
Cascaded Compositional Residual Learning
for Complex Interactive Behaviors

K. Niranjan Kumar, Irfan Essa and Sehoon Ha

Abstract— Real-world autonomous missions often require
rich interaction with nearby objects, such as doors or switches,
along with effective navigation. However, such complex behav-
iors are difficult to learn because they involve both high-level
planning and low-level motor control. We present a novel frame-
work, Cascaded Compositional Residual Learning (CCRL),
which learns composite skills by recursively leveraging a library
of previously learned control policies. Our framework learns
multiplicative policy composition, task-specific residual actions,
and synthetic goal information simultaneously while freezing
the prerequisite policies. We further explicitly control the style
of the motion by regularizing residual actions. We show that
our framework learns joint-level control policies for a diverse
set of motor skills ranging from basic locomotion to complex
interactive navigation, including navigating around obstacles,
pushing objects, crawling under a table, pushing a door open
with its leg, and holding it open while walking through it. The
proposed CCRL framework leads to policies with consistent
styles and lower joint torques, which we successfully transfer
to a real Unitree A1 robot without any additional fine-tuning.
See videos at https://www.kniranjankumar.com/ccrl/.

I. INTRODUCTION

Real-world autonomous missions often involve various
levels of motor skills ranging from simple locomotion
and manipulation to interactive navigation. For instance, a
quadrupedal tasked to fetch an object may need to walk to
a nearby door, open it with its end-effector, and navigate
to the destination. Traditionally, many researchers [1], [2],
[3] have approached modeling such high-level behaviors by
manually decomposing them into several low-level motor
skills, such as locomotion, navigation, manipulation, and
a high-level decision layer to modulate these skills. While
effective, this model-based approach requires researchers to
derive the explicit model of environmental interactions that
are often complicated and cumbersome in such scenarios.

Learning-based approaches, such as deep reinforcement
learning (deep RL) [4], [5], [6], hold the promise of ob-
taining effective motor policies automatically from a simple
description. However, learning complex behaviors is not
straightforward due to many theoretical and practical chal-
lenges. For instance, motor creatures with many degrees of
freedom, such as quadrupedal or bipedal robots, require a
massive amount of simulation samples even for the simplest
motor tasks due to their high-dimensional state and action

This work was partly supported by the Cisco Research Corporation
K. Niranjan Kumar is with the Georgia Institute of Technology, Atlanta,

GA 30332
Sehoon Ha is with the Georgia Institute of Technology, Atlanta, GA

30332 USA, and with Robotics, Google, Mountain View, CA 94043 USA
Irfan Essa is with the Georgia Institute of Technology, Atlanta, GA 30332

USA, and with Google, Mountain View, CA 94043 USA

Fig. 1: Our framework allows robots to learn complex envi-
ronment interactions with a recursive hierarchy. The image
shows a motion frame of the robot crawling under a table,
reaching the door, pushing it open, and walking through it
to reach a target location.

spaces [7], [8], [9]. In addition, learning a high-level motor
skill requires careful reward engineering, which is extremely
time-consuming to tune. Researchers often adopt an explicit
two-level hierarchical architecture to alleviate this prob-
lem [10], [11], but it only rearranges the order of the existing
behaviors. For instance, it cannot combine locomotion and
target-reaching into a successful door-opening skill.

We present a novel framework, Cascaded Compositional
Residual Learning (CCRL), to learn a family of motor skills
on a 12 DOF quadruped robot to interactively navigate
around an indoor scene. Inspired by residual learning [12],
[13], our key idea is to effectively train policies for a new
challenging task via a cascaded multi-step process by recur-
sively leveraging a set of pre-learned skills. We accomplish
this by learning 1) a weighting network that composes pre-
learned skills depending on the state of the agent in the
environment, 2) a goal synthesis network that intelligently
modulates the pre-learned skills, and c) a residual action
network that learns task-specific perturbations to actions
proposed by the pre-learned skills. Further, we introduce
residual regularization to control the trade-off between ac-
complishing a particular task efficiently vs. adhering to
a combination of foundational skills to guarantee feasible
motion on a real robot.

