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Abstract— Active tracking of space noncooperative object
that merely relies on vision camera is greatly significant for
autonomous rendezvous and debris removal. Considering its
Partial Observable Markov Decision Process (POMDP) prop-
erty, this paper proposes a novel tracker based on deep recur-
rent reinforcement learning, named as RAMAVT which drives
the chasing spacecraft to follow arbitrary space noncooperative
object with high-frequency and near-optimal velocity control
commands. To further improve the active tracking perfor-
mance, we introduce Multi-Head Attention (MHA) module and
Squeeze-and-Excitation (SE) layer into RAMAVT, which re-
markably improve the representative ability of neural network
with almost no extra computational cost. Extensive experiments
and ablation study implemented on SNCOAT benchmark show
the effectiveness and robustness of our method compared with
other state-of-the-art algorithm. The source codes are available
on https://github.com/Dongzhou-1996/RAMAVT.

Index Terms— Active visual tracking, Deep recurrent rein-
forcement learning, Space noncooperative object, Multi-head
attention

I. INTRODUCTION

With the rapid development of aerospace technology,
space noncooperative object active visual tracking that drives
the chasing spacecraft or space manipulator to pursue any
specific noncooperative target by merely using vision camera
has attracted extensive attentions. It is essential to intelligent
on-orbit service such as autonomous rendezvous [1]–[3],
space debris removal [4]–[6], and malfunctioning satellite
maintenance [7]–[9].

Benefitting from the powerful deep reinforcement learning
(DRL) that has achieved great successes in many fields
like video game [10], Go [11], autonomous driving [12],
and robotic manipulation [13], more and more active visual
trackers [14]–[22] have been proposed in an end-to-end
manner, which can learn global optimal policy after training
with millions of trial-and-errors experiences.

In our preliminary work [3], we presented the SNCOAT
benchmark [23] and the first active visual tracker, DRLAVT
in aerospace domain. It achieves impressive tracking perfor-
mance in velocity control mode by stacking multiple frames
as an input. However, the stacking mechanism not only
decreases the control bandwidth severely, but also makes
active tracker more vulnerable to perturbations (e.g., image
blur, actuator noise, computational delay).
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Fig. 1: Space noncooperative object active visual tracking

To this end, we take the POMDP property of space nonco-
operative object tracking into consideration. A novel active
visual tracker based on deep recurrent reinforcement learn-
ing, RAMAVT is proposed in this paper, which can drive
the chasing spacecraft to pursue arbitrary target with high-
frequency and near-optimal velocity control commands. Our
method features the accurate perception of target position
and velocity, even though taken one image as input per time,
which benefits from the recurrent neural network (RNN)
in RAMAVT architecture that establishes the relationship
between long-term temporal sequence.

Intuitively, it is totally enough for active visual tracker
that focus attention on partial regions or partial channels
of feature tensor to achieve the information of space non-
cooperative target. To this end, we adopt the multi-head
attention module [24] and Squeeze-and-Excitation layer [25]
in RAMAVT, which only increase small number of model
parameters but significantly improve the representative abil-
ity of neural network. In addition, some data augmentation
methods [26] are also involved to enhance the efficiency of
learning process and generalization ability of active tracker.

The contributions of our work in this paper are summa-
rized as following:

• We propose a novel active visual tracker based on
deep recurrent reinforcement learning, RAMAVT which
achieves excellent performance compared to other state-
of-the-art methods.
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Fig. 2: The architecture of RAMAVT, which directly maps an image to optimal velocity control command attributed to the
LSTM module that establish long-term relationship in temporal sequence. RAMAVT also adopts MHA module [24] and SE
layer [25] to improve the representative ability of neural network.

• Multi-head attention module and SE layer are adopted
into RAMAVT, combined with data augmentation, of
which effectiveness has been proved by detailed abla-
tion study.

This work proceeds as follows: Section II introduces some
related works about space noncooperative object active visual
tracking. Section III describes our RAMAVT method in
detail. The experiments and analysis are given in Section
IV. Finally, we make a conclusion in Section V.

