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Abstract— Deep neural network (DNN) models are widely
used in autonomous vehicles for object detection using camera
images. However, these models are vulnerable to adversarial
image perturbations. Existing methods for generating these
perturbations use each incoming image frame as the decision
variable, resulting in a computationally expensive optimization
process that starts over for each new image. Few approaches
have been developed for attacking online image streams while
considering the physical dynamics of autonomous vehicles, their
mission, and the environment. To address these challenges,
we propose a multi-level stochastic optimization framework
that monitors the attacker’s capability to generate adversarial
perturbations. Our framework introduces a binary decision
attack/not attack based on the attacker’s capability level to
enhance its effectiveness. We evaluate our proposed framework
using simulations for vision-guided autonomous vehicles and
actual tests with a small indoor drone in an office environment.
Our results demonstrate that our method is capable of gener-
ating real-time image attacks while monitoring the attacker’s
proficiency given state estimates.

Index Terms— Adversarial Machine Learning, Reinforce-
ment learning, Autonomous Vehicle

I. INTRODUCTION

Machine learning (ML) tools that detect objects using high-
dimensional sensors, such as camera images [1] or point
clouds measured by LiDAR [2], are extensively used in
autonomous vehicles [3], [4]. As vision-based autonomous
vehicles become more integrated into society, it is crucial
to ensure the robustness of these systems, which rely on
various sensor signals in uncertain environments. Analyzing
worst-case scenarios within uncertainties has been a useful
approach to robustify control systems [5] and reinforcement
learning [6]. To follow this approach, researchers have
revealed the vulnerability of machine learning methods,
especially deep learning tools developed for computer vision
tasks such as object detection and classification, to data
perturbed by adversaries. For instance, small perturbations can
be added to images that are unnoticeable to human eyes but
result in incorrect image classifications [7], [8], [9]. Moreover,
recent works have demonstrated adversarial image perturba-
tions against autonomous vehicles, including (1) modifying
physical objects, such as putting stickers on a road [10] or a
road sign [11], to fool an ML image classifier or end-to-end
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vision-based autonomous car; and (2) fooling object tracking
algorithms in autonomous driving systems [12]. Adversarial
machine learning commonly focuses on creating stealthy and
natural-looking perturbations to evade human detection. Such
attacks are designed to resemble out-of-distribution samples
that may occur in real-world environments. As a consequence,
ensuring the robustness of ML-based autonomous vehicle
systems against adversarial attacks has become increasingly
critical.

While the aforementioned adversarial image perturbations
against autonomous cars [10], [11], [12] successfully reveal
weaknesses in vision-guided navigation in autonomous vehi-
cles, these perturbed images are generated offline. However,
offline methods [11], [12] do not consider the effect of real-
time attacks on dynamically changing environments during
driving or flight of the vehicles. To prevent accidents [13]
caused by vision-guided autonomous vehicles due to defective
perception systems and their vulnerabilities, we need to study
attack and defense techniques that go beyond offline methods
for deep neural networks.

There are two approaches to generating adversarial image
perturbations, depending on the attacker’s access to the
victim perception model. In the white-box attack approach,
the attacker has full access to the victim ML classifier (or
object detector) and generates adversarial image perturbations
through iterative optimization [8], [12]. In this method,
images are the decision variables of optimization, and the
training loss function is reused with incorrect labels set by
the attacker. The optimization takes iterative gradient steps
with respect to the image variables calculated using back-
propagation through the known victim ML classifier [8] (or
object detector [12]). On the other hand, in the black-box
approaches [14], [15], the attacker only has access to input
and output pairs of the victim model and must estimate
the gradient. However, estimating the gradients in black-box
attacks requires a large number of samples, which may not
be available from autonomous systems operating in dynamic
environments.

Statement of Contribution: To our knowledge, this paper
is the first to propose a stealthy attack scheme on image
streams used for object detection/tracking in autonomous
vehicles (e.g., self-driving cars and drones) that can be
deployed online, and the physical dynamics of the system
and the varying surrounding environment are taken into
account in the optimization phase of the attack scheme. In
this paper, we present a framework that utilizes generative
adversarial networks (GANs) to generate adversarial images
in real-time scenarios without the need for iterative steps.
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(a) Adversarial patch example.
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𝑙𝑙1~𝑃𝑃1[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]
𝑙𝑙0~𝑃𝑃0[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]
𝑖𝑖𝑖𝑖 𝑙𝑙1 < 𝑙𝑙0 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Stochastic Binary Decision

Use image attack Do not use image attack

𝑃𝑃1 𝑃𝑃0

image attack loss

proficient incapable

← →

(b) Choosing when to use the adversarial image perturbation .

Fig. 1: Image attacks: (a) Adversarial patch in [12], (b) Adversarial perturbation with binary decision in this paper. kf box
denotes Kalman filtered bounding box (BBox).

Building on the approach outlined in [16], our proposed
multi-level framework consists of several components. First,
the GAN functions as an online image generator. Second,
a reinforcement learning agent is trained to misguide the
vehicle according to the adversary’s objective. Lastly, a
binary decision-maker determines when to use image attacks
based on the proficiency of the image attack generator,
given the current state estimate. Our framework provides
a more efficient and practical alternative to iterative white-
box methods for generating adversarial images.

Our contributions can be summarized as follows:
• We propose a real-time adversarial image perturbation

framework that allows for implementation on real-world
robots, in contrast to existing offline methods.

• We introduce a state estimation-based reinforcement
learning approach that learns to decide on the image
frame area to fabricate bounding boxes. This approach
eliminates the need for manual annotation of patch areas.

• We incorporate a constraint on the strength of the
image perturbation, making the attacked image frame
less noticeable and more stealthy compared to existing
methods. This is demonstrated in Figure 1.