The main contributions of our work are as follows:
1) A cascaded compositional residual learning (CCRL)

framework to recursively train skills with increasing
complexity by reusing skills learned in previous steps.

2) A constrained residual learning objective that learns new
skills while adhering to a style that is enforced by the
set of pre-learned library of skills.

3) Demonstration of interaction skills learned in simulation
and successful transfer to a real Unitree A1 robot.

ar
X

iv
:2

21
2.

08
95

4v
1

 [
cs

.R
O

]
 1

7
D

ec
 2

02
2

https://www.kniranjankumar.com/ccrl/

II. RELATED WORK
A. Robotic Locomotion

Controlling legged robots has been a long-standing topic
of research in the robotics community. Traditionally, roboti-
cists [14], [15], [16], [17], [18], [19] have approached
this problem with a combination of different frameworks
and algorithms like trajectory optimization, model-predictive
and whole-body control to demonstrate robust and agile
locomotion. However, such manual controller design tech-
niques often require in-depth prior knowledge about the robot
dynamics, which restricts its applicability to new problems.
On the other hand, reinforcement learning [5] offers an
automated controller design process by optimizing a policy
for a reward function that measures performance on a given
task. A body of work [20], [21], [9], [8], [7], [22], [23],
[24] in RL has demonstrated effective learning of locomo-
tion policies. However, these learned policies often show
degraded performance on hardware due to the difference
between the simulation and the real world, referred to as the
sim-to-real gap. Several techniques have been proposed to
bridge the sim-to-real gap, such as domain randomization [7],
[8], learning actuator dynamics [23], online adaptation [25],
[9], real-world learning [26], [27]. Our work also leverages
existing domain randomization techniques to deploy learned
interactive behaviors to the real world.

B. Interactive Navigation
Navigation is a fundamental skill for autonomous robot

missions. Several navigation problems have been proposed
over the years [28], [11], such as: PointNav - navigating
to a point in a map; ObjectNav - navigating to a selected
object category in the scene; InteractiveNav - Navigating
to a point in a scene that requires interaction with objects
and furniture in the scene. While researchers have made
significant progress in PointNav [29] and ObjectNav [30],
[31], [32], InteractiveNav [11], [33], [34], [35] is still a
challenging problem due to the difficulty in learning inter-
action dynamics between a robot and its environment. Li
et al. [11] learned a navigation policy on a mobile robot
that can open a door to reach its target location. Konidaris
et al. [35] took an alternate approach where the robot was
given access to a set of hard-coded controllers and had to
learn when to use each skill. However, these approaches
focus on just wheeled mobile robots, abstracted to be a
simple cylinder with an attached manipulator, significantly
limiting the space of possible interactions. Sunwoo et al. [6]
demonstrated interaction skills on a quadrupedal robot via
manual motion-based control. In contrast, our work focuses
on learning autonomous policies to directly control joint
motors of a 12-DOF quadruped robot, to perform complex
dynamic interactions such as door opening, object pushing
and crawling under a table. To the best of our knowledge,
our work is the first of it’s kind, demonstrating end-to-end
neural network policies, that can solve InteractiveNav on a
high DOF legged robot, with a high success rate.

Another related problem is interactive search, where a
robot has to search for an object in an environment. Most of

the work in this area [36], [37], [38] focuses on searching for
an object in a cluttered shelf or table. In a more generalized
version of interactive search, a robot moves around a clut-
tered indoor scene searching for an object. While we do not
tackle interactive search, our method complements existing
techniques by enabling a robot interactively navigate to the
object, once its location has been estimated.

