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Continuous-Time Ultra-Wideband-Inertial Fusion

Kailai Lit, Ziyu Cao?, and Uwe D. Hanebeck?

Abstract—We introduce a novel framework of continuous-
time ultra-wideband-inertial sensor fusion for online motion
estimation. Quaternion-based cubic cumulative B-splines are
exploited for parameterizing motion states continuously over
time. Systematic derivations of analytic kinematic interpolations
and spatial differentiations are further provided. Based thereon,
a new sliding-window spline fitting scheme is established for
asynchronous multi-sensor fusion and online calibration. We
conduct a dedicated validation of the quaternion spline fitting
method, and evaluate the proposed system, SFUISE (spline
fusion-based ultra-wideband-inertial state estimation), in real-
world scenarios using public data set and experiments. The
proposed sensor fusion system is real-time capable and delivers
superior performance over state-of-the-art discrete-time schemes.
We release the source code and own experimental data at
https://github.com/KIT-ISAS/SFUISE.

Index Terms—Sensor fusion, localization.

I. INTRODUCTION AND RELATED WORK

NLINE estimation of dynamical motions is of funda-

mental importance in achieving reliable autonomy of
mobile robots [[1]-[4]. Recent advancements in ultra-wideband
(UWB) technology have offered promising alternative solu-
tions to localization in GPS-denied environments. Compared
with common sensing principles, e.g., cameras or LiDARs,
UWRB sensors are lightweight, low-cost, and more scalable in
large-scale deployment, particularly, in indoor scenarios [3].
Despite the high spatial resolution of ultra-wideband impulse
radio, which transmits at the nanosecond level, there are still
technical challenges to achieving high-performance UWB-
based tracking in practice. Non-line-of-sight (NLOS) and
multipath conditions are well-known issues in UWB ranging,
which are dependent on sensor placements and can be fur-
ther exacerbated by complex and time-varying environments,
such as those with moving obstacles [6], [7]. In addition,
UWB ranging often exhibits non-Gaussian noise patterns,
with surrounding-dependent interference and diffraction that
are impossible to model parametrically [8]—[10]. Thus, basic
UWRB tracking solutions using multilateration are almost al-
ways insufficient for high-performance motion estimation.
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Figure 1: Exemplary runs of SFUISE on UTIL. The proposed
system delivers accurate trajectory estimates (green) compared
to ground truth (red). Blue dots depict anchor positions.

The performance of UWB tracking can be improved through
sensor fusion with other modalities. Inertial measurement
units (IMUs) provide instantaneous and higher-order motion
information that can bridge the gap between consecutive UWB
readings. They are cost- and resource-efficient, and can be
easily integrated into UWB sensor networks. Conventional
UWB-inertial fusion methods often rely on recursive filtering
algorithms, particularly the extended Kalman filter (EKF),
with inertial measurements facilitating state propagation and
ultra-wideband ranging updating the predicted prior. One basic
application was introduced in [11]], where an EKF was used
to localize micro aerial vehicles with a UWB-inertial setup.
Further practices involve utilizing six-DoF motion estimation
through quaternion kinematics, and incorporating error-states
to enhance overall system performance [8], [[12], [13].

However, recursive filters rely on the Markov assumption,
where evidence for predicting the current state is only traced
back to the last state [4]. Sensor measurements of different
modalities are usually fused in a decoupled manner, inducing
substantial information loss in correlations across multi-sensor
readings [2]]. These issues can be substantially mitigated
by fusing sensor measurements into one joint graph-based
nonlinear optimization. It improves tracking accuracy, while
still maintaining tractable computational complexity thanks to
its sparse structure [[14]. Such a paradigm shift has been pre-
dominantly reflected in visual or LiDAR based odometry [1],
[15]. For UWB-inertial state estimation, current techniques
have not fully embraced state-of-the-art methodologies, with
most use cases limited to batchwise (offline) or planar motion
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estimation [5]], [[16].

Conventional sensor fusion schemes are built atop discrete
timestamps of constant interval, necessitating temporal align-
ment of measurements w.r.t. the estimation [15]]. However,
different sensors fire asynchronously without any common
time instant. In a single-sensor setup, measurements can also
be non-uniformly sampled over time due to timestamp jitter,
particularly in UWB sensing [§]. Interpolating asynchronous
range measurements from different anchors results in de-
graded tracking performance, especially under outliers and
complex noise patterns. Thus, continuous-time state estimation
is appealing. In this regard, data-driven approaches based
on Gaussian processes have been systematically investigated,
where various motion priors are learned within the stochastic
differential equation formulations [17], [18].