II. RELATED WORKS

Adversarial image perturbations have been extensively
studied to attack autonomous vehicles that rely on camera
images for navigation [17], [12], [18]. For instance, in [17],
an optimization problem was formulated to place black marks
on the road, which caused an end-to-end autonomous driving
car to veer off the road in a virtual reality environment. This
approach was inspired by the demonstration of attacking
Tesla’s autonomous driving systems with just three small
stickers [10]. In another work [12], the authors demonstrated
the effectiveness of a white-box adversarial image perturbation
method on object tracking of an autonomous system that uses
Kalman filter (KF) to disrupt the object tracking. This method
was also shown to be effective in attacking an industry-level
perception module that uses vision-based object detection
fused with LIDAR, GPS, and IMU [18].

The aforementioned white-box methods [12], [18] require
full sets of iterative optimization computations for every
new image, rendering them unsuitable for dynamic envi-
ronments with evolving situations and control loops of

autonomous vehicles. These approaches do not consider
the varying computation time of the iterative optimizations,
which might have different termination steps for online
applications. Additionally, the attack methods in [12], [18]
often require additional state information that is not always
readily available, unlike the image stream. For instance,
generating the adversarial patch in Figure 1a in [12] requires
the attacker to know the exact anchor index associated with
the target bounding box (BBox) and the location to place the
BBox. As mentioned in the open review [19] by the authors
in [12], the adversarial patch area was manually annotated
in each video frame.

Although there are various other adversarial image attack
methods available, many of them are offline methods that
require additional information such as labeled training data
to generate adversarial images.

III. REAL-TIME ADVERSARIAL IMAGE ATTACK

Our goal is to develop a real-time solution that can learn to
generate adversarial image perturbations and decide when to
use the attack based on the proficiency of the attack generator,
as illustrated in Figure 1b. The adversarial image perturbations
are designed to manipulate the perception of autonomous
vehicles to misguide them according to the adversary’s
objectives, such as causing collisions or making the vehicle
deviate from its original path. To formally formulate the
problem, We consider the following assumptions and settings.

A. Problem description and proposed framework

We focus on an autonomous vehicle that utilizes an
object detection ML method to track a target object using
camera images, as shown in Figure 2. We used a recent
version of the YOLO object detection model [1], which was
downloaded from [20], for our experiments1. The output of
the object detector network is a multi-dimensional tensor
that is processed using non-max suppression [1] to obtain a
list of bounding box coordinates. The box with the highest
confidence score for the target class is then selected from
the list of detected bounding boxes to generate tracking

1Another popular object detection model, Faster R-CNN, can be attacked
using similar White box attack method as in [21]. Hence, our proposed
method can be implemented with Faster R-CNN.

2



control commands. The autonomous guidance system uses
the vehicle’s actuators, including the acceleration pedal,
brake, and steering wheel, to keep the target’s bounding
box centered in the camera view and within a specified size
range. Consequently, the vehicle moves towards and tracks
the target object.

Vehicle
Environment

Object
Detection

Tracking
Controller+

vehicle state
camera image

target
bounding box

adversarial 
perturbation

adversarial 
reward

velocity
command

Malware
camera
image

Fig. 2: Attacker (malware) and victim system (guidance)

We assume the adversary’s objective is to disrupt the
target tracking control in Figure 2. The attacker is assumed
to be embedded as Malware and has access to the image
stream, enabling them to perturb the input to the object
detection module of the victim system, as illustrated in
Figure 2. Given the image streams denoted as x0,x1, ...,xt , the
attacker’s goal is to generate adversarial image perturbations
w0,w1, ...,wt that mislead the victim vehicle according to
adversarial objectives expressed in terms of adversarial
rewards r1,r2, ...,rt . The reward function is based on the
vehicle’s state, such as position, velocity, or collision states,
and actions that involve the coordinates used to fabricate
the bounding boxes through the image attack generator, as
shown in Figure 3. These rewards are crucial for applying
reinforcement learning (RL), which learns the correlation
between actions and rewards for different states of the system.
In this framework, a binary decision-maker determines when
to attack based on the attack proficiency (represented as loss
in Figure 3). The problem addressed in this framework can
be summarized as follows:

Dynamic 
autoencoder

Reinforcement 
learning

Image attack
generator

Binary
decision maker

Environment

state estimate

attack
coordinate

camera image frame

adversarial 
perturbation

adversarial reward

0

loss

Fig. 3: Image attack framework with binary decision maker.

Problem: Develop machine learning methods that learn
to increase the sum of rewards {rt} for the adversary by
generating adversarial perturbation {wt} while selecting when
to use the attack at the time step t, as shown in Figure 3.
The ML method assumes to use only the image stream {xt}
from the autonomous vehicle that has a guidance system and
malware shown in Figure 2.

B. Online image attack with binary decision making

Our framework involves binary decision-making that
depends on the proficiency of the image attack generator. This
type of decision-making belongs to the multi-armed bandit

class of problems [22], where the decision-maker selects
the most profitable action. However, unlike the classical
multi-armed bandit, where the rewards are generated from
independent-stationary distributions, our decision-maker must
consider non-stationary system state distributions. Specifically,
given the attack coordinate chosen by RL and the state
estimate from the dynamic autoencoder, the decision-maker
must determine whether using the attack is profitable or not.
To tackle this challenge, the authors in [23] used a deep neural
network (DNN) to learn the correlation between the state,
decision, and profit. They also employed random dropout [24]
with the DNN to estimate the profit distributions for each
decision. This multi-armed bandit algorithm, which uses
DNN with random dropout, is known as Neural Thompson
Sampling (NTS).