C. Hierarchical Reinforcement Learning

Learning RL policies for complex tasks requires extensive
reward engineering and hyperparameter tuning. A com-
mon technique to deal with such complexity is to decom-
pose the policy into multiple sub-tasks. In hierarchical RL
(HRL) [39], [40], higher level policies control and instruct
low level policies like they were primitive actions. While
an in-depth discussion about hierarchical RL is outside the
scope of this paper, we point interested readers to refer
Pateria et al. [41], and restrict our discussion to related
work in locomotion and navigation. A common approach
to navigation is to use low-level locomotion primitives in
combination with a high-level primitive selection or goal
proposal network to perform navigation [42], [43], [44], [45].
Alternatively, Yang et al. [10] proposed a gating network that
combines the parameters of a collection of neural network
primitives, to produce composite navigation policy. Similar
to these works, we are interested in designing a hierarchy
to solve a complex task, but our low-level policies are
themselves complex (like opening a door) and not easily
breakable into simpler policies. Therefore, a common “flat”
hierarchy will not be sufficient to learn more challenging
motor skills. We propose a multi-level cascaded hierarchy
to build progressively complex policies starting out from a
small set of learned skills. We build this hierarchy on the fly,
by learning residuals [12], [13] that can perturb the output of
an existing library of policies, to generate novel behaviors.

III. CASCADED COMPOSITIONAL RESIDUAL LEARNING

This section describes our cascaded compositional residual
learning (CCRL) framework that learns complex motor be-
haviors, by recursively obtaining control policies and reusing
them to solve increasingly difficult tasks. We will begin
the section by explaining relevant background, followed by
problem formulation, skill reusing mechanisms and learning
algorithms.

A. Background: Markov Decision Process

Robot learning can be modeled as a Markov Decision
Process (MDP) defined by the 5-tuple M : 〈S,A, T , r, γ〉,
where S, A and r are the state space, the action space, and
the reward function, respectively. T is a transition function
that determines the next state given the current state and
action. γ ∈ (0, 1) is the discount factor. Our goal then, is to
find a policy π : S → A that maximizes a cumulative return
J(π) = Eτ∼ρπ

[∑T
t=0 r(st, at)

]
, where τ is the distribution

of the generated trajectories.

Fig. 2: Directed graph representing the relationship between
skills. Each skill is built as a compositional policy over its
parent policies and a learned residual specific to that skill.

However, solving the given MDPs for high-level motor
tasks, such as interactive navigation or full-body manipula-
tion, is not straightforward. First, the given behavior involves
multiple sub-tasks, such as walking or door opening, which
require the manual design of very specific reward functions.
In addition, the long-horizon nature of the problem makes
it extremely sensitive to the choice of hyper-parameters.
Further, we want to maintain smooth and stable motion
styles to make them consistently feasible on actual hardware.
Therefore, it is almost impossible to obtain such good motion
controllers for these challenging motor tasks via simple
reward engineering and hyperparameter tuning.

B. Background: Residual Learning

Residual learning [13], [12] offers a promising alternative
to the traditional training-from-scratch RL framework by
enabling the transfer of a skill learned on one task to another
related but more difficult task. Consider a policy π0 to be a
solution for the base task. We can freeze the parameters of π0

and learn a residual policy πk to perturb the actions of π0,
modify learned behaviors and accomplish a different goal.
The final policy is then obtained by adding the outputs of
these two policies:

π(s) = π0(s) + πk(s)

C. Problem Definition: Multi-skill Learning

In our formulation, we consider a set of n motor tasks
described as MDPs Ω = {M0,M1,M2, . . . ,Mn}, where
each Mk : 〈Sk,A, T , rk, γ〉 ∀ 0 < k < n, models the
MDP for a learnable skill. Sk,A, T , rk and γ represent the
state space, action space, transition function, reward function
and discount factor respectively. Note that we allow unique
state spaces for the problems, which indicates that some
high-level behaviors require additional inputs for describing
the task (e.g., the target location) or environmental states
(e.g., the door hinge angle). On the other hand, we assume

a single robot, which leads to unified actions and transition
functions.

We then want to learn a collection of control policies C =
{π1, π2, π3, . . . , πn}. A naı̈ve approach is to independently
solve each corresponding MDP. But in practice, it is often
not feasible due to the challenges outlined in Section III-
A. Our key insight is to “recursively” learn policies for
challenging MDPs on top of the related “prerequisite” or
“parent” skills instead of learning from scratch. To this end,
we assume a Skill Decomposition Graph G by defining a set
of prerequisite skills, where its vertices are the correspond-
ing MDPs, and its edges represent the dependencies. For
instance, Figure 2, shows the dependencies of Reach Target
(Easy) on Walk, Stand, Turn Left and Turn Right.

