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Abstract—Calibrating the extrinsic parameters of sensory de-
vices is crucial for fusing multi-modal data. Recently, event cam-
eras have emerged as a promising type of neuromorphic sensors,
with many potential applications in fields such as mobile robotics
and autonomous driving. When combined with LiDAR, they can
provide more comprehensive information about the surrounding
environment. Nonetheless, due to the distinctive representation
of event cameras compared to traditional frame-based cameras,
calibrating them with LiDAR presents a significant challenge. In
this paper, we propose a novel method to calibrate the extrinsic
parameters between a dyad of an event camera and a LiDAR
without the need for a calibration board or other equipment.
Our approach takes advantage of the fact that when an event
camera is in motion, changes in reflectivity and geometric edges
in the environment trigger numerous events, which can also be
captured by LiDAR. Our proposed method leverages the edges
extracted from events and point clouds and correlates them to
estimate extrinsic parameters. Experimental results demonstrate
that our proposed method is highly robust and effective in various
scenes.

Index Terms—Calibration and Identification, Sensor Fusion,
Range Sensing.

I. INTRODUCTION

THE estimation of extrinsic parameters is a crucial prob-
lem of robotic perception and forms the basis for inte-

grating various sensory inputs such as depth, RGB images,
and other data modalities.

Light Detection and Ranging (LiDAR) is widely utilized in
robotics to enable high-precision mapping and localization [1],
[2] and collision detection [3]. However, LiDAR data solely
provides geometric information, and therefore vision sensors
are frequently employed in conjunction with LiDAR sensors to
address issues such as SLAM degeneracy [4], [5], perception
[6], and dynamic object tracking [7].

Event cameras [8], a recent novel vision sensing technol-
ogy, present unique advantages over conventional frame-based
cameras, including high dynamic range, resistance to motion
blur, and low power consumption. This novel sensor’s efficacy
has been demonstrated in a diverse range of applications such
as feature extraction [9], optical flow estimation [10], auto
focusing [11], classification [12], motion deblurring [13], and
visual odometry [14].
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(a) Extrinsic calibration on-site without a specialized target

(b) Events under changing light (c) LiDAR point cloud

(d) Flawed projection (e) Accurate projection (Ours)

Fig. 1. (a) In this paper, our goal is to develop a target-free method to calibrate
the extrinsic transform of an event-LiDAR dyad. (b) shows an accumulated
event image with a varying luminance. (c) shows a point cloud acquired by
LiDAR. (d) Flawed extrinsic parameters would lead to large misalignments
in projection. (e) Our estimated extrinsic parameters lead to a high-quality
projection result.

Hence, integrating LiDAR and event cameras has become an
appealing approach to generate synergy for advanced sensing
in robotic applications. A recent work [15] has demonstrated
promising results by fusing events and LiDAR data to gener-
ate dense depth measurements. However, integrating the two
devices, i.e., the event camera and the LiDAR, presents a
challenge for calibration. A custom-tailored 3D marker with
a flickering display is proposed in [16] for calibrating the
two devices, while an earlier work relies on the mechanical
parameters for LiDAR to IMU calibration [17]. Despite the
use of sophisticated devices and controlled lighting conditions,
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these methods struggle to produce reliable extrinsic parameter
estimations for the event-LiDAR dyad, as large reprojection
errors between the projected point clouds and events are
observed, as illustrated in Fig. 1d.

To promote future research on this paired system and
explore its potential in robotic applications, a reliable approach
for calibrating the extrinsic parameters of the paired devices
must be developed. Moreover, it is desirable that the event-
LiDAR dyad can be calibrated in a general environment with-
out controlled lighting conditions or specialized equipment.

However, two major challenges hinder the calibration pro-
cess of the event-LiDAR dyad. The first challenge is the inher-
ent difference between the data modalities. The LiDAR utilizes
built-in laser emitters to sense depth, while the event camera
detects brightness variations of natural light. This results in a
radical difference in data format, with the LiDAR producing
3D points and the event camera generating spatiotemporal
events. The second challenge is the sparsity of LiDAR data,
requiring a stationary pose to obtain a dense point cloud.
Meanwhile, event cameras detect brightness changes due to
relative motion or lighting changes. These challenges pose
significant hurdles to achieving an accurate calibration process
for the event-LiDAR dyad.