We sought to implement NTS for binary decision-making,
using the proficiency of the image attack generator as the
profits in the multi-armed bandit. While the direct application
of NTS to our framework is appealing, there is a causality
issue to consider. Specifically, the loss value is independent
of binary decision-making, as it depends on the attack
coordinates and the image frame. In our experiments, we
tested NTS, but it did not demonstrate the desired behavior
of selecting to attack when the expected loss value is low.

Therefore, we propose an alternative method to NTS that
involves comparing two conditional expectations. Specifically,
our method compares E[lt |ht ,at ] with E[lt |ht ]. Here, lt
represents the loss function used to measure the proficiency
of the image attack GAN. The state estimates that are low-
dimensional representations of all previous observations,
denoted by ht , are obtained using the dynamic autoencoder
shown in Figure 3. Since the true states st are only partially
observed through the image xt , ht provides a better estimate
of the state. Additionally, at represents the action determined
by reinforcement learning agent in Figure 3. This action is
the attack coordinate, which is the position and size of the
fabricated bounding box. The goal of this approach is to
compare the expected loss given the attack coordinate at
suggested by RL with the expected loss averaged over all
other possible attack coordinates. If the expected loss given
at is lower than the average loss, then at is considered a
promising attack coordinate to be used at this point. We refer
to this decision-making method as Conditional Sampling
(CS). The loss estimation and decision-making procedure of
CS are as follows:
Estimation: The estimation for CS involves the following
optimizations:

argminθ dec‖lt − l̂0(ht ;θ
dec)‖2,

argminθ dec‖lt − l̂1(ht ,at ;θ
dec)‖2,

(1)

where l̂0 and l̂1 are DNNs trained to predict the loss functions
values lt given the state estimate ht and the attack coordinate
at respectively. The DNNs have parameters denoted as θ dec

that need to be optimized.
Decision making: The decision to launch an attack is
determined by random sampling. To obtain sample image
attack losses l̃0 and l̃1, we follow the same approach as
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in NTS, using the current state estimate ht and the attack
coordinate at . Specifically, we generate output samples by
applying random dropout in DNNs, i.e., l̂0 and l̂1, and estimate
Gaussian distributions based on these samples. We then
sample from the estimated Gaussian distributions to obtain
l̃0 and l̃1, which can be expressed as:

l̃0 ∼ l̂0(ht ;θ
dec) and l̃1 ∼ l̂1(ht ,at ;θ

dec). (2)

Further details of the sampling procedure can be found in
[23]. To make a decision, we select the option with the
lower loss value, i.e., if l̃0 < l̃1, then the attack will not be
launched in the time step; otherwise, the image attack will be
performed. The conditional probability distributions for the
samplings are denoted as P0[lt |ht ] and P1[lt |ht ,at ], as shown
in Figure 1b.

The proposed framework integrates estimation models
for binary decision-making within computation networks
consisting of DNNs, as depicted in Figure 4. A major
advantage of this framework is the ability to generate
real-time adversarial image perturbations through recursive
computations. The process involves feeding the image xt at
time t into encoder networks, Enc0 and Enc1, for dimension
reduction. Enc0 is used for state estimation, while Enc1
generates the perturbed image wt . The dynamic autoencoder
comprises Enc0, GRU (gated recurrent unit), and Dec0
(decoder). The GRU recursively updates the hidden state
ht using the encoded image Enc0(xt) and the high-level
attack action at , as shown in Figure 4. The estimated state
information in ht is then used by the actor (policy) to generate
the high-level action, i.e., at = Actor(ht).

Enc0 GRU𝐱𝑡 sht

Dynamic auto encoder

`

𝑟𝑡

Dec0 Enc1 Dec1

Image attack generator

𝐚t𝐡t

𝐰𝑡

𝑙t

Reinforcement learning

Actor
NN

Critic
NN

𝐚t

𝐡t

Binary decision maker

𝑃[𝑙t|𝐡t] 𝑃[𝑙t|𝐡t, 𝐚t] 𝑧𝑡

Fig. 4: Multi-level image attack computation network. The
computation network for multi-level image attack consists of
image encoders and decoders within the dynamic autoencoder
and image attack generator, which are adapted from [25].

As shown in Figure 4, the adversarial image perturba-
tion wt is generated by Dec1 using the high-level attack
action at and another encoded image from Enc1, i.e., wt =
Dec1(Enc1(xt),at). The perturbed image frame is obtained
by applying the perturbation to the original image with a
scale factor α , i.e., x̃t =max(min(xt +αwt ,1),0). The binary
decision maker selects the decision variable zt using the
conditional sampling (CS) described in (2), where zt = 1
indicates that the attack is used and zt = 0 indicates that the
attack is not used.

The recursive process of generating adversarial image
perturbation using only camera image is summarized in
Algorithm 1. The entire computation at each time-step uses

only the current observation or the state values in the previous
time-step without iterative optimization, enabling real-time
generation of image attacks.

Algorithm 1 Recursive Image Attack

Initialize: t← 0 ; load the pre-trained parameters of the
recursive attack networks.
repeat

Generate attack command using RL policy (Actor)
at ← Actor(ht)

Encode the observed image xt from the environment
ζt ← Enc1(xt)

Generate adversarial image perturbation
wt ← Dec1(ζt ,at)

Feed wt to the environment and get new image xt+1
xt+1,st+1,rt ,done← Environment(st ,wt)

Recursively update the state predictor ht+1 with xt+1
ht+1←GRU(ht ,Enc0(xt+1),at)

Sample from the conditional distribution as in (2), i.e.,
l0 ∼ P0[lt |ht ] and l1 ∼ P1[lt |ht ,at ].

Use wt if l0 < l1. Otherwise do not use it.
until done is True, i.e., the episode terminates with a
terminal condition.