We assume the skill decomposition graph G to be intuitive
to define (e.g., navigation requires straight walking and turn-
ing) but could also be automatically estimated by searching
the space of all possible relations and retaining those that
yield the best performance. Further, our framework is robust
to the redundancy in prerequisite skills in the sense that it
learns with subset of them or ignore irrelevant prerequisite
skills (e.g., if the task does not require the robot to crawl, the
crawling skill will be ignored). Please refer to Section IV-D.

D. Cascaded Compositional Residual Learning

A traditional flat architecture of HRL would train each of
these policies from scratch, to solve the corresponding MDP.
But due to challenges outlined in the previous section, it is
not practically feasible. The key insight of our approach is
that, instead of learning new skills from scratch, we build
them on top of pre-learned skills, i.e. πk could be a composite
policy over the prerequisite policies Ck, where Ck ⊂ C.
Mathematically,

πk = Fk(Ck ∪ {πrk})

where Fk is a merging function that combines the outputs
of all πj ∀ πj ∈ Ck and πrk is a residual neural network
policy. To this end, our framework (Figure 3) has three
trainable networks, (1) a residual action network, (2) a weight
network, and (3) a synthetic goal network, while freezing the
prerequisite policies in Ck.
Residual Network. The residual policy πrk generates a
residual action that perturbs the actions generated by the
learned policies to generate novel behavior that is absent in
the set of pre-learned skills. We simply treat this residual
network as an additional policy: the only difference being
that the parameters of πrk are learnable during policy training.
Weight Network. While prior work in residual learning
combines two policies by just adding them together, this
approach has been observed to be sub-optimal by Peng et
al. [46] when combining a large set of skills. They proposed
Multiplicative Compositional Policy (MCP) that combines a
set of stochastic policies while ensuring that multiple policies
simultaneously work together and provide more flexibility
in the final composite policy. The MCP objective combines

 Reach target (Easy) Interactive Reach

O
bs

er
va

tio
n

se
le

ct
or

Skill Library

Walk straight

Turn left

Turn right

Stand

Open door
(easy)

Reach target
(easy)

Open door
(Hard)

Crawl

Residual

Goal Synthesis
Network

Robot + environment
State

concat concat

Goal position
Weight
Network

O
bs

er
va

tio
n

se
le

ct
or

Weight
Network

Skill Library

Walk straight

Turn left

Turn right

Stand

C
om

bi
ne

 a
ct

io
ns

ResidualC
om

bi
ne

 a
ct

io
ns

 E
q.

 (1
)

- Trainable network modules

- Pre-trained and frozen network modules

12-DOF
Joint angles

12-DOF
Joint angles

Fig. 3: Overview of our Cascaded Compositional Residual Learning, which consists of three learnable components: a synthetic
goal network, a weight network, and a residual action network. The example illustrates the architecture for Interactive Reach,
which uses Reach target (Easy) on top of other primitive skills.

multiple skills by using the following equation:

π(a | s, g) =
1

Z(s, g)

k∏
i=0

πi(a | s, g)wi(s,g), (1)

where wi(s, g) are learned weighting functions and Z(s, g)
is a normalizing factor to ensure that the weights are between
0 and 1.
Goal Synthesis Network. This network creates intermediate
goals for individual skills. For example, the Reach Target
(Easy) skill needs a goal location around the robot as input.
But to use this skill as part of Door open (Hard), we need to
generate a collection of intermediate targets as input the the
policy. These targets are generated by the Synthetic Goals
Network.

The architecture is illustrated in Figure 3. Our work
provides framework that builds novel complex skills, by
leveraging a library of pre-learned composite skills, while
ensuring controllability over the style of the composite. We
use our framework to learn a wide range of interactive skills
on a quadruped robot while implicitly guiding the style of
the policy by controlling the weight given to the residual
actions. With this framework we train a handful of basic
policies from scratch, using RL, and use these policies to
progressively build increasingly complex composite skills.