B-splines parameterize trajectories atop knots, or control
points, through temporal polynomials, enabling interpolation
at any given time instant with locality and smoothness. This
concept can be practically generalized to Lie groups or nonlin-
ear manifolds via reformulation into a cumulative form, based
on which rigid body motions can be modeled continuously
over time. In [19], [20], B-splines were applied to estimating
continuous-time states via batchwise maximum a posteriori.
Similar offline schemes have also been proposed for attitude
estimation, multi-sensor calibration, and trajectory estimation
using visual/event/LiDAR-inertial setups [21]-[25]]. However,
these batchwise schemes are computationally expensive due
to the rudimentary strategies of computing time derivatives
(via product rule) and Jacobians on B-splines (via numerical
or automatic differentiations). A breakthrough in efficient
continuous-time motion estimation using B-splines was made
in [26], where recursive computation of time derivatives and
Jacobians on SO(3) trajectories was introduced for spline
fitting. This has inspired successive work in online mo-
tion estimation, with applications including RGB-D tracking,
LiDAR/visual-inertial calibration and odometry [27[]-[31].

While significant progress has been made in continuous-
time sensor fusion, there is still a considerable gap towards
more extensive engineering practice. To the best knowledge of
the authors, no continuous-time solution is currently available
for UWB-inertial fusion. Unit quaternions are widely accepted
in robotics as a nonsingular rotation representation and have
certain favorable attributes in memory efficiency, numerical
stability, and computation [2], [[15[], [32], [33]]. However, cur-
rent spline-based state estimation systems rely heavily on the
theory in [26]] using rotation matrices, while unit quaternions
are only utilized for basic arithmetic in implementation [30]].
Thus, there lacks an open-source quaternion-based B-spline
sensor fusion framework, with analytic kinematic interpola-
tions and spatial differentiations unified systematically.

Contribution

We introduce SFUISE, a novel Spline Fusion-based
Ultra-wideband-Inertial State Estimation scheme (Sec.[[).
Quaternion-based cubic cumulative B-splines serve as the
backbone of state representation, with systematic and unified
derivations of analytic kinematic interpolations and Jacobians
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Figure 2: System pipeline of SFUISE.

(Sec.[ll). Based thereon, an efficient sliding-window spline
fitting scheme is established to fuse UWB-inertial readings
at raw timestamps with an added option of online calibration
(Sec.[IV). A dedicated study is first conducted to validate the
viability of the quaternion spline fitting scheme. Afterward,
we evaluate SFUISE for UWB-inertial tracking in various
real-world scenarios using public data sets and experiments,
including comparisons with state-of-the-art discrete-time fu-
sion schemes (Sec.[V). The proposed system delivers real-time
and superior performance over the discrete-time counterparts.
Considering the generality of the proposed scheme to extensive
scenarios, we open-source our implementation together with
own experimental data sets.

II. SYSTEM OVERVIEW

In the considered scenario, we aim to estimate the following
motion-related variables

z(t)=[q®)T, p®)T, b(t)T]T € > x R* x R® c R™® (1)

as a function over time. Quaternion ¢(t) € S* and vector
p(t) € R® denote orientations and positions, respectively,
and b(t) = [b..., b;yro ]T € RS incorporates biases of
accelerometer and gyroscope. The proposed spline fusion-
based ultra-wideband-inertial state estimation (SFUISE) sys-
tem is depicted in Fig.[2] It composes an estimation interface
and a functional core of spline fusion. Asynchronous UWB
and IMU measurements are first preprocessed for potential
downsampling, to which a cubic cumulative B-spline is fitted
over a time window of limited span. As sensor data are
streamed in, the spline fusion window first grows to a pre-
given width, afterward slides, both w.r.t. the current timestamp
for online state estimation. In the growing stage, additional
online calibrations are performed to obtain the gravity vector
g" and transformation TY from world (W) to UWB (U) frames.
Further, knot estimates given by spline fusion are sent back to
estimation interface, where a global spline is maintained and
interpolated for visualization.