C. Multi-time scale optimization to train the attacker

We employ a multi-level stochastic optimization approach
that separates the time scales of the updates for the various
components depicted in Figure 3. Our stochastic optimization
method trains the multi-level image attack computational
networks illustrated in Figure 4. During training, the learning
components and the environment are coupled and update their
parameters simultaneously. The choice of time scales for the
updates can have a significant impact on the behavior of the
multi-time scale optimization process. For instance, in actor-
critic [26], the critic has a faster update rate than the actor.
In contrast, in the generative adversarial network described
in [27], the discriminator has a faster update rate than the
generator. Following the heuristics and theories described
in [26], [27], we set slower parameter update rates for the
lower-level components.

Let us denote the parameters of the various components
as follows: θ

img
n represents the parameters of Enc1(·) and

Dec1(·), θ
sys
n represents the parameters of the dynamic

autoencoder comprising Enc0(·), GRU(·), and Dec0(·), θ actor
n

represents the parameters of the actor denoted by Actor(·),
and θ critic

n represents the parameters of the critic denoted
by Q(·, ·), which is the action-value function for policy
evaluation. We update these parameters using different step
sizes, based on the pace of the update rates, as follows:

θ
img
n+1 = θ

img
n + ε

img
n Simg

n (Mtrajectory)

θ dec
n+1 = θ dec

n + εdec
n Sdec

n (Mdecision)
θ actor

n+1 = θ actor
n + εactor

n Sactor
n (Mtransition)

θ critic
n+1 = θ critic

n + εcritic
n Scritic

n (Mtransition)

θ
sys
n+1 = θ

sys
n + ε

sys
n Ssys

n (Mtrajectory)

(3)

where the update functions Simg
n , Ssys

n , Sactor
n , Scritic

n and Sdec
n

are stochastic gradients with loss functions (to be described
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in following sections) calculated with data samples from the
replay buffers, i.e., Mtrajectory, Mtransition, and Mdecision. The
replay buffers store a finite number of recently observed
tuples of (xt ,at), (ht−1,at ,rt ,ht), and (ht ,at , lt) in Mtrajectory,
Mtransition, and Mdecision respectively.

The step sizes for the various components of our multi-time
scale optimization, namely ε

img
n , εdec

n , εactor
n , εcritic

n , and ε
sys
n ,

are determined as follows. The generation of an adversarial
image perturbation depends on the generator with parameter
θ

img
n , the actor that determines the attack coordinates with

parameter θ actor
n , and the binary decision maker that chooses

whether to use the adversarial perturbation or not with
parameter θ dec

n . As the generation of the adversarial image
perturbation and its use are governed by a policy with
parameters θ

img
n , θ actor

n , and θ dec
n , we set faster update rates

for the parameters that are relevant to policy evaluation, i.e.,
θ critic

n and θ
sys
n . Hence, the step size follows the diminishing

rules as n→ ∞

ε
img
n

εdec
n
→ 0

εdec
n

εactor
n

→ 0
εactor

n
εcritic

n
→ 0

εcritic
n

ε
sys
n
→ 0, (4)

This is because we intend to set slower update rates for
the lower-level components of the policy that generate data
for the upper-level components of policy evaluation. The
multi-time scale stochastic optimization is summarized in
Algorithm 2 in the appendix of the extended version [28].

We describe the loss functions of the stochastic gradients
for the multi-level stochastic optimization as follows:

1) Image attack generator: We utilize a white box model
as a proxy object detector to train the attack generator.
Specifically, we use the recently released version of YOLO,
called YOLOv5 [20], for this purpose.

(a) image (b) perturbation wt

𝑥𝑥

𝑦𝑦

𝑤𝑤

ℎ

(c) perturbed image

Fig. 5: Fabrication of the bounding box at (x,y,w,h) with wt

Our image attack generator fabricates bounding boxes
at the target coordinates, injecting adversarial perturbations
as shown in Figure 1b. Using reinforcement learning, the
high-level attacker (reinforcement learning agent) selects
the target coordinates to place the fabricated bounding
boxes accordingly. Given the high-level attack at ∈ [0,1]×
[0,1]× [0,1]× [0,1] representing the coordinates x and y
of a bounding box, its width and height, the image attack
network aims to delete all other bounding boxes but keep
the one corresponding to the high-level attack as illustrated
in Figure 5. By performing optimization iterations (500
iterations in Figure 5), we can delete the existing bounding
box and place a bounding box according to the target
coordinates.

The iterative optimization approach that creates a bounding
box for online image attacks, as shown in Figure 5, is not

suitable as it must be performed within a fixed time step of
the control loop in the autonomous system. In our framework,
we instead train an attack generator that minimizes the loss
function through the image attack generator:

argminθ img limg
(

w(x;θ
img),x,a

)
, (5)

where w(x;θ img)) := Dec1
(
Enc1(x;θ img),a;θ img

)
, and x

and a are sampled from Mtrajectory. This approach differs from
the optimization over image space that is suitable for one-
time use, i.e., argminw limg(w,x,a). The stochastic gradient
Simg

n (Mtrajectory) in (3) is associated with the loss function
in (5). To fabricate the detected bounding box, i.e., inverted
mapping from the fabricated detection to the input image,
we use the loss function employed from [1], where the same
loss function is used to train the YOLO detector. The specific
loss function in (5) from [1] is described in the appendix of
the extended version [28].

2) System identification for state estimation: Due to
incomplete observations of the state st through image stream
xt , we need to identify the system to construct the estimator.
The system identification determines the parameter that
maximizes the state estimate’s likelihood. We maximize
the likelihood of state predictor by minimizing the cross-
entropy error between true image streams and the predicted
image streams by a stochastic optimization which samples
trajectories saved in the memory buffer denoted by Mtrajectory
with a loss function to minimize.