II. RELATED WORK

Visual object tracking is a hot topic in computer vision
society, which has wide applications in civil, military, and
aerospace fields. In recent years, many efforts have been
devoted to studying passive methods [27]–[31], which as-
sume that the target is always within the field of view
(FOV) of vision camera. This severely limits the possibility
to apply visual object tracking methods in many real-world
scenarios, especially for aerospace applications where the
target often maneuvers in 6-Degrees-of-Freedom (DoF) and
the low-resolution camera mounted on spacecraft only has
small FOV.

Therefore, active visual tracking [14]–[22], [32]–[34] has
achieved more and more concerns, which not only identifies
the target but also changes the pose of the chaser in real-time
to keep view contact with the target. Traditional active visual
trackers often adopt PBVS or IBVS framework of which
modules (e.g. key-points detection, feature matching, pose
estimation, and controller design) are optimized separately.

In the paper [32], a PBVS algorithm that guide space
robotic manipulator to grasp noncooperative target was pro-
posed, in which photogrammetry and adaptive extended
Kalman filter are used to predict 6-DoF pose of target. How-
ever, this work is unadaptable to complex space environment
as the same as other traditional active visual trackers. We also
proposed a novel PBVS tracker in our preliminary work [3]
that adapts state-of-the-art 2D monocular tracking method,
SiamRPN [35], which achieved fairly good active tracking
performance on SNCOAT benchmark but make concession
in real-time capability.

Deep reinforcement learning that learns optimal action
policy in an end-to-end manner with millions of trial-and-
errors experiences has made great contributions in many
fields, such as video game [10], Go [11], autonomous driving
[12], and robotic manipulation [13], which provides a novel
perspective for active visual tracking. In recent years, many
DRL-based active visual trackers were proposed [14]–[22],
most of which aim at terrestrial targets and only deploy on
unmanned ground vehicle (UGV).

Luo et al. [14] proposed the first end-to-end active
visual tracker based on A3C [36] that can only pursue
two person models walking along fixed trajectory in two
types of environments. In addition, The training progress
takes up several days to achieve nice tracking performance,
even with very low-resolution image (84×84×3). The paper
[37] presented a temporal difference-based reward function
adopted in PPO learning framework [38], which effectively
decreases the distance error between the chasing and target



UGVs. However, this agent was only trained with single
target in simulation environment. It was almost overfitted
and impossible to track another target in real-world scenario.
In contrast, our method is trained with 12 types of space
noncooperative objects including space stations, satellites,
asteroids, rockets, and return capsules, which successfully
guarantees the generalization ability of RAMAVT.

Those algorithms mentioned above assume that the initial
position of target is within the active tracker’s FOV, which
is a demanding condition for real application. To this end,
Jeong et al. [18] extended the active visual tracking problem
involved navigation, exploration and in-sight tracking and
proposed the active tracking target network (ATTN) that
learns a unified policy to track agile and anomalous object
with partially known target model. This method features the
incorporation that feeds egocentric maps and visit frequency
to the convolutional neural network (CNN), which formulates
the active visual tracking task as Markov Decision Process
(MDP). In [21], Dionigi et al. also presented the DRL-
based E-VAT model consisted of target-detection network
and exploration-and-tracking network, which can explore the
environment and track the target autonomously.

Compared with terrestrial targets, the active visual tracking
tasks of space noncooperative objects are more challenging:
1) the tracked target often maneuvers agilely with complex
6-DoF trajectory; 2) less prior knowledge are available, such
as geometry, texture, kinematic and dynamic parameters; 3)
the images captured by vision camera on spacecraft are often
low-quality, because of low resolution, small FOV, camera
motion, and illumination variance.

In our preliminary work [3], we propose the first active
tracker DRLAVT in aerospace domain, of which perfor-
mance has a large room to be improved. The partially
observable problem for active visual tracking was avoided
by frame-stack mechanism, however, it severely decreases
control bandwidth and tracking performance. To this end, we
propose a novel active visual tracker based on deep recurrent
reinforcement learning that directly maps one image to
optimal velocity control command, benefitted from long-term
temporal relationship established by RNN. In addition, the
MHA module and SE layer are introduced to further improve
network representative ability.