In this paper, our primary research goal is to propose a
target-free approach to calibrate the extrinsic parameters of an
event-LiDAR dyad using reflectivity information in LiDAR.
We take inspiration from the use of reflectivity information
to calibrate a LiDAR and a frame-based camera in a prior
work [18] and observe that the reflectivity changes in the
LiDAR data match well with the patterns perceived in the
event cameras (cf. Fig. 7). This property allows us to establish
a reliable correspondence between the two data streams and
bridge the modality gap between events and LiDAR data to
estimate the extrinsic parameters between the devices. We
detect edges in the point clouds with reflectivity variations and
associate them with the events captured by the event camera.
The extrinsic transform is then found as the minimizer of the
re-projection error between the point-cloud edges and their
associated event edges. Due to the sparsity of both sensory
modalities, we develop a pipeline (Fig. 2) comprising a static
stage to collect dense point cloud data followed by a moving
stage to establish correspondence between the events and the
point clouds across multiple poses.

In summary, our contributions are:
1) We propose an automatic extrinsic calibration pipeline for

an event-LiDAR dyad, which can be used in general scenes
without requiring controlled lighting or specialized targets;

2) We observe that geometric edges and reflectivity-
changing edges present in the environment well match the
events observed by the event camera, and exploit both types
of edges to establish correspondence between the two data
modalities;

3) We evaluate the consistency and accuracy of our method
in multiple scenes, including indoor and outdoor scenes with
complex geometry and random surface textures in various
lighting conditions. We demonstrate accurate and robust ex-
trinsic estimations in comparison with state-of-the-art meth-
ods.

II. RELATED WORKS

In this section, we briefly outline existing methods for
calibrating both traditional frame-based cameras with LiDAR
sensors and event cameras with LiDAR sensors, while dis-
cussing their primary characteristics and limitations.

A. Extrinsic Calibration of Conventional Camera-LiDAR Sys-
tem

Extensive research has been conducted on extrinsic cal-
ibration methods for traditional frame-based cameras and
LiDAR. These methods can be classified into two categories
based on whether they require a specific target. The first
category comprises methods that use pre-prepared markers
with known geometric parameters, such as standard planar
checkerboards [19], [20] or other custom targets [21], [22].
These methods detect the markers from camera images and
LiDAR point clouds and establish the correspondence between
pixels and 3D points to obtain the extrinsic parameters. The
second category comprises methods that do not require specific
targets. Certain methods within this category use geometric
features in the environment, such as planes and edges, to solve
for extrinsic parameters through mutual information or feature
matching [23], [24]. However, these methods are designed
for traditional frame-based cameras and LiDAR and require
cameras and LiDAR to remain stationary during the calibration
process. Unfortunately, the imaging principle of event cameras
makes these methods unsuitable for use with such cameras.

B. Extrinsic Calibration of Event Camera-LiDAR System

Theoretically, an event camera does not generate events in
a stationary state with constant illumination. To address this
conflict, some event camera intrinsic calibration methods [25],
[26] have been designed with markers featuring blinking
LEDs or screens. This allows event cameras to observe these
markers in a static pose. This same concept has been applied
to the extrinsic calibration of event cameras and LiDAR.
Song et al. [16] proposed a calibration marker with four
circular holes and placed a blinking screen behind it. The
calibration marker and the background can be distinguished in
the point cloud according to the depth, and the event camera
generates events corresponding to the four circular holes in
the calibration marker. However, this method requires a pre-
prepared calibration marker and a display, which isn’t always
feasible or practical. Ta [27] et al. noticed that certain types
of event cameras are sensitive to infrared light, enabling them
to detect the brightness changes caused by LiDAR with the
right wavelength. This property was then used to associate
LiDAR 3D points with 2D events, and the sensors’ extrinsic
parameters were optimized by maximizing the mutual infor-
mation between different sensory measurements. However, this
method requires that the LiDAR’s wavelength be within the
visible spectrum of the event camera and that the LiDAR
be capable of producing brightness changes that are strong
enough to trigger events, which is not feasible in a general
setup.