The loss function lsys(·) is calculated using the sampled
trajectories from Mtrajectory We calculate the loss function as

lsys(Mtrajectory;θsys) =
1
M

M

∑
m=1

H(Xm, X̂m) (6)

where Xm = (x0, . . . ,xT )m is the mth sample image stream
with time length T . Here, H(·, ·) is average of the binary
cross-entropy h(·, ·) between the original image stream Xm
and the predicted image stream X̂m, which is computed over
the RGB pixel values of the image streams.

We generate the predicted trajectory, X̂m = {x̂1, . . . , x̂T},
given the original trajectory with image stream Xm =
(x0, . . . ,xT )m and action stream (a0, . . . ,aT )m by processing
them through the encoder, GRU, and the decoder as

ht+1 = GRU(ht ,Encoder1(xt),at), h0 ∼N (0,I),
x̂t+1 = Decoder1(ht+1).

With the loss function in (6), the stochastic gradient for the
optimization is defined as Ssys

n =−∇θsys l
sys(Mtrajectory;θsys).

3) Actor-Critic policy improvement: The attack coordinate
at is determined by the policy, i.e., at = µ(ht ;θactor) that maps
the state estimate ht into an action at . To improve the policy,
the critic evaluates the policy relying on the principle of
optimality [29]. We employed an actor-critic method [30] for
the reinforcement learning agent in the proposed framework.
The critic network is updated using the state estimate ht to
apply the optimality principle with the following stochastic
gradient as Scritic

n = −∇θcritic lcritic(Mtransition;θcritic) with the
following loss function

lcritic(Mtransition;θ
critic) =

1
M

M

∑
m=1

(Q(hm,am;θ
critic)−Qtarget

m )2,

5



where Qtarget
m = rm + γQ(h′m,µθ (h′m);θcritic) and the state

transition samples, i.e., ((h,a,h′,r)0, . . . ,(h,a,h′,r)M), are
sampled from the replay buffer Mtransition.With the same state
transition data samples, we calculate the stochastic gradient
for the policy update as Sactor

n = ∇θactor J(Mtransition;θactor)
with the following estimated value function as

J =
1
M

M

∑
m=1

Q(hm,µ(hm;θactor);θcritic),

where Q(h,a;θcritic) indicates the value of taking action a
at the state estimated as h.

4) Loss estimators for the binary decision making:
The stochastic gradient Sdec

n in (3) is associated with the
two optimizations described in (1). The entire stochastic
optimization with the aforementioned stochastic gradients is
summarized as Algorithm 2 in the appendix of the extended
version [28].

IV. EXPERIMENTS

We tested the proposed attack method to determine its
ability to mislead autonomous vehicles in line with adversarial
objectives. The adversary relied solely on image frames as
sensing input and an uncertain actuator, in the form of an ad-
versarial perturbation, to manipulate the paths of autonomous
vehicles. Despite the adversary’s limited sensor and uncertain
actuator, our proposed algorithm successfully misled the
autonomous vehicles in various simulation environments
shown in Figure 6 (and in illustrative videos2).

(a) Drone to a car (b) Cars and trucks

(c) Following a car (d) Following a car in traffic

Fig. 6: Simulation environments.
All our experiments consider attacking a vision-based

guidance system depicted in Figure 2 that uses YOLOv5
object detector [20]. To simulate the vehicle environment, we
employed a game development editor (Unreal [31]) that is
capable of building photo-realistic 3D environments, along
with plug-in tools such as AirSim [32] and CARLA [33].
For the attack algorithm implementation, we used the robot
operating system (ROS) to simultaneously implement the
attack model learning and executing the attack using multiple

2(a) Drone to a car at link1; (b) Cars and trucks at link2; (c) Following
a car at link3; (d) Following a car in traffic at link4

modules (nodes) as illustrated in Figure 7. All experiments
were conducted on a desktop computer equipped with a GPU
capable of rendering the 3D environments and performing
DNN training.
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Fig. 7: The framework implemented using ROS.

A. Baseline method

Our proposed framework was compared to an image
attack method presented in [12], [18], which uses iterative
optimization with the image tensor as the decision variable.
The effectiveness of these methods depends on the number
of iterations and the scale factor α , which limits the size of
the adversarial perturbation as x̃t = max(min(xt +αwt ,1),0).
Previous works [12], [18] developed such methods as offline
approaches. When an infinite number of iterations are allowed,
the offline method can arbitrarily fabricate the bounding box,
as illustrated in Figure 5. To the best of our knowledge, no
online image attack methods have been applied to autonomous
vehicles. Therefore, we set a baseline method by applying
the iterative optimization method as an online algorithm. In
addition to the number of iterations, the scale factor α is
a critical hyperparameter, as a higher value can increase
the attacker’s ability to fabricate bounding boxes, but it also
reduces the stealthiness of the attack. For example, we collect
the performance of the base line method with varying number
of iteration and the scale factor as shown in Figure 8. For

Attack scale factor, 𝛼𝛼

N
um

be
r o

f o
pt

im
iza

tio
n 

ite
ra

tio
ns

Fig. 8: Terminal rewards in the 3rd environment (Figure 6c)
of the baseline method with different of α and the iterations.

the first three experiments (the first three rows in Table II),
we set the hyperparameter α = 0.8 and 20 iterations for the
baseline method (Iterative optimization). The optimization
method generated image perturbations approximately every
1 second. However, for our proposed methods, including
Generative Attack, Recursive Attack, Neural Thompson, and
Conditional Sampling, we set α = 0.05 for stealthiness of
the image attack. Additionally, the baseline method required
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manual annotation of the bounding box to be fabricated,
as described in [19]. Therefore, we manually placed the
target area to fabricate the bounding box according to the
adversarial objectives, such as placing the bounding box to
the left when the adversary needs to move the vehicle to
the left. In the last experiment, we set the scale factor of the
baseline method equal to that of our proposed methods, i.e.,
α = 0.05. For α values greater than 0.2, the baseline method
was as effective as our proposed methods.