E. Auxiliary Loss

In the previous section, we discussed learning novel skills
by effectively leveraging a library of existing skills and a
trainable residual. However, an unconstrained residual could
dominate the output of the policy and give rise to unstable
behaviors, which eventually lead to sub-optimal behaviors
and unsuccessful sim-to-real transfer. Therefore, we intro-
duce constraints into our policy optimization framework to
control the extent to which residuals influence the policy. We
modify the traditional RL objective with regularization terms
to penalize the magnitude and weight given to the residual.

Lrwt = Et [| wres(st, gt) |1]

Lrmt = | Et [πres(at | st, gt)] |1
Lrm and Lrw are penalties on the magnitude of the resid-

ual actions and the weights assigned to them respectively.
In our work, we use PPO (Proximal Policy Optimiza-

tion) [47] as the RL algorithm of choice. Consider the
standard PPO (Proximal Policy Optimization) [47] objective
below:

LPPOt (θ) = Êt
[
LCLIPt (θ)− c1LV Ft (θ) + c2S [πθ] (st)

]
where LCLIPt (θ) is the clipped policy gradient objective,
LV Ft (θ) is the value function error and S [πθ] (st) is the
entropy term. c1, c2 are weights to control the influence of
each term over the total loss.

We modify this loss to include regularization terms defined
above:

Lt(θ) = LPPOt (θ) + c3L
rw
t + c4L

rm
t . (2)

We set coefficients c1, c2 to be 1.0 and 0.01 respectively.
c3, and c4 are task dependent coefficients that are tuned to
maximize the policy performance. Once we train a skill, we
save the residual, weight, and goal synthesis networks and
reuse them to train other skills. The critic is trained from
scratch for every new skill.

IV. EXPERIMENTS

In this section, we design experiments to test the effec-
tiveness of the proposed method, cascaded compositional
residual learning (CCRL), by learning skills involving differ-
ent levels of difficulty and comparing the performance with
traditional RL baselines. Next, we also present simulation
analyis to investigate the robustness of the proposed method
and the importance of the auxiliary loss. Finally, we examine
the learned skill policies on a real Unitree A1 robot and
demonstrate robust sim-to-real transfer.

(a) Straight walking (b) Turning (c) Reach Target (Easy) (d) Crawling (e) Door Open (Easy)

(f) Door Open (Hard) (g) Push Object to Target (h) Interactive Reach

Fig. 4: Overview of the tasks we train our robot to accomplish.

A. Problem Formulation

In our work, we train a collection of policies, that help an
agent interactively navigate an indoor scene. Each skill has
its own underlying MDP, but we provide a rough definition
of the ingredients of the MDPs as follows.
States. A 60-dimensional state space consists of the base
linear velocity, base angular velocity, base yaw angle, base
position, gravity vector projected on the base, joint angles,
joint velocities, and object locations relative to the robot.
Actions. The action space is the desired target joint angles
of the robot (12 for A1), which are fed into Proportional
Derivative (PD) controllers.
Rewards. We use a collection of terms to account for
different aspects of the robot motion. Let us denote the
velocity as v, the angular velocity as ω, the joint angles
as q, joint velocities as q̇, joint torques as τ , number of
robot parts (excluding feet) in contact with the environment
as ncontact, action taken at a given step as at, the angle
made by the hinge of the door joint as qdoor, the position of
the target relative to the robot as xtarget, the position of the
target relative to the object being pushed as xt2o and ∆t as
the simulation time-step. The reward at time t is defined as
the weighted sum of the following quantities:
(R1) Linear velocity tracking: exp(−(vtarget − v)2/σ1)
(R2) Angular velocity tracking: exp(−(ωztarget−ωz)2/σ2)
(R3) Pitch and roll penalty: ω2

x + ω2
y

(R4) Joint acceleration penalty:
∑

(q̇t−q̇t−1

∆t)2

(R5) Collision penalty: ncontact
(R6) Action change penalty :

∑
(at − at−1)2

(R7) Torque penalty :
∑
τ 2

(R8) Door angle: qdoor
(R9) Distance to target: exp(−‖xtarget‖ /σ3)

(R10) Object-target distance: exp(−‖xt2o‖ /σ3)

σ1, σ2, σ3 are scaling factors that we set to 0.25, 0.25 and
2.0 respectively.
Tasks. We define the following tasks, each aimed at devel-
oping a skill that is useful while navigating or exploring
an indoor cluttered scene (Figure 4). Their relationship is
defined by the skill graph G (Figure 2).