Most event-based datasets rely on indirect calibration to cal-
ibrate their LiDARs and event cameras. For instance, Gehrig



Fig. 2. Calibration pipeline. First, we maintain the event-LiDAR dyad still to capture a dense point cloud Ps (top left). The edges from Ps are extracted
using both geometry and reflectivity information from the LiDAR data. Then, we rotate the sensing system to capture a sequence of motion data. We estimate
the angular velocity of the rotational motion of the sensing system and derive a set of sharp events by solving a Contrast Maximization problem based on
the acquired events. Subsequently, we use the estimated angular velocity to undistort the (sparse) point cloud data captured in motion and register them to
Ps via Generalized-ICP. Finally, we associate the edges extracted from the point cloud with the sharp events and solve extrinsic parameters based on the
points-to-events association.

t0 t1 tn

Fig. 3. The event-LiDAR dyad keeps static from t0 to t1 to accumulate a
dense point cloud and then move from t1 to tn to collect events. Due to the
imaging property of event cameras, the event rate is low when the sensor is
stationary.

et al. [28] collect the DSEC dataset using two Prophesee
GEN3.1 event cameras and a Velodyne VLP-16 lidar. They
first leverage the reconstructed intensity from events to cali-
brate the stereo event cameras and then peform point-to-plane
ICP algorithm [29] to align the 3D points generated by the
stereo cameras with the LiDAR points to obtain extrinsic pa-
rameters. Zhu et al. [17] collect the MVSEC dataset using two
DAVIS346 event cameras and a Velodyne VLP-16 LiDAR.
They use the standard image output of DAVIS 346 and conduct
standard calibration with the Camera and Range Calibration
Toolbox [30] and then fine-tune the result manually.

III. METHODOLOGY

A. Overview

In this paper, our goal is to determine the extrinsic trans-
form, denoted as L

ET, between an event camera and a LiDAR
in a target-free manner, without the need for specialized equip-
ment, calibration boards, or controlled lighting conditions. To
achieve this goal, we propose a pipeline, as depicted in Fig. 2,

x
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Fig. 4. Upon movement of the event camera, a significant amount of events are
triggered by the 3D edge in space. The resulting spatial-temporal distribution
of these events is displayed on the left. Notably, the projection relationship
between the triggered events and the 3D edge is upheld, as demonstrated on
the right.

consisting of two stages: a stationary stage (from t0 to t1 in
Fig. 3) and a motion stage (from t1 to tn in Fig. 3). During
the stationary stage, the Lidar-Event Camera pair remains
stationary in the environment, capturing a dense point cloud. In
contrast, during the motion stage, the pair is rotated to trigger
a significant number of events that correspond to the edges of
the scene, as shown in Fig. 4. By formulating an optimization
problem that matches the point cloud edges to the events, we
are able to recover the extrinsic parameters.

Based on the observation that both geometric and
reflectivity-changing edges present in the environment can
well match the events triggered when the event camera moves,
we first describe how to detect these edges from the static point
cloud acquired by the LiDAR in Sec. III-B.

In Sec. III-C we introduce a method based on Contrast
Maximization to estimate the angular velocity of the event-
LiDAR dyad when it moves. With this, we can warp the
accumulated event images to obtain sharp event edges and
undistort the (sparse) point cloud acquired during motion. The
undistorted point clouds can then be registered with the static
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Fig. 5. Typical examples of two types of edges. (a) A geometric edge due to
different reflecting angle; (b) A reflectivity edge due to material difference.
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Fig. 6. Incorrect reflectivity due to occlusion. (a) The divergence angle of
LiDAR laser; (b) Low reflectivity area.

point cloud to obtain dense geometric and reflectivity-changing
edges.

In Sec. III-E, we present how to associate the point-cloud
edges to the sharp event edges at a particular frame, as well
as the formulation based on the reprojection error that solves
the extrinsic transform L

ET.