III. STATE ESTIMATION ON CUMULATIVE B-SPLINES
A. Continuous-Time State Modeling

We deploy cubic (fourth-order) cumulative B-splines for
continuous-time state representation. Being established upon
a set of control points {(z,,t;)}{_, associated with time #; of
uniform interval, it allows for fusing sensor readings up to the
second order of motion (e.g., from accelerometer) [26]]. State



at an arbitrary timestamp ¢ € [¢;,t;11) can be interpolated
3 .
w.r.t. a local set of knots { Pii_ ,}j=o according to

3 t—t;
N=n Aj(w)d,, with u=—-"— (2
pt)=p, ,+> i j(u)d;, with w — 2
being the normalized time and éj = Piio " Pijis

the distance between neighboring knots. Note that we use
calligraphic fonts to denote spline knots, highlighting that
they do not lie on the trajectory itself. The cumulative basis
functions {\;(u)}?_, follow [A1(w), Aa(u), Az3(u)]T = ®u,
with

o= %{153_33 —12} and u=[1,u,uu’]"

000 1

endowing cubic B-splines with C2-continuity. Expression (2)
can be applied to model positions and IMU biases in ().
Based on Riemannian geometry, the concept of cumulative
B-splines can be naturally extended to the manifold of unit
quaternions [34]]. It follows

3
at) =g, , @[] _ Bxpi((w)4,), 3)

with ® denoting the Hamilton product and A;(u) the basis
functions in (2)). Distance between adjacent knots is quantified
via logarithm map §; = Log; (Z:j,g, ®q, +j72) at identity
1 = [1,0,0,0]" and contributes to the on-manifold interpo-
lation via exponential map Exp;(-) [35]. Unless otherwise
specified, the term ‘B-spline’ in the following content refers
to the cumulative formulation of uniform intervals.

On modeling motion-related states, knots are optimally
estimated by fitting the spline to measurements in the least
squares sense. Constructing residuals in the objective refers
to kinematic interpolations on cubic B-splines w.r.t. related
sensory modalities. This can be computationally expensive due
to large data volume and complexity in deriving motion deriva-
tives. Meanwhile, solving nonlinear least squares requires
Jacobians of on-manifold kinematic interpolations w.r.t. knots.
In the remainder of this section, we provide these theoretical
building blocks for quaternion-based B-splines towards high-
performance continuous-time sensor fusion.

B. Kinematic Interpolations

We now present time derivatives of cubic B-splines for
interpolating linear and angular velocities, and acceleration.
Linear velocity and acceleration: Given a position B-spline
p(t) in (@), its first-order time derivative (denoted by dot
atop the variable) can be derived via p(t) = p'(u)u’(t), with
u'(t) = 1/(tiy1 — t;) == 1/A;. This leads to
3

pO =Y M@0 =3 A,

with ;\j_being derivatives of basis functions in (@) given by
A1 (u), Aa(u), A3(u)]T = @[0,1,2u,3u?]T /A,. Further, the
acceleration over time follows

3

b= _ A, “

with [A (), Aa(u), A3(u)]T = ®[0,0,2,6u]T /A2,

Angular velocity: By definition [12]], directly computing the
time derivative of the quaternion spline function in (@) leads
to the angular velocity w(¢) in body frame via relation

q(t) = 0.54(t) @ w(t). 5

In practice, however, this requires quadratic complexity w.r.t.
spline order due to the chain of Hamilton products. For
cumulative B-splines on matrix Lie group SO(3), an efficient
recursive method has been introduced in [26]. We hereby
provide the full derivation for its quaternion counterpart.

For brevity, we discard the time variable in (3) and split
the product chain into ¢ = ¢, ® Hj:k-u Expy (A, d;), where
4G = 2, ,® H§:1 Expy(A;9;) for k € {1,2,3}. The
quaternion spline interpolation can then be expressed in a
recursive fashion according to

4 =4, ,®¢, (6)

with ¢, = Expq(\; J;,) denoting the k-th spline increment
obtained from exponential map. Applying the kinematic rela-
tion in (§) to g, yields

q,=05q, ®wy, (7)

with w,, being the angular velocity to be computed recursively.
For that, we compute the time derivative of (6) and obtain

4, =4 Qe +q_, ¢, 8)

where time derivative of increment ¢ is given by ¢, = ¢, ®
(Akd},) according to (5). Expression in (§) then follows