1) Walk straight: Walk forward in a straight line.
2) Turn left: Turn to the left. The episode is successful if

the robot circle backs to its initial yaw.
3) Turn right: Turn to the right. The episode is successful

if the robot circle backs to its initial yaw.
4) Stand: Stand in place when subjected to external dis-

turbances.
5) Reach target (Easy): Reach a target placed anywhere

within a circle of radius 3m from the center of the robot.
The episode is successful if the robot’s center is within
0.5m from the goal (R9).

6) Open door (Easy): Push door open with foot and hold it
open while walking through it. The episode is successful
if the robot crosses the door (R8).

7) Open door (Hard): Reach the door from an arbitrary
starting point in a room, push it open with a foot and
hold it open while walking through it. The episode is
successful if the robot crosses the door (R8).

8) Push object: Push a cylindrical puck to a target lo-
cation. The episode is successful if the puck is within
0.1m from the desired target location (R10).

9) Crawling: Crawl under a slab that gradually decreases
in height, while avoiding collisions. The episode is
successful if the robot crawls out from under the slab.

10) Interactive Reach: Reach a target object placed any-

Fig. 5: Heatmap showing the weight magnitude on the Open
door (Easy) skill. Notice the increased activation of the skill
when the robot is close to the door.

Success Rate
Reach Target

(Easy)
Open Door

(Hard)
Push

Object
Interactive

Reach
CCRL 0.90 0.98 0.89 0.72
Vanilla 0.95 0 0.04 0.46

Curriculum 0.92 0.98 0.52 0.48
Big Policy 0.92 0 0.01 0.22

TABLE I: Performance comparison of our method against
three baselines Vanilla, Curriculum, and Big Policy. Our
method achieves significantly better success rates on harder
tasks, such as Push Object or Interactive Reach.

where in a two-room house with furniture and a door,
while avoiding collisions. Robot is successful if its body
center within 0.5m from the center of the target (R9).

All the tasks are trained with rewards R1-R7 in addition to
the ones mentioned above.

B. Simulation Setup

We use Isaac Gym [48] to simulate our interactive envi-
ronment and train our policies. We run 4096 environments in
parallel, on a single NVIDIA Titan X GPU. During training,
we randomize surface friction between the robot and the
ground by randomly sampling from the range-[0.5, 1.25]. We
implement all our policies as fully connected neural network
layers, two layers of 256 to 512 neurons depending on the
task difficulties, with exponential linear units (Elu). We train
policies with our updated PPO objective (Equation 2).

C. Simulation Results

Our framework enables us to train complex long horizon
interactive behaviors grounded in previously learned parent
skills. Our policy was able to learn all the tasks described
in Section IV-A and Figure 4. The success rates of the
learned policies are near 90%, except for the hardest task
of Interactive Reach that shows a 72% success rate. We
plot the heatmap of the residual weights on the Open Door
(Easy) skill with respect to its position in Figure 5. This
figure demonstrates the importance of the weight network in
learning a new skill.
Performance Comparison. To highlight the importance of
our cascaded residual framework, we compare our method
with three baselines:

Fig. 6: Torque curves of our approach compared to baselines.
Although all techniques have a success rate of around 90−
95%, our approach has a much lower net torque magnitude
and trajectories better suited for sim-to-real transfer.

1) Vanilla: The policy is trained from scratch to solve the
given problem.

2) Curriculum: A single policy is trained using a manu-
ally curriculum that gradually increases the complexity
of the environment.