B. Edges Extraction from Static Point Cloud

We observe that event-triggering edges can be classified into
two categories, namely the geometric edges and the reflectivity
edges, as labeled in Fig. 5 and shown in Fig. 7 As the
brightness on either side of these edges differs due to the angle
between them, geometric edges can trigger a large number
of events as the event camera moves. The reflectivity edges
similarly arouse many events because the reflectance values
of the materials on both sides of the edges are different.
Since geometric edges alone are too sparse for establishing
correspondences with the dense events, we aim to use the
reflectivity edges as well, which are also the major trigger of
events.

In order to extract both types of edges from a point
cloud, it is necessary to use the reflectivity information of
the point cloud obtained by LiDAR. However, the reflectivity
information of the LiDAR data can be unreliable when the
laser beam emitted from the LiDAR hit two objects with one
partially occluded by the other; see Fig. 6a as an example.
This is because the laser beam has a divergence angle, and
when an object in the environment is occluded by another, the
laser beam is partially reflected by both of the objects. In such
cases, the reflectivity and depth of the point are determined
by calculating the energy and time of flight of the first echo,

respectively. However, since the first echo accounts for only
part of the echo energy, the calculated reflectivity will be
smaller than the case if the reflectivity is computed based on
the full energy in the general case. This decrease in reflectivity
can result in rapid reflectance changes around the objects as
depicted in Fig. 6b and lead to spurious edges detected by the
Canny edge detector. Note that, however, the depth estimation
is not influenced by the occlusion present in the environment
and thus is reliable.

Drawing from this observation, we first project the 3D point
cloud Ps, which was acquired during the stationary stage, onto
a virtual imaging plane of the LiDAR as illustrated in Fig. 7a
and Fig. 7b. This is followed by employing a median filter to
fill in any empty pixels due to the sparsity nature of the LiDAR
device we use (i.e., Livox Avia). Next, we apply the Canny
edge detector [31] to the reflectivity image to detect reflectivity
edges. Owing to the aforementioned problem, spurious edges
could exit. Since the depth estimation is reliable in these
occluded cases, we make use of the depth information to filter
these spurious edges in the reflectivity image. To this end,
we also apply the Canny edge detector to the depth map and
prioritize the depth edges over those detected on the reflectivity
image. Specifically, if there are edges detected on the depth
map in the surrounding area (5× 5 pixel patch) of an edge
detected on the reflectivity image, we neglect the latter from
the final detection result as shown in Fig. 7c. Finally, we lift
the 2D edges detected to 3D using the inverse projection to
find the corresponding 3D points in the point cloud. When
a 2D edge point corresponds to multiple 3D edge points, we
calculate the center of these 3D points and consider it as the
3D edge point corresponding to this 2D edge point. We denote
by Pe the set of 3D edge points found from the point cloud
Ps.

C. Recovery of Distinct Events under Motion

The event camera outputs an event in an asynchronous
manner whenever the logarithmic value of a pixel’s brightness
change exceeds a specified constant. A single event is de-
scribed by a tuple, ei =(xi, ti, pi), where xi is the 2D coordinate
of the pixel, ti is the timestamp when an event is triggered, and
pi is a binary value that represents the sign of the brightness
change, colored with red and blue in Fig. 7f.

We use the notation [t−k , t+k ] to refer to a time interval
centered at tk with a short duration of ∆t. The events that occur
within this time interval are denoted by the set Ek = {ei}N−1

i=0 .
We accumulate the events in Ek to obtain the event image Ik(x)
in Fig. 7f, which is given by

Ik(x) =
N−1

∑
i=0

piδ (x−xi), (1)

where δ is the Dirac delta function.
Event image Ik(x) is usually blurred due to the continuous

motion of the event camera in time interval [t−k , t+k ]. During
this period, the motion of the camera can be approximated
by a pure 3D rotation and the angular velocity ωk ∈ R3

can be estimated. We employ the Contrast Maximization
framework [32], [33] to recover distinct events triggered by



(a) Depth image (b) Reflectivity image (c) Extracted 2D edges (d) Extracted 3D edges (e) Sharp event image (f) Blurred event image