Qk = 0'5Qk_1 ®gk—l ®ﬁk +Qk_1 ®ék ® (/\kék)
=05¢, ® (ﬁgl Quwp_1 Qep + 25\kék) )

based on (6) and (7). Subsequently, the following recursive
expression for angular velocity interpolation can be established

wy, = R(er ) Wit + 2Md), )

where (e, w,_; = ¢, ® w,_; ® ¢, rotates angular
velocity w,,_; with the inverse quaternion increment é;f To
bootstrap the recursion, we can derive w; via time deriyative
of g =g, ®g%, namely, §, = ¢, ,®¢; =¢, ® (M9y),
leading to w; = 2A19;.

C. Spatial Differentiations

On solving the nonlinear least squares for spline fitting, the
gradient of the objective can be computed via the chain rule,
where the major complexity goes to the kinematic terms. For
that, we consider a spline segment ranging over ¢t € [t;,t;11)
as introduced in Sec. Jacobians of interpolated kinematic
states z w.r.t. knots {z;,; ,}3_, are in principle expressed
as

dz
PP =Ii—odi—2 +Tjzod; +1x3d 41,
Litj—2
with I being the indicator function. Depending on the knot
indices, Jacobian components in (T0) are calculated via

oz oz 04; dx 094,
= =T ) Jj+1 =
aﬁifz 8é_j 6&@4»]'72 aéj-i—l 8§i+j72

that are concretized for the kinematic types as follows.

(10)

Ji72
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Jacobians of position and orientation interpolations: Fol-
lowing (I0), it is trivial to obtain the Jacobian of the posi-
tion spline w.r.t knot as dp/ dz,, ., = (Li—o + LizoN; —
I;23\j41) Is. For the orientation spline defined in (3), its
first Jacobian component in (I0) is derived as J;_o =
o (11 _1¢;), with function @~ mapping a quaternion mul-
tiplied from right-hand side into its matrix representation [35}
Eq. 3.5]. To obtain the Jacobian components J; and J;;; in
(10), we reformulate the quaternion interpolation into

i—1 3 LNy~
4= (zzéQ ® szlék) ®e;® Hk:j_;,_lék =Q Qg
to expose the j-th increment ¢;. Q¢ and Q3 are matrices

representing the quaternions multiplied on the left- and right-
hand sides of €, via @- and @-, respectively, i.e.,

Qe @L( iz @ Hk 1=k ) - (HZ:]'HQ’C) '

We then obtain the gradient of quaternion spline w.r.t. 4, as

dq 5‘Exp]l( )

;7/\ Q«Q»

23, ; (1)

szjéj

with the gradient of exponential map provided in (I9). The
gradient w.r.t. 9, takes the same expression as in (T1), which
can be computed recursively given the computation result for
éj. The gradient of Qj w.r.t. knot follows

d6;  OLogy (<) ~ OLogy(q) .
QHJ‘—Q Divj—2 4 9=
with &; = zﬁ . ®7, We provide the gradient of

logarlthm map in @]) The zgradlent of §,,4 is derived as

4, dLogy (q)
. i+ aﬂ q @(g,,, )D, (3
Ditj-2 4 lg=a,.,
where D = diag(1, —1, —1, —1) denotes a diagonal matrix.

Jacobian of angular velocity interpolation: In reference to
(T0), the Jacobian takes the following general form

dw
P =209 + 1230541, (14)
¢Z+J 2
with the two partial derivatives expressed as follows
Ow 8w agj Ow aw 11 86
j i+1 =
J &u 85 3¢H_J ) J 0w, 1 85J+1 841_” )

The two components above are computed in the same fashion,
and we now only demonstrate the derivation for €2;. The first
term in €2, can be obtained via the recursion in (9) according
to the following derivation. For cubic cumulative B-spline, we
have w(t) = wy(t) with k = 3. Thus, we obtain

3—J

Ow Ow 33 Owy_p
= = = P %
Ow;  Ouws Hk=1 Ows_ . k=1 (x25)
and the second term is derived as
Ow; N R(qQ)w,_ E .
99 ; dq q=e;? v |yoy, s,
(% (q)w;_1)/0q denotes the Jacobian of quaternion rotation

that is glven by in [[12, Eq.19]. And the last term 99, / 84

i+j—2
is available in (T2).