B. Ablation study

We evaluated the proposed framework by conducting
ablations, as presented in Table I. To test the effectiveness
of each method, we conducted experiments in four different
environments illustrated in Figure 6. In the 1st environment
(Figure 6a), we set the reward as the distance between the
host vehicle and the target object. Thus, the adversary can
increase the distance to move the vehicle away from the
target. In the 2nd environment (Figure 6b), the reward is set
as the horizontal coordinate of the host vehicle with respect
to the target object. In this scenario, learning to increase
the horizontal coordinate would lead to a crash. In the 3rd

environment (Figure 6c), the adversary learns to increase the
distance from the front car. In the fourth environment, we
rewarded the learning agents when the distance between the
host vehicle and the front car was greater than 50 meters.
As shown in Table II, the four environments have different
object tracking methods. The first two environments use only
YOLO detection. In the 3rd environment, a Kalman filter is
used to filter out the changes of the bounding boxes that
is the outcome of the detecion. In the last environment, an
multi-object tracking (SORT [34]) is implemented to deal
with multiple cars in the traffic. We report the performance
of the trained attackers (listed in Table I) with the last ten
episodes of the entire 200 training episodes in Table II.

Generative State Attack
Methods network estimator switch

(Y/N) (Y/N) (Y/N)
Iterative optimization N N N
Generative attack Y N N
Recursive attack Y Y N
Neural Thompson sampling Y Y Y
Conditional sampling Y Y Y

TABLE I: List of components for ablation study.

In comparison to the baseline iterative optimization method,
the recursive attack methods demonstrated higher terminal
rewards, collision rates, and terminal distances. The incorpo-
ration of the state estimator improved the overall performance
in terms of terminal rewards. Since we desire infrequent use of
the image attack for stealthiness, we measure how frequently
the attacks are used, i.e., attack rate. The utilization of binary
decision-makers such as Neural Thompson Sampling (NTS)
or the proposed conditional sampling resulted in decreased
attack rates and the difference between the attacked images
and the original images in terms of L2 norm and SSIM loss.
Moreover, our proposed conditional sampling method showed
higher terminal rewards compared to NTS.

Moreover, the conditional sampling shows the higher use
of the attack when the image attack loss is lower as we
intended as shown in Figure 9. In contrast, the Thompson
sampling (NTS) shows the opposite correlation, i.e., using
the image attack when the loss values are higher. Further
information regarding the simulations can be found in the
appendix of the extended version [28].

Image attack loss

At
ta

ck
 ra

te

Fig. 9: Attack rate vs. Image attack loss of the 5 training
experiments with the 2nd environment (Figure 6b).

C. Real robot experiment
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Stochastic Binary Decision

𝑃𝑃1 𝑃𝑃0
proficient incapable

Attack on or off?

Fig. 10: Attacking UAV’s visual-tracking of a bottle.

We implemented the proposed framework with a miniature
drone (DJI Tello) to validate its efficacy in real-world
scenarios, as depicted in Figure 7. The drone employs IMU,
optical-flow, and barometer for velocity estimation and to
follow velocity commands. The drone was connected to a
desktop computer via wifi-networks, as shown in Figure 10.
The objective of the online image training was to crash the
UAV by teaching it to fabricate the bounding box. In the
linked video3, the online training lasted for ten minutes, and
the UAV crashed successfully.

V. CONCLUSION

This work showed a new online image attack framework
that improves the iterative optimization-based methods that
are more suitable for offline attack generation. In our proposed
framework, the image attacks can be generated in real-time
using only the image stream collected from the autonomous
vehicle. Furthermore, the proposed conditional sampling for
the binary decision making whether to use the attack (or not)
improves the stealthiness by waiting until the proficiency
increases. This work will serve as a stepping stone towards
strengthening the perception in autonomous vehicles by
learning worst-case attack scenarios.

3Illustrative video available at https://youtu.be/4w0pvQRCVHc
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Environments Object Tracking
Attack SSIM L2 Collision Terminal Time AVG

Methods rate loss loss rate reward reward
(%) (10−2, avg) (10−4, avg) (%) (avg±stdev) (avg±stdev)

Normal - - - 0 15.7±0.0 1.29±0.07
Iterative optimization 100 13.6 12.1 0 15.7±0.1 1.29±0.07

Drone to a car YOLO Generative attack 100 8.74 3.94 74 30.1±8.3 2.58±0.80
(Figure 6a) detection only Recursive attack 100 17.4 7.61 76 29.7±8.1 2.16±0.45

Neural Thompson 31.7 6.81 2.58 0 21.5±10.5 1.64±0.49
Conditional sampling 55.3 9.15 4.11 52 27.8±9.2 2.16±0.57
Normal - - - 0 1.8±1.8 0.10±0.15
Iterative optimization 100 16.7 30.3 0 −0.4±2.3 −0.03±0.13

Cars and trucks YOLO Generative attack 100 7.52 2.68 18 5.4±13.3 0.29±0.75
(Figure 6b) detection only Recursive attack 100 7.26 2.74 36 9.4±6.3 0.87±0.43

Neural Thompson 49.3 4.94 1.77 8 6.0±9.2 0.25±0.46
Conditional sampling 42.7 1.97 0.81 20 2.6±10.6 0.10±0.53
Normal - - - 0 0±0 4.25±0.04

YOLO Iterative optimization 100 9.17 7.58 30 3.0±4.6 4.17±0.23
Following a car detection Generative attack 100 5.96 3.16 66 7.0±4.4 2.92±1.10