III. PROPOSED METHOD

In this section, we formulate the active visual tracking
problem of space noncooperative object and describe our
RAMAVT algorithm thoroughly.

A. Problem Formulation

The task of space noncooperative object active visual
tracking involves the chaser mounted with vision camera
and the moving target with no prior information, where the
previous one should change its pose by using images to
reduce the error et which is formulated as follows:

et =
∥∥rBT (t)− r∗

∥∥
2

(1)

in which rBT (t) is the 3-D position of the target in the
body-frame of the chaser at tth timestep, and r∗ denotes
the expected distance between the chaser and target. In this
work, r∗ is set to {0, 0, 5}.

To complete this task with DRL-based method, it can be
further described as a POMDP problem. At tth timestep, the
state of the target st ∈ S is observed as ot ∈ O by agent with
vision camera. Then, the agent takes action at ∈ A following
a policy, such as the greedy policy at = max

a∈A
Q(ot, a) that

is adopted in this article. After that, the agent would receive
a reward rt from the environment which is generated by
a reward function. The definition of our reward function
is inherited from the paper [3], which includes a visible
term rvis and a distance penalty term rdist. The partially
observable problem means ot 6= st, that is, the agent can not
accurately perceive actual state of the target, especially for
the velocity.

B. RAMAVT Algorithm

The POMDP problem mentioned above makes an end-
to-end active visual tracker difficult to approximate optimal
action value function Q∗(ot, at). To this end, we propose
a new deep Q-network architecture based on DRQN [39],
as shown in Fig. 2, which can establish the long-term
relationship between temporal sequence and directly map one
image to optimal velocity control command.

Meanwhile, some additional SE layers [25] and Multi-
head attention module [24] are also introduced to improve
the representative ability of deep Q-network and approximate
better action value function Q(ot, at). The SE layer features
the modelling of the channel-wise interdependencies of fea-
ture tensors with low computational cost, of which schematic
is illustrated at the middle part of Fig. 2. In this work, We
place SE layer behind every convolutional layer in ConvNet
backbone.

In recent years, the self-attention mechanism derived from
natural language processing filed has been widely applied
to computer vision, which significantly increases the repre-
sentation of neural network to images. The MHA module,
shown in the bottom of Fig. 2, is one of the most famous
self-attention method representing the interrelationship of
different positions in one image. The basic of MHA is the
scaled dot-product attention algorithm:

yi = softmax
(
QiK

T
i√

dk

)
Vi (2)

where Qi =Wq ·xi, Ki =Wk ·xi, and Vi =Wv ·xi are the
three feature vectors computed by different full-connected
(FC) layers fed with the same input xi, and dk denotes the
dimension of feature vector Ki. Based on this, the MHA can
be formulated as:

O =Wo · Concat {y1, y2, · · · , yN} (3)

in which, N is the number of heads that attend to information
from different representation subspaces at different positions
in parallel. We adopt N = 8 heads in this work.



TABLE I: Active Tracking Performance Comparison

Name Input Format Episode Length Episode Reward Speed
RGBD Depth Color Avg Min Max Avg Min Max (Hz)

Random - - - 152.2 21 385 -1545.2 -3214.8 -178.4 42703.5

DRLAVT

√
- - 857.9 6 1000 -268.9 -2341.4 386.4 63.1

-
√

- 901.1 6 1000 430.3 -55.69 382.2 66.6
- -

√
841.6 15 1000 -201.9 -1798.7 320.4 68.9

RAMAVT

√
- - 952.4 41 1000 -398.5 -1523.2 481.4 202.7

-
√

- 959.1 162 1000 -59.4 -800.5 445.4 216.1
- -

√
685.3 43 1000 -1755.1 -4097.5 434.7 210.9

(The best scores are highlighted in green)

TABLE II: Training Configurations

Params Value Note

replay buffer 50000 The size of replay pool

initial buffer 10000
The number of initial
experiences

episode num 300
The number of episodes
used to train Q-network

max episode len 1000
The max length of one
episode, but if target is
lost, episode will be over

update interval 10
The update interval of
target network

gamma 0.99 Rewards discount factor

Finally, we train the RAMAVT model with loss function
L(θ) defined as follows:

L(θ) = E(o,a,r,o′)∼U(H)

[
(y −Q(o, a; θ))2

]
(4)

where the training data (o, a, r, o′) is uniformly sampled from
the hierarchical memory pool H proposed by us that is more
suitable for deep recurrent reinforcement learning methods.
y = r+γmax

a′∈A
Q(o′, a′; θ−) is the Temporal-difference (TD)

target estimated by the target network θ−.