150 : sliding window E : active control point (@) : IMU measurement

[\ : trajectory J21:idle control point 34 : UWB measurement

Figure 3: Sliding-window spline fitting for online estimation.

Jacobian of acceleration interpolation: We apply the gen-
eral formulation (I0) to the acceleration interpolation @). It is
then straightforward to obtain the Jacobian as follows

dp

= (Liz0A; — Lizahj1)Is

Zivj—2

IV. ONLINE UWB-INERTIAL SPLINE FUSION
A. Sliding-Window Spline Fitting

Shown in Fig.[3] we exploit cubic B-splines to parameterize
state continuously over time with knots concatenated as
z = [QT,ET,éT}T € R!3, To keep the computational

intensity tractable for online performance, we bound the
spline fitting problem over a window of recent 7, knots

Xy =z, ...,z | € R'¥*™ namely,
Xy = argminy F(Xy), (15)
with the objective function formulated as F (Xy,) =
vuZ 1. (X 200, + 2 Z 1% (X, 2015, - (16)

&, and &; denote residual terms built upon UWB and IMU
measurements, {Z,;}7%, and {Z; ;}}_,, respectively, each
observed at raw timestamps. C, and ¢, indicate the sensor
noise covariances and tunable weights, respectively, for each
error term (subscript o’ stands for 'u’ or i’ denoting UWB
or IMU, respectively). As the window slides, the so-called
active knots within the current window are updated over time
until to be dropped out. Meanwhile, the three knots that are
most recently removed from the window are turned into an
idle state. They are no longer being optimized, however, still
participate in computing residuals in the current window via
kinematic interpolations, which enables motion continuation
across sliding windows over time [29]. Note that timestamps
of residuals and underlying knots are not to be aligned. This
allows for flexible multi-sensor fusion and efficient motion
representation compared with discrete-time paradigm.

We now specify the residual terms in (I6). Throughout the
following derivations, we use B-splines to describe the 6-DoF
motion of the IMU body (I) w.r.t. the world frame (W). Anchor
positions are given w.r.t. UWB frame (U) with a transformation
TV € SE(3) from the world frame.



UWB residual: We demonstrate the UWB residual in (16)
for time-of-arrival (ToA) ranging. Given a range measurement
Z,,; at timestamp {;, its residual term follows

Eo(Xo 20t) = | Top  —alill = 2ui, (D)
with p!_ q(ti) @ vi, ® q_l( i) + p(t;) being the UWB
tag posmon in world frame obtained by transforming tag
coordinates vi, w.rt. body pose interpolated at ;. al ;
denotes coordinates of the corresponding anchor. Residual
for time-difference-of-arrival (TDoA) ranging can be obtained
similarly, which we do not specify due to page limit.

IMU residual: Given the k-th IMU reading %, , of ac-

celeration Q,Ig and angular velocity Qi, we construct residual

5 [T 5T 5T T : ;
Ei(Xws 2i k) = [Zaco ks Zayroks Zpias k] fOr sphne fitting
to inertial data. The accelerometer residual Zacek 1

AT
zacc,k = QIIC + bacc,k — a4, (18)

with af = ¢ (tx) ® (p(tx) + ¢") @ q(tx) transforming
the 1nterp01ated acceleration p(ty) together with gravity g"
to body frame. b, is the accelerometer bias interpolated
on spline b(t) at t;. The gyroscope residual %, follows
Zgyron = W (tk) + byyro s — @p. With w!(t;) interpolated
recursively as shown in (). b, ., denotes the gyroscope
bias interpolated at ¢;,. Further, we compute the difference of
consecutive bias interpolations at ¢, and ¢, as the IMU bias
residual, namely, x, ;. = b(trs1) — b(tr).

B. Concurrent Calibration

In general the transformation Ty (parameterized by a
quaternion q € S3 and a translation vector tJ € R?) from
world to UWB frames in (I7) is unknown and typically
dependent on the anchor coordinates and the tag pose at system
initialization. Also, the gravity orientation g" (obtained via
normalizing the gravity ¢" = ||g"|| g") in (T8) is in general
not available upon navigation. To approximate it, a common
practice is to average the first several accelerometer readings
under the assumption of a static motion at start. This can be
easily violated by an undesirable starting condition (e.g., on
the fly). To address these issues, we concatenate (q ,to) and
g" after the knots in the state vector (13) during wmdow-
growmg phase and estimate them via sphne fitting.