Fig. 7. The 2D edges are first extracted from (a) and (b), respectively, and then filtered to obtain edges in (c), where purple and blue represent geometric and
reflectivity edges, respectively. (d) The corresponding 3D points that form the edges in the point cloud are identified through projection. With the Contrast
Maximization framework, we can estimate motion parameters ωk and warp events to a sharp event image (e) from the blurred event image (f) directly
accumulated during movement.

edges from the obtained event image. An event ei triggered at
time ti can be warped to time tk, given by

x′i = exp(ω̂k(ti− tk))xi, (2)

where ω̂k represents the cross-product matrix of ωk. By ap-
plying this transformation, we obtain the warped event image:

I(x,ωk) =
N−1

∑
i=0

piδ (x−x′i). (3)

To estimate the angular velocity ωk, an objective function
f (ωk) is built from the warped events and defined as the
variance of the warped event image:

f (ωk) = Var(I(x,ωk)) =
1
|Ω|

∫
Ω

(I(x,ωk)−µI)
2dx, (4)

where µI =
1
|Ω|
∫

Ω
I(x,ωk)dx is the mean of the warped event

image, computed as the average intensity over the image plane
domain Ω. The functional measures the contrast of the event
image with a different angular velocity ωk. The maximizer
ω∗k of this functional can lead to a warped event image Ik =
I(x,ω∗k ) that contains distinct edges, as shown in Fig. 7e.

D. LiDAR Self-motion Undistortion and Localization

We aim to obtain the LiDAR’s pose at time tk so as
to exploit the extracted 3D edge points Pe to establish the
correspondence with the sharpened event image at tk. However,
the acquired point cloud Pk at tk is subject to motion distortion
as the LiDAR moves during this time interval [t−k , t+k ]. The

LiDAR’s motion, denoted as TL t+k
t−k

, can be represented by the

event camera’s motion TE t+k
t−k

in the same time interval and the

extrinsic transform L
ET,

TL t+k
t−k

= TL
E · TE t+k

t−k
= TL

E

[
exp(ω̂k∆t) 0

0 1

]
. (5)

To compensate for the motion of a point Pj ∈ Pk with the
timestamp t j ∈ [t−k , t+k ], we compute the transformation at t j

with TL t+k
t−k

and the time difference t j−tk by linear interpolation.
This way, the point cloud collected during the time interval
[t−k , t+k ] can be undistorted and accumulated at tk. We denote
these undistorted point clouds as P ′k. Finally, we solve the
transformation between P ′k and Ps by the Generalized-ICP
algorithm [34] and the obtained transformation at tk is denoted
as TL tk

t0 .

PL
i

KE · TL −1
E · TL tk

t0 · PL
i

ni

ci

Ek

Fig. 8. After projecting the point PL
i on the 3D edge to the event camera

imaging plane at time tk , we select the nearest m event pixels (blue dots) on
the Ik image and calculate the center ci and normal vector ni.

E. Point Cloud to Events Optimization

In our approach, we aim to associate edges extracted from
the static point cloud with events. To accomplish this, we warp
the events Ek into the event image Ik with the parameter ω∗k
estimated in Sec. III-C. As illustrated in Fig. 8, each point
Pi in the edge point cloud Pe can be projected onto the event
camera’s imaging plane to obtain the corresponding projection
point

pE
i = KE · TL −1

E · TL tk
t0 · PL

i. (6)

This projection process involves several parameters, including
the intrinsic parameters of the event camera KE , the current
extrinsic parameters TL

E , the transformation of LiDAR from
t0 to tk denoted by TL tk

t0 , and the homogeneous coordinates of
the point PL

i.
To ensure that the projection point pE

i is accurately placed
on the edge formed by the neighboring event pixels, we first
search for the m closest event pixels of this projection in Ik.
From these pixels, we calculate their mass center ci and normal
vector ni, respectively. We can then compute the distance of

pE
i to the edge as the inner product of the normal vector

and the difference between the projection point and the mass
center, as expressed in Eq. 7.

d = 〈ni, pE
i− ci〉. (7)