IV. EXPERIMENT

In this section, we first validate the active tracking per-
formance of RAMAVT by using the evaluation toolkit pro-
vided in SNCOAT benchmark [23]. Then, sufficient ablation
studies on RAMAVT are also implemented to show the
effectiveness of our method. Finally, we further explore the
working mechanism of active visual trackers. All the trackers
follows the same training configurations listed in Table II.
The experimental platform is HPC server equipped with Intel
Xeon@E5 2650v4 CPU and Nvidia Tesla P100 GPU.

A. RAMAVT Performance

We train the agent with 12 types of space noncooperative
objects and evaluate it on other 6 different targets, including
asteroids, satellite, rockets, space station, and return capsule.
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Fig. 3: The training curves of different active visual trackers

TABLE III: The Robustness Evaluation Under Different
Perturbations

Name Perturbations Metrics
Actuator

Noise
Time
Delay

Image
Blur AEL AER

DRLAVT
√ √ √

456.3 -758.6

RAMAVT

√
- - 876.5 -438.9

-
√

- 596.6 -793.3
- -

√
793.3 -810.1√ √ √
580.8 -971.8

- - - 952.4 -398.5

(The worst scores are highlighted in red)

Some data augmentations [26], such as crop, flip, cutout,
and rotation are used to improve the generalization ability
when trains the RAMAVT. Two metrics are adopted to
measure active visual tracking performance, that is, episode
length and episode reward. In this work, we utilize an agent
that takes action in random as baseline and the DRLAVT
algorithm as comparison.

All the training curves of two active visual trackers with
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Fig. 4: The results of RAMAVT with Depth image.

different inputs are depicted in Fig. 3. We find that the learn-
ing progresses of DRLAVTs are much faster than RAMAVTs
whatever the input format is, because of its simple Q-network
architecture and fully observable state. In addition, the depth
information contained in inputs are significant for both active
visual trackers to achieve higher episode length. It is worth
noting that the depth map and color image adopted in this
work are normalized to [0, 1].

The whole evaluation results are summarized in Table
I. It clearly shows that the RAMAVT taken depth map as
input achieves the highest average episode length about 959.1
score with the best real-time performance, which means that
our method can quickly track the target for a longer time.
Meanwhile, the higher minimum episode length also proves
the stability of RAMAVT. Although, its tracking accuracy
(i.e. average episode reward) is slightly lower than DRLAVT.
We think it results from the inaccurate target’s states, such as
target position and velocity, estimated by RAMAVT based
on recurrent neural network. This problem gets worse when
the agent is only allowed to use color images, as shown in
the final row of Table I.

We visualize the tracking results of RAMAVT in Fig 4. It
can be seen from Fig 4a that our method can precisely track
the target in the whole episodes. In particular, the tracking
errors in X, Y, and Z axes rapidly shrink to 0 and oscillate
in a small range, as shown in Fig 4b. The noncooperative
target is also steadily kept in the center of FOV after 200
frames (see in Fig 4c), even it moves fast with high-speed
rotation.