C. Implementation

The proposed spline fusion-based UWB-inertial state esti-
mation (SFUISE) scheme is developed in C++ using ROS [36].
The system composes two individual nodes correspond-
ing to the two functional blocks in the system pipeline
Fig.2] Besides basic computational tools such as Eigen
(https://eigen.tuxfamily.org), no further external dependency
is required. We customize Levenberg-Marquardt (LM) algo-
rithm to solve the nonlinear least squares in (I3)) iteratively.
The closed-form gradients w.r.t. quaternion states are further

established in the tangent space at estimate ¢ w.r.t. a local
perturbation ¢ € R? by multiplying with (4(8% | $=0 =

Q-(¢ )8EXPL(¢) | 60" Solving the linearized system yields an

increment ¢*, which updates the estimate through ¢ < ¢ ®
Expq(¢*) [2], [37]. Furthermore, the gravitation orientation
gw € S? is handled in a similar fashion as introduced in [[15].

V. EVALUATION

In this section, we first provide a rigorous validation for
the proposed quaternion spline fitting scheme. Afterward, we
conduct in-depth benchmarks of SFUISE in diverse real-world
scenarios. All evaluations are conducted using a laptop (Intel
17-12800H CPU, 32 GB RAM) running Ubuntu 20.04.

A. Validation of Quaternion Spline Fitting

The major theoretical complexity for the proposed spline
fusion schemes lies in the part for orientation. Thus, we adopt
the same synthesis as presented in [26, Sec. 6.1] for batchwise
continuous-time SO(3) estimation using both orientation and
angular velocity measurements. We compare our quaternion-
based scheme with the one using rotation matrices in [26] for
fitting cubic cumulative B-splines. Both schemes are equipped
with the same objective and stopping criteria. For each scheme,
we exploit the Ceres Solver (http://ceres-solver.org) using LM
algorithm with auto-differentiation for gradient computation,
and the custom LM solvers using corresponding analytic gra-
dients. In addition, we integrate our quaternion-based analytic
gradient into Ceres for validation. We scale up the number
of knots and measurements in the original sequence by a
factor of {1,5,10} and compute average runtime over 500
runs with knot initializations around identities perturbed by
a small random noise. All methods have converged with an
averaged RMSE of 2.21 x 10~ w.r.t. the ground truth in terms
of the SO(3) metric in [38, Eq. 19]. As shown in Tab. I, the
proposed quaternion spline fitting scheme achieves superior
runtime efficiency, with gradients obtained from both auto-
differentiation and analytic expressions. By utilizing closed-
form gradients, our quaternion-based scheme runs slightly
faster within Ceres than the custom LM in [26], which employs
splines defined on rotation matrices.

| Auto. Diff.* | Analytic
Factor | [26] Ours | [26] Ours* Ours
X1 0.0365 0.0274 0.0201 0.0184 0.0137
x5 0.2161 0.1748 | 0.1198 0.1157 0.0833
xX10 0.4983 0.4083 | 0.2711 0.2660 0.1850

Table I: Comparisons of different schemes of orientation
spline fitting w.r.t. runtime in seconds. Methods with **’
exploit Ceres for optimization. Otherwise, the custom solvers
are implemented using the same LM algorithm. The best
runtime in each category is highlighted in bold.

B. Benchmarking Setup

In the upcoming sections, the proposed system is evaluated
in real-world scenarios based on the public data set UTIL [7]]
and own experiments, incorporating both ToA and TDoA ultra-
wideband data. Two major discrete-time sensor fusion schemes
from the state of the art are considered for comparison. An
own composition of graph-based UWB-inertial fusion (GUIF)
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Figure 4: APEs obtained from benchmark on all sequences of UTIL data set. The vertical axes denote RMSEs in meters.
The horizontal axes denote trial# in constl to const3 and trial#. traj# in const4, where n indicates a manual
sequence. ‘#’ denotes the sequence index. Results from SFUISE are plotted with e. Results from ESKF and GUIF are given
by o and %, with o and X indicating tracking fails, respectively.

system is developed with reference to [39] and [1]. Here,
discrete-time states are estimated via sliding window opti-
mization with residuals of IMU preintegration, UWB ranging,
and the prior factor from marginalization. Online calibration
of T} is enabled during window-growing stage. Further, we
deploy the error-state Kalman filter (ESKF) provided by [7]
with default calibration parameters for evaluation against the
recursive estimation scheme. In order to achieve functional
UWRB ranging under signal interference, the three systems are
equipped with a simple thresholding step to reject outliers
in UWB measurements. Throughout the benchmark, SFUISE
is configured with a sliding window of 100 knots at 10 Hz.
All UWB readings are exploited for state estimation without
downsampling. In order to devote the focus to investigating
the core sensor fusion scheme, we avoid fine-tuning of system
configuration parameters.