3) Big Policy: To show that our improved performance is
not a byproduct of architecture size, we train a policy
that uses the same neural network architecture as our
proposed policy, but is trained from scratch.

We compare the success rates on multiple tasks in Table I.
Our approach, CCRL, typically outperforms all the other
three baselines, Vanilla, Curriculum, and Big Policy, on
challenging tasks. For the Door Open (Hard), only CCRL
and Curriculum achieve good success rates (98%) while
Vanilla and Big policy fail. In our experience, it is almost
impossible to learn an effective door-opening skill without
a proper curriculum, such as learning to walk and open a
door. However, for the most complicated task of Interactive
Reach, CCRL shows the best success rate of 72% while all
three baselines only show less than 48% success rates. This
is because Interactive Reach requires careful coordination
of all multiple different skills, navigation, crawling, obstacle
avoidance, and door manipulation, which shows the impor-
tance of cascaded skill learning.
Control over Quality. Further, because all our skills are
grounded to preliminary skills, such as walking and standing,
through residual regularization, we notice that the quality of
motion is also significantly better. This feature gives us an
explicit way to control the style of new policies. For instance,
in the case of Reach Target (easy), the robot might jump
toward the target or wiggle its legs to move gradually toward
the target. While these behaviors might be successful in
simulation, they do not transfer well to the real world as they
are overfitted to the simulation dynamics and parameters. For
illustration, we compare the torque trajectories in Figure 6.
Notice that our method uses a significantly lower average
torque when compared to the baselines, which results in
better motion quality. Please also refer to the supplemental
video for qualitative comparison.

Fig. 7: Trajectories taken by the robot from a fixed starting
point in our Interactive Reach Environment. The target
positions are sampled to be at grid corners inside the room.
Our robot crawls under furniture, walks around obstacles and
opens a door to get from one room to another.

D. Simulation Analysis

This section intends to analyze the robustness and sensi-
tivity of our learning framework, CCRL.
Sensitivity to clumsy parent skills. We first investigate the
robustness of the proposed CCRL to check if it can learn
with a clumsy, poor-performing parent policy. To this end,
we learn a new policy on the Reach Target (Easy) task, but
add one more expert policy that is randomly initialized and
untrained. We notice that this policy performs similarly to
our best policy (CCRL) in Table I, reaching a success rate
of 90%. This showcases the robustness of CCRL, in ignoring
bad parent policies.
Sensitivity to irrelevant parent skills. We also check
whether CCRL is sensitive to the design of the skill graph.
Particularly, we investigate if CCRL can be robust to addi-
tional unnecessary skill dependencies, i.e., additional edges.
We retrain a new policy to walk in a straight line with a
redundant set of skills: {Walk straight, Turn left, Turn right}.
Our framework ignores the redundancy and walks straight
achieving an average tracking error of about 16%, same as
the parent walking skill.
Importance of residual penalties. We further examine the
importance of residual penalties (Lrmt ,Lrwt) by retraining
the Reach Target (Easy) policy without residual penalties
(c3, c4 = 0). With this setup, the policy ends up overusing
residual actions to learn behaviors that diverge too much
from the base walking skill. While it still reaches the target in
many cases, the quality of trajectories is poor and unsuitable
sim-to-real transfer. Please refer to the supplemental video
for comparison.

E. Sim2real transfer

We transfer our policies trained in simulation to a real
Unitree A1 quadruped robot. We use motion capture to
identify and track the state of the robot and objects in the real
world. Our policies do not require any additional finetuning
on a real robot, demonstrating the robustness of the skills
generated using CCRL. In Figure 1 we show an interactive
navigation task, where the robot crawls under a desk, reaches

(a) Push object (b) Open door

(c) Crawling

Fig. 8: We transfer the skills, (a) Push object, (b) Open door
and (c) Crawling to the real world without any finetuning.

a door, pushes it open with its leg, and walks through it to
reach a target. We show example motions of additional skills
such as Push Object, Open Door (Easy) and Crawling in
Figure 8. Please refer to the accompanied video for example
motions of all the behaviors trained using our approach.