We can sample N points on the edge of the point cloud at
each sampled time interval, and they should satisfy the above
point-to-edge constraint. For K sampled time interval, or K
poses, we can define the cost function as

f ( TE
L ) =

K

∑
k=1

N

∑
i=1
〈ni, KE · TL −1

E · TL tk
t0 · PL

i− ci〉. (8)

We employed a gradient-based non-linear optimization al-
gorithm to minimize the error described in Eq. 8 and determine



Fig. 9. Random initializations (in grey) and converged solutions (in orange)
for extrinsic parameters on scene 4 are presented. It is noteworthy that the
demonstrated extrinsic parameters are devoid of their nominal parts.

the extrinsic transform TL
E . We iteratively solved for TL

E until
convergence, which yielded the calibrated extrinsic parame-
ters. To implement this approach, we chose to use the Ceres
Solver1.

IV. EXPERIMENTS

A. Experimental Setup

Our experimental sensor setup comprises an iniVation
DAVIS346 event camera and a Livox Avia solid-state LiDAR,
as illustrated in Fig. 1a. In our method for extrinsic calibration,
we only use the event sensor in DAVIS346. The frame-based
sensor in DAVIS346 is used for providing reference results
as will be described later. In all experiments, we report the
deviation of the estimated extrinsic transform, L

ET, from the
nominal extrinsic transform which is (0,0,0) for translation
and (0,π/2,π/2) for rotation (ZYX Euler Angle).

Prior to data collection, we calibrated the event camera’s
intrinsic parameters and lens distortion parameters. We con-
ducted data collection in six scenes, where both the event
camera and LiDAR were stationary for ∼20 seconds before
engaging in motion for ∼15 seconds. The movement was a
handheld 3D rotational motion centered on the event camera.
Throughout the six scenes, the event camera and LiDAR
maintained consistent extrinsic parameters.

B. Robustness Analysis

To assess the robustness of our method against different
initializations, we evaluated the extrinsic calibration process
with various initial values randomly sampled around the
nominal extrinsic parameters. In particular, we introduced a 3°
rotation about a random axis to the nominal rotation matrix
and added a random translation vector with a length of 0.2m
to the nominal translation vector. We conducted 40 trials of the
experiment in scene 1, as shown in Fig. 9, with the gray dots
representing the initial values and the colored dots representing
the final convergence values. Our results demonstrate that our
method is highly resilient to different initial values, with the

1http://ceres-solver.org/index.html

Fig. 10. The box plots encapsulate the statistical details, comprising
maximum, third quartile, median, first quartile, and minimum, of extrinsic
parameters over six distinct scenes. It is noteworthy that the demonstrated
extrinsic parameters are devoid of their nominal parts.

Fig. 11. All 3D edge points’ RE and the top 50% points’ RE under the
extrinsic parameters.

final calibration results remaining consistent across multiple
trials.

We also conducted the above calibration experiment (with
40 trials) on all six sets of experimental data using random
initial values according to the randomization process described
above to evaluate the robustness in different scenes. The
statistical details of the convergence values of the algorithm
across the different scenarios are presented in Fig. 10. Our
method produced consistent calibration results across the
different scenarios. We observed that the richness of edges
within different scenes influenced the calibration results. In
particular, scenes with clearer edges led to better outcomes.
This can be attributed to the fact that our method relies on edge
correspondences, and clearer edges provide more accurate
information for the calibration process.

C. Performance Comparison

We conducted a comparative analysis of our method with
two existing methods, namely Song et al.’s method [16]
and the two-stage method. Song et al.’s method involves
the use of a calibration board with circular holes and a
continuously blinking display. The method detects circles from
the accumulated events image and the point cloud and then
calibrates the translation and rotation parameters in stages. In
the two-stage approach, an additional frame-based camera is
introduced, and the event-to-video reconstruction [35], [36] is
employed to obtain the frame image of the event camera. The
extrinsic parameters of the event camera and introduced frame-
based camera are calibrated using the standard stereo camera
calibration method. Subsequently, the frame-based camera and
LiDAR extrinsic parameter calibration method [19] is used
to calibrate the extrinsic parameters between the introduced