C. Public Data Set

We exploit UTIL flight data set for evaluating the pro-
posed UWB-inertial fusion scheme with TDoA ultra-wideband
ranging. Overall 79 sequences are collected onboard a quad-
copter mounted with a UWB tag and an IMU (1000 Hz).
The UWB sensor network is low-cost and operated at both
centralized (tdoa2) and decentralized (t doa3) modes under
four different anchor constellations (const1-4). The TDoA
measurements are collected with data rates ranging from
200 to 500 Hz including numerous challenging scenarios
created by static and dynamic obstacles of various types of
materials. Some sequences also exhibit an absence of IMU
measurements. Given knot estimates from SFUISE, we obtain
the global pose trajectory via interpolation at the frame rate
of ground truth (200 Hz), w.r.t. which we compute the RMSE
of the absolute position error (APE) to quantify the tracking
accuracy.

As shown in Fig.[] results given by the three systems are
summarized w.r.t. UWB operation modes and anchor constel-
lations. The proposed spline fusion scheme delivers superior
performance over discrete-time approaches using recursive
estimation or graph-based optimization. In particular, it ex-
hibits a fairly good robustness against challenging conditions,

SFUISE

GUIF

Figure 5: A qualitative comparison of evaluated methods
on const4-trial7-tdoa2-manuall. Ground truth and
estimates are depicted in red and green, respectively.

e.g., in sequences with const4, where the tracking space
is cluttered with static and dynamic obstacles of different
materials including metal. In the face of time-varying NLOS
and multi-path interference, discrete-time approaches are more
susceptible to these effects, especially during online calibra-
tion, leading to large tracking errors or even complete failure.
For demonstration, we plot results of a few representative runs
of SFUISE in Fig.[T[] Another qualitative comparison of spline
fusion with discrete-time schemes is shown in Fig.[3 based on
a representative sequence.

Runtime: As shown in Fig.[J] the two functional modules
in the system pipeline run in parallel, and the spline fusion
module dominates the computational cost compared with the
lightweight estimation interface. Therefore, we record runtime
of the backend fusion module w.r.t. the frame rate of knots at
10 Hz (thus 100 ms available for computation in real time).
The proposed system delivers real-time performance with
average runtime of 42.34+1.9 ms and 37.2+1.8 ms per sliding
step throughout subsets tdoa?2 and tdoa3, respectively. The
small standard deviations indicate a well-bounded computa-
tional cost during sliding-window spline fusion. According to
our investigation, solving the nonlinear least squares in (I6)
using our custom LM method usually converges within five
iterations.

D. Experiment

To further evaluate the proposed scheme on UWB-inertial
fusion using ToA ranging, a miniature sensor suite has been
instrumented as shown in Fig.[6H(A). It is composed of a



VIVE tracker

Sequence SFUISE GUIF ESKF
Walkl 0.117  0.143 0.225
Walk2 0.094  0.098 0.245
Walk3 0.094  0.229 0.270

UWSB tag

(A) sensor suite (B) APE (RMSE) in meters.

Figure 6: Miniature sensor suite for recording ISAS-Walk
and corresponding APEs as shown in (A) and (B), respectively.

UWB tag provided by Fraunhofer IOSB-AST and an IMU
embedded on Sense HAT (B), both mounted to a Raspberry Pi
(https://www.waveshare.com) for sensor coordination and data
recording. An additional VIVE tracker (https://www.vive.com)
is added to provide the ground truth. Overall three se-
quences, ISAS-Walkl, ISAS-Walk2 and ISAS-Walk3,
are recorded during indoor walks with inertial and ultra-
wideband (including five anchors) readings both at a frame rate
of about 80 Hz. We list the APE (RMSE) in meters given by
the three systems in Fig.[6}(B). The proposed scheme SFUISE
produces the best tracking accuracy consistently throughout
the data set.