(Figure 6c) and Recursive attack 100 4.88 2.61 74 7.4±4.4 2.92±1.33
Kalman filter Neural Thompson 33.5 1.66 0.96 52 5.2±5.0 4.01±0.39

Conditional sampling 72.8 3.10 2.06 76 7.6±4.3 4.27±3.54
YOLO Normal - - - 6 3.7±4.2 2.28±0.30

detection Iterative optimization 100 0.0 0.0 4 3.2±3.5 2.24±0.34
Following a car and Generative attack 100 20.1 9.1 30 10.4±3.7 0.97±0.72

in traffic (Figure 6d) multi-object Recursive attack 100 23.5 10.6 2 9.9±2.2 0.63±0.60
tracking Neural Thompson 34.6 8.1 3.7 10 8.1±5.3 1.39±0.83
(SORT) Conditional Sampling 49.6 12.4 5.56 10 9.3±4.8 1.09±0.79

TABLE II: Ablation study with the last 10 episodes in 5 random training experiments, i.e., N = 50. The stealthiness is evaluated by
Attack rate, SSIM loos, and L2 loss. And the attacker’s performance to disrupt is evaluated by Collision rate, Terminal reward, and Time
averaged reward.
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APPENDIX

A. Image attack loss function.

The loss function of the adversarial perturbation w given
an image x and an action a that describe the target bounding
box coordinates (x,y,w,h) is as follows:

ladv(w;x,a)

= λcoord
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(7)

where 1obj
i, j,k = 1 if the target object is associated with the grid

of the index i, j,k, and otherwise, it is zero. Also, 1no obj
i, j,k = 1

if 1obj
i, j,k = 0, and otherwise it is zero. In (7), the first two

terms are to minimize the error between inferred coordinates
of the bounding box and the target coordinates x,y,w,h that
are mapped from at through linear equations. The first two
terms are added into the loss function with the weight λcoord.

In (7), the third and the fourth term count the error in
having a target object associated with each anchor box with
index i, j,k. The fourth term is added to the loss function with
the weight λno obj. The values of the indicator 1obj

i, j,k given the
target coordinate (x,y,w,h) is determined using the following
procedure.

First, we select (i′,k′) through the minimization below

i′,k′ = argmini,k

(√
wtemplate

i,k −
√

w
)2

+

(√
htemplate

i,k −
√

h
)2

Then, the nearest anchor index j′ can be found easily from the
Si×Si anchor grid using simple discretization, i.e., dividing
the coordinates by the strides of the anchor grids.

B. Training algorithm.

The entire stochastic optimization with the aforementioned
stochastic gradients is summarized as Algorithm 2.

C. Simulation environment settings.

1) Environment 1: Moving an UAV away from the scene:
The 1st scenario of image attack is on a UAV moving towards
a car at an intersection, as shown in Figure 12a. In normal
operation, the UAV stops at the detected target as shown in
Figure 12b. In this scenario, the attacker’s goal is to hinder the
tracking controller and eventually move the UAV away from

Algorithm 2 Multi-level Stochastic Optimization

Input: recursive attack Networks in Figure 4,
autonomous vehicle environment, proxy object

detector YOLO,
Replay buffers: Mtrajectory and Mtransition.

Output: Fixed parameters.
Initialize: t← 0 ; n← 0 ; initialize the parameters of the
recursive attack networks.
repeat

repeat
Generate and feed the attack into the environment
and update state predictor

at ← µ(ht)
wt ← Decoder1(Encoder1(xt),at)
xt+1,st+1,rt ,done← Environment(st ,wt)
ht+1←GRU(ht ,Encoder0(xt+1),at)

Add data sample to replay buffers
Mtransition← (ht ,at ,rt ,ht+1)
Mtrajectory← (xt ,at)

Update the parameters with samples from Mtransition
and Mtransition using the stochastic update in (3).
t← t +1; n← n+1

until done is True, i.e., the episode terminates.
Start the next row of Mtrajectory for a new trajectory
(episode) and pop-out the oldest trajectory row in the
replay buffer.
Reset Environment and t← 0

until the performance meets the requirements.
Fix the parameters.

the target. Therefore, the reward function is set to promote
the desired behavior as

r(st ,at) =

{
distance from the target if done
speed of the UAV otherwise.

We use the following termination conditions

done(st ,at) =


True if distance from the target > 40 m
True if speed of the UAV < 0.1 m/s
True if the UAV collides
False otherwise.

It can be seen from the above reward function that the best
possible reward is 40 when the UAV moves away from the
target greater than 40 m. And on normal tracking without
image attack, the UAV moves to the target and stops at the
distance of 15 m from that target. After every termination,
the UAV restarts from an initial position with a bounded
random position displacement, i.e., uniformly random from
[−2.5,2.5] for the vertical position and from [−5,5] for the
lateral position.

2) Environment 2: Moving an UAV to a lateral direction:
The 2nd scenario of image attack is also on a UAV moving
toward a car at an intersection. There are more cars and two
people at the intersection compared to the previous scenario
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as shown in Figure 13a. The UAV moves to a car that has the
greatest detection-confidence out of the 5 ground vehicles as
shown in Figure 13b. In normal operation, the UAV stops at
the target. Similar to the previous scenario, the attacker’s goal
is to hinder the tracking controller and eventually move the
UAV to a designated lateral direction (left or right). Therefore,
the reward function is set to promote the desired behavior as

r(st ,at) =

{
lateral coordinate if done
lateral velocity otherwise.

It can be seen from the above reward function that the desired
behavior attained by maximizing the reward is to move in a
direction that maximizes the lateral coordinate, i.e., moving
to the left. We used the same termination conditions as
Environment 1.