(a) Accumulated events image with
varying luminance

(b) Point cloud reflectivity image

(c) Our method (d) Reference method

(e) Two stage method (f) Song et al.’s method

Fig. 12. Visual comparison among reprojection results by our method (c),
the reference method using DAVIS346 frame-based camera (d), the two-stage
method (e) and Song et al.’s method (f). Our method performs on par with
the reference method.

frame-based camera and LiDAR, and finally, the two extrinsic
parameters are combined to obtain the extrinsic parameters
between the event camera and LiDAR. Finally, as a reference,
we leverage the frame-based camera in the DAVIS346 event
camera for calibrating the event sensor and the LiDAR. As the
optical path of the DAVIS346 event camera is shared by both
its frame and event sensors, the extrinsic parameters between
the frame-based sensor and the LiDAR are equivalent to that
of the event sensor and the LiDAR. We use this result as a
reference for evaluation. To calibrate the extrinsic parameters
between the frame-based sensor and the LiDAR, we utilized
the standard calibration board under 20 different poses.

TABLE I
PPRE COMPARISON AMONG OUR CALIBRATION, REFERENCE, THE

TWO-STAGE METHOD AND SONG et al.’S METHOD

Ours Reference Two-stage Song et al.’s

PPRE 3.161 3.726 3.922 4.691

To evaluate the effectiveness of our calibration method, we
conducted experiments in a static environment with varying
luminance. We directly accumulated events to obtain event
image and utilized the extrinsic parameters obtained by dif-
ferent methods to project the point cloud onto the image

(a) Static environment point cloud
and segmented moving object point
cloud (in white)

(b) Event image and overlayed point
cloud projection

Fig. 13. The event camera and LiDAR are fixed within the environment.
Leveraging calibrated extrinsic parameters, we can segment the event-related
point cloud from the overall point cloud.

plane of the event camera to obtain the reflectivity image of
the projected point cloud. Then, we overlaid the reflectivity
image with the event image, as shown in Fig. 12, to visually
check the reprojection quality. Our method exhibited the best
alignment among the evaluated methods, and the calibration
quality closely approximated the reference approach that uses
the frame-based sensor of DAVIS346 for calibration.

We collected a total of 60 poses, uniformly distributed
among 6 scenes, and utilized different extrinsic parameters
to project the point cloud edges onto the imaging plane of the
event camera. Using Eq. 7, we determined the reprojection
error (RE) by calculating the distance between the edge points’
reprojections and the adjacent event pixels. While appropriate
extrinsic parameters ensure that most edge points are situated
near adjacent events, imperfect correspondences between the
point cloud edges and events may result in large RE values
for certain points, even with ideal extrinsic parameters. Fig. 11
presents the distribution of RE values for all points and the
top 50% of points under different extrinsic parameters. Our
method’s extrinsic parameters led to a significant reduction in
RE values for most points. Additionally, we computed the per-
point reprojection error (PPRE) for all points, as demonstrated
in Tab. I. The results reveal that our method produces the
smallest reprojection error compared to other methods.

D. Application

In Fig. 13, we demonstrate the practical utility and efficacy
of our event camera and LiDAR extrinsic parameter calibra-
tion. With the devices fixed in the environment and calibrated
extrinsic parameters applied, we can effectively segregate the
event-related point cloud from the overall point cloud.

E. Limitations

Our method may exhibit reduced calibration accuracy in
situations with sparse or indistinct edges, resulting in less
precise extrinsic parameters and higher reprojection errors.
Moreover, when the sensors are significantly separated [37],
establishing correspondence between event and LiDAR data
becomes challenging, impacting calibration precision.



V. CONCLUSIONS

Our paper proposes an innovative method that utilizes edge
correspondences to achieve the extrinsic calibration of a dyad
of a LiDAR and an event camera. This approach eliminates the
requirement for specialized calibration board or equipment to
change the luminance, allowing us to complete the calibration
process in a general environment. As event camera technology
evolves, our method has the potential to be applied in a variety
of applications involving event cameras and LiDAR fusion.
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