E. Discussion

As verified in the mass evaluation based on UTIL and
ISAS-Walk, SFUISE shows superior performance over
discrete-time fusion schemes, particularly, in unfavorable sce-
narios of signal interference and complex noise patterns that
are hard or infeasible to detect and model. Since any kinematic
interpolation refers to four consecutive knots (for cubic B-
splines), the induced pose trajectory inherently guarantees mo-
tion continuation up to the second order. In comparison with
discrete-time fusions, this implicitly brings extra constraints to
solving the nonlinear optimization problem in spline fitting,
while still acknowledging the locality of observations. As a
result, sensor fusion exhibits better stability and robustness
under challenging conditions even together with online cali-
bration. To further highlight the strength of spline fusion in
motion estimation, we select constl-triall-tdoa?2 of
UTIL, and discard the IMU readings for UWB-only naviga-
tion. We run SFUISE and GUIF online at estimation frame
rates of 1 Hz and 10 Hz, respectively, with sliding windows
both configured as 10 seconds to guarantee same amount
of TDoA measurements. No explicit kinematic constraint,
such as motion smoothness, is involved into state estimation.
A qualitative comparison is demonstrated in Fig.[7] Due to
signal noise and interference, graph-based approach produces
physically-infeasible motion estimates. The proposed spline-
based scheme delivers a smooth trajectory with an efficient
state representation using knots estimated at 1 Hz (1/10 mem-
ory consumption of the discrete-time states delivered at 10 Hz
by GUIF).

VI. CONCLUSION

In this work, we propose a new framework for continuous-
time state estimation using ultra-wideband-inertial sensors.

(A) spline-based

Figure 7: UWB-only tracking using SFUISE (A) and GUIF
(B). Estimates (green) are depicted w.r.t. ground truth (red)
at 200Hz. The spline-based approach guarantees physically
feasible estimates inherently.

(B) graph-based

Quaternion-based cubic B-splines are exploited for six-DoF
motion representation, based on which we systematically
derive a unified set of theoretical tools for efficient spline
fitting, including analytic kinematic interpolations and spatial
differentiations on B-splines. This further facilitates the es-
tablishment of the novel sliding-window spline fusion scheme
for online UWB-inertial state estimation. The resulted system,
SFUISE, is evaluated in real-world scenarios based on public
data set and experiments. It is real-time capable and shows
superior performance over major discrete-time estimation ap-
proaches w.r.t. tracking accuracy, robustness and deployment
flexibility. There still remains considerable potential to exploit
the proposed scheme. B-splines of nonuniform knots can be
further investigated to achieve more efficient state representa-
tion and estimation. Based on our theoretical contribution and
open-source implementation, extensive engineering practice
can be equipped with continuous-time paradigm in areas of
automatic control, path planning, odometry and mapping, etc.

APPENDIX

A. Jacobian of quaternion exponential map

For any point v € R3 in the tangent space at identity 1 on
the manifold of unit quaternions, it can be retracted to S3 via
exponential map according to

Expy (v) = [cos||u,»" sinc [lu]|]" € §?,

with || - || denoting the % norm [35]. The Jacobian of
exponential map w.r.t. v then follows

OExpy (v) _ {(8(005 IIQII))i (a(ysinc HQII))T}T6 RiX3.

ov ov ou
19)
with the two items expressed as
6 .
Olcoslinl)) = —v ' sinc|lv|| and
v

Owsincllof)) _ cosfloll = sinclloll, vy vl

v [lul|?

B. Jacobian of quaternion logarithm map

Given any unit quaternion ¢ = [qo,¢]]" € S with
qo and q, denoting the scalar and vector components, the

rotation angle and axis can be retrieved by definition as
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0 = 2arctan(||q ||/q0) and u =g /||q ||, respectively. It can
be mapped to the tangent space at 1 via logarithm map

Logy (q) = 0u/2 = arctan(|lq [l /q0)q,/llq, || € R*.

The Jacobian of logarithm map follows

OLo JLo OLo

81(9) _ { gn(g)’ g1 () R, (0)

dq dqo 3gv

JLo
where ﬂ = —q and

dqo =

dLogy(q) 1 ( - g IPTs —qq” g,

— = qoq q + ——— = arctan — )

ag, g [P\ lg, | %
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