We tested a variation of the scenario to see whether the
attacker behaves differently for different setting of reward
function. Instead of making the UAV move to the left, we
set the reward function to move the UAV to the right. The
new reward function is as follows:

r(st ,at) =

{
−lateral coordinate if done
−lateral velocity otherwise.

As the learning curves show in Figure 11, the two different
reward function results in different terminal positions (left
vs. right).

Fig. 11: Effects of the two reward functions: Left vs. Right.

3) Environment 3: Collision of a car follower using
Kalman filtered object detections: In this scenario, we tested
the attacker’s capability with an object detection strengthened
using a Kalman filter. As shown in Figure 14a, we simulated
a car chasing scenario where the guidance system uses a
filtered bounding box in Figure 14b using a Kalman filter
(KF), similar to the KF used with an object detector in a
previous work [12]. In normal operation, the autonomous car
follows the car at the front. In this scenario, the attacker’s
goal is to cause a collision by fooling the object tracking.
For this goal, we used the following reward function as

r(st ,at) =

{
10+ speed of the car if the car collides
speed of the car otherwise.

We also used the following termination conditions

done(st ,at) =


True if the car collides
True if speed of the car < 0.1 m/s
False otherwise.

4) Environment 4: Lost tracking of a car follower that
uses multi-object tracking method: In this scenario, we
tested the attacker’s capability to interrupt the tracking of
the car follower. The car follower uses multi-object detection
(SORT [34]) instead of the Kalman filter that was used in
Environment 3. In normal operation, the autonomous car
follows the car at the front. In this scenario, the attacker’s
goal is to cause a termination of the tracking. For this goal,
we used the following reward function as

r(st ,at) =


10+ speed of the car distance > 50 m
20+ speed of the car if the car collides
speed of the car otherwise,

where the distance refers to the distance between the self-car
and the front car that is being followed. We also used the
following termination conditions

done(st ,at) =


True distance > 50 m
True if the car collides
True if time steps > 700
False otherwise.

D. Learning Curves.

We ran five random reinforcement learning experiments
and plotted its average and 0.1 standard deviation bounds as
shaded areas shown in Figure 16a, b, and c. In the learning
curves, we plotted terminal rewards since the attackers
in the above scenarios aim to misguide the vehicles into
certain terminal states. As we have previously seen in
Table II, the image attackers denoted as Recursive Attack
and Generative Attack have greater performance. Recursive
Attack and Generative Attack always use image attacks
because they do not have attack switches, as shown in
Table I. However, our proposed method that is to decide
when to use an attack for stealthy and effective attacks. The
learning curves show Conditional Sampling has performance
comparable to Recursive Attack that always uses attacks.
Especially, Figure 16b shows Conditional Sampling has
similar performance to Recursive Attack.

E. Attack rates given image attack loss

The proposed methods aim to use the attack when it is
good timing. We plot the attack rate vs. image attack loss
using the data collected during the training. The proposed
method, Conditional Sampling, uses the attack when the
attack loss is relatively low as shown in Figure 17a, b, and
c, compared to Thompson sampling. In Figure 17a and b,
Conditional Sampling shows negative correlations meaning
that it uses more attack when the image attack loss is lower, as
intended. However, Thompson Sampling in Figure 17a and b
shows positive correlations that are to use more attacks when
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(a) Scene of the street. (b) Object detection. (c) Attacked detection.

Fig. 12: The UAV moves to the blue car as shown in (a) using the bounding box in (b). The attacker adds image perturbation
to place new bounding boxes as shown in (c).

(a) Scene of the street. (b) Object detection. (c) Attacked detection.

Fig. 13: The UAV moves to a car that has the greatest detection-confidence as shown in (a) using the bounding box in (b).
The attacker adds image perturbation to place new bounding boxes as shown in (c).

(a) Scene of the street. (b) Object tracking. (c) Attacked detection.

Fig. 14: The autonomous car follows the front car as shown in (a) using a Kalman filtered bounding box denoted as kf box
in (b). The attacker adds image perturbations to place new bounding boxes as shown in (c).

the image attack loss is higher. This unintended behavior of
Thompson Sampling could be due to the fact that the image
attack loss is independent of the binary decision-making as
we described in Section III-B. The correlation coffeicents and
their p-values are listed in Table III. Except the Thompson
sampling with the 4th environment, the p-values are less than
0.1.
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(a) Scene of the street. (b) Object tracking. (c) Attacked detection.

Fig. 15: The autonomous car follows the front car as shown in (a) using the multi-object tracking (SORT [34]) bounding
box colored red in (b). The attacker adds image perturbations to place new bounding boxes and to steer the red box as
shown in (c).

(a) Env. 1: Drone to a car. (b) Env. 2: Cars and trucks

(c) Env. 3: Following a car. (d) Env. 4: Following a car in traffic.

Fig. 16: Reinforcement Learning - Learning curves in terms of terminal rewards.

Methods correlation p-value
coefficient (2-tailed)

Env 1. Conditional Sampling -0.06 0.07
Drone to a car Thompson Sampling 0.19 p < 0.001

Env 2. Conditional Sampling -0.11 p < 0.001
Cars and trucks Thompson Sampling 0.73 p < 0.001

Env 3. Conditional Sampling 0.26 0.003
Following a car Thompson Sampling 0.73 p < 0.001

Env 4. Conditional Sampling 0.24 0.003
Following in traffic Thompson Sampling 0.06 0.45

TABLE III: Correlation between image attack rate and loss.
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(a) Env. 1: Drone to a car (b) Env. 2: Cars and trucks

(c) Env. 3: Following a car (d) Env. 4: Following a car in traffic

Fig. 17: Attack rate vs. image attack loss
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