by 10 meter grid-cells. This area, chosen
for its proximity to the lab space, does not have a clearly
defined channel. However, it contains some straight paths
down through deep areas as well as some curved paths.

We also repeatedly demonstrated the performance of the
PBACS approach to quickly identify a well-defined channel
in two bodies of water: the Charles River on the side opposite
the MIT Sailing Pavilion in summer 2022 using three vehicles,

and the remote Lake Popolopen in New York in fall 2022 using
four vehicles. The results of these eight successful demonstra-
tions are shown in Figure 1c and Figure 1d, respectively.

A. Field Results

As in the simulations, the results for the lawnmower survey
are taken from one run. The results of the PBACS algorithm
are taken from four runs of each vehicle number. We only
have data for the two and three-vehicle cases of both MDP
approaches; these results are taken from two runs each. In all
missions, the final channel paths found were equally viable.
We compare the success of the different missions based on
the amount of time to identify a channel, and on the channel
path shape.

Fig. 8. Field mission time ranges for the MDP and PBACS at the Charles
River location. The means are marked with lines.

Fig. 9. All final paths found during the Charles River field missions, separated
by path planning approach. The x and y axis markers represent distances in
meters. The ground truth grid was averaged from three complete lawnmower
surveys. There is still some variability, ±1 foot, in the water level and surface
conditions of each field mission, which accounts for some of the paths passing
through grid-cells that appear shallow on the plotted grid.

As shown in Figure 8, the PBACS mission duration de-
creases when the number of vehicles is increased, as does the
variation in the mission time. As was found in simulations,
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when a relatively straight channel path exists, the largest im-
provement in time comes from increasing the vehicle amount
from one to two. For this bathymetry, the channel area aligned
particularly well with the two-vehicle lawnmower spacing, so
a channel path was identified relatively quickly. As mentioned
in the simulation results, the lawnmower method performs best
when the spacing works out this way by chance.

As in the simulations, the channel paths found in all field
runs were equally viable. However, the field channel paths
differed from the simulation channel paths in their shape.
This is due to the lack of a clearly defined channel in the
field area as opposed to the simulated scenarios. As shown
in Figure 9, the lawnmower survey and PBACS both have
generally straighter paths than the two MDP approaches, since
the lawnmower survey runs parallel to this direction and since
PBACS checks for the shortest straight paths first. In this way,
PBACS outperforms the MDP methods by providing shorter,
more efficient crossings if they exist.

IX. CONCLUSION
To the best of our knowledge, this paper describes the

first formal investigation into the rapid channel identification
problem. This problem is well suited to the use of adaptive
sampling. However, our results suggest that it requires funda-
mentally different approaches than those used in other adaptive
sampling problems. Through our simulation and field testing
with USVs and single beam altimeters, we found that the
PBACS algorithm on average outperforms the lawnmower and
both myopic MDP reward functions in multi-vehicle cases.
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