Furthermore, we evaluate the RAMAVT tracker under
three types of perturbations, involving actuator noise, time
delay, and image blur, to show the robustness of our method.
The experiment results are listed in Table III. It is obvious
that all the three perturbations have influences on the active
visual tracking performance in terms of tracking period and
accuracy, especially for the time delay which decreases the
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Fig. 5: The training curves of ablation models

TABLE IV: Ablation Study on RAMAVT with RGBD image

Name AEL AER Speed

Origin 368.5 -1876.3 214.3
Augment 419.3 -1283.6 215.7

SE 625.8 -956.0 211.3
MHA 731.1 -845.7 206.6

RAMAVT 952.4 -398.5 202.7

average episode length (AEL) about 37.4%. We think it is
because of the inconsistency of target velocity between the
training and evaluation, introduced by the random time delay.
In the training stage, the target velocity is set as a random
constant in one episode, which has naturally been learned
by our RAMAVT model. When the 3 types of perturbations
work simultaneously, our method is much robuster than the
DRLAVT which has 124.5 scores less under AEL metric.
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Fig. 6: The interpretability research of active visual trackers. The feature tensors of DRLAVT and RAMAVT are respectively
visualized in the first and second rows. It is worthwhile noting that only the first frame of stacked input is depicted at 6a.

B. Ablation Study

To show the effectiveness of RAMAVT model, we respec-
tively add data augmentations, SE layer, and MHA module
to the original DRQN architecture [39]. All the ablation
models are trained from scratch with the same training
configurations, of which training curves are illustrated in
Fig 5. It can be clearly seen that the MHA module not
only accelerates the learning progress of agent, but also
significantly improves the episode length. This advancement
attributes to the attention mainly focusing on the target,
which makes the agent more sensitive and accurate to the
movement of target.

The final evaluation results of ablation models are summa-
rized in Table IV. It proves that the MHA module achieves
the highest AEL and AER scores compared to the others,
which only decreases 3.6% running speed. The SE layer also
increases the AEL measurement up to 1.7 times with almost
no real-time performance loss. In addition, the data augmen-
tation algorithms adopted in this paper including crop, cutout,
flip, and rotation work unsatisfactorily, although it does not
induce any computational burden during evaluation stage.

In a word, the RAMAVT model proposed in this work
achieves excellent active visual tracking performance in less
computational cost, mainly benefitted from spatial-wise and
channel-wise attention mechanism induced by the MHA
module and SE layers.

C. Interpretability Research

We utilize the neural network interpretability method
[40] that summarizes the squares of activation values along
channel-wise axis and follow with 2-D Softmax operation
to explore the inner working mechanism of active visual
trackers. The features extracted by each layer of neural
network are separately visualized in Fig 6.

The Fig. 6a-6e illustrates different levels of features ex-
tracted by DRLAVT of which architecture only contains 4
convolutional blocks. Each convolutional block involves a
convolutional layer, a batch-normalization layer, and ReLU
activation function. It is worthwhile noting that DRLAVT
stacks 4 consecutive frames in channel-wise as one input,
however, only the first frame is depicted at Fig. 6a. We
clearly see that the first convolutional block extracts all
the edges of target and generates higher feature value to
the white body of noncooperative target. The second con-
volutional block further enhances the reactions to parts of
edges. In the subsequent convolutional blocks, more high-
level features without specific implications are extracted. The
final output of ConvNet backbone looks like a point light
source that follows normal Gaussian distribution.

In comparison, the visualization of RAMAVT is not the
same, because of two significant differences between the
backbone of RAMAVT and DRLAVT: (1) SE layer is added
into the first three convolutional blocks, (2) the ConvNet
backbone follows with a MHA module. Therefore, the first
convolutional block no longer focus on object color (see Fig.
6b and 6g). The second convolutional block is more inter-
ested in the contour of noncooperative target. Furthermore,
the distribution of final output turns more compact caused
by the MHA module, which helps to estimate more accurate
action value.

V. CONCLUSION

In this paper, we formulate the active visual tracking
task of space noncooperative object as POMDP problem
and propose a novel active tracker based on deep recurrent
reinforcement learning, RAMAVT of which architecture cre-
atively adopts Squeeze-and-Excitation layer and Multi-Head
Attention module. It can guide the chasing spacecraft to



approach arbitrary space noncooperative target with optimal
and high-speed velocity control commands. The advance-
ment of RAMAVT has been proved by sufficient experi-
ments, compared to the state-of-the-art method DRLAVT.
To show the effectiveness of our method, we implement con-
vincing ablation study on RAMAVT architecture. In addition,
we further take an interpretability research on two active
visual trackers to explore their inner working mechanism.
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