V. CONCLUSION

In this paper, we presented a novel Casacded Composi-
tional Residual Learning (CCRL) framework that recursively
learns policies by grounding them to a set of prerequi-
site skills learned in previous iterations. Using CCRL we
built interactive motor controllers on a high-dimensional
quadrupedal robot while ensuring that the learned policies
follow a style grounded in the parent skill library. We
compared the policies learned to multiple baselines and
showed the effectiveness of the proposed framework. We also
demonstrated sim-to-real transfer of the learned motor skills.

For future work, we aim to automatically discover skill
relationships instead of manually designing the skill graph.
Additionally, we hope to extend our approach to vision-based
obstacle avoidance tasks by learning image-conditioned
residual perturbations to pre-trained navigation skills. Ad-
ditionally, we want to explore interaction policies that learn
about objects through interaction [49], [50] and adapt to the
variability seen in the real world.

REFERENCES

[1] L. Sentis and O. Khatib, “A whole-body control framework for
humanoids operating in human environments,” in Proceedings 2006
IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006. IEEE, 2006, pp. 2641–2648.

[2] H. Ferrolho, V. Ivan, W. Merkt, I. Havoutis, and S. Vijayakumar,
“Roloma: Robust loco-manipulation for quadruped robots with arms,”
arXiv preprint arXiv:2203.01446, 2022.

[3] S. Zimmermann, R. Poranne, and S. Coros, “Go fetch!-dynamic grasps
using boston dynamics spot with external robotic arm,” in 2021 IEEE
ICRA. IEEE, 2021, pp. 4488–4494.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[6] S. Kim, M. Sorokin, J. Lee, and S. Ha, “Human motion control
of quadrupedal robots using deep reinforcement learning,” Robotics
Science and Systems, 2022.

[7] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[8] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[9] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[10] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learning
of adaptive legged locomotion,” Science Robotics, vol. 5, no. 49, p.
eabb2174, 2020.

[11] C. Li, F. Xia, R. Martin-Martin, and S. Savarese, “Hrl4in: Hierar-
chical reinforcement learning for interactive navigation with mobile
manipulators,” in Conference on Robot Learning. PMLR, 2020, pp.
603–616.

[12] T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling, “Residual policy
learning,” arXiv preprint arXiv:1812.06298, 2018.

[13] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 ICRA. IEEE, 2019, pp. 6023–6029.

[14] T. Apgar, P. Clary, K. Green, A. Fern, and J. W. Hurst, “Fast online
trajectory optimization for the bipedal robot cassie.” in Robotics:
Science and Systems, vol. 101, 2018, p. 14.

[15] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al., “Anymal-a
highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2016, pp. 38–44.

[16] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and
S. Kim, “Mit cheetah 3: Design and control of a robust, dynamic
quadruped robot,” in IROS. IEEE, 2018, pp. 2245–2252.

[17] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in IROS. IEEE, 2018, pp. 1–9.

[18] M. H. Raibert, “Trotting, pacing and bounding by a quadruped robot,”
Journal of biomechanics, vol. 23, pp. 79–98, 1990.

[19] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

[20] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,” arXiv
preprint arXiv:2111.01674, 2021.

[21] R. Hafner, T. Hertweck, P. Klöppner, M. Bloesch, M. Neunert,
M. Wulfmeier, S. Tunyasuvunakool, N. Heess, and M. Riedmiller,
“Towards general and autonomous learning of core skills: A case study
in locomotion,” arXiv preprint arXiv:2008.12228, 2020.

[22] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak,
“Coupling vision and proprioception for navigation of legged robots,”
in Proceedings of the IEEE/CVF CVPR, 2022, pp. 17 273–17 283.

[23] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[24] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[25] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adapta-
tion with meta strategy optimization,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2950–2957, 2020.

[26] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk
in the real world with minimal human effort,” arXiv preprint
arXiv:2002.08550, 2020.

[27] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine, “Legged
robots that keep on learning: Fine-tuning locomotion policies in the
real world,” in 2022 ICRA. IEEE, 2022, pp. 1593–1599.

[28] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, et al.,
“On evaluation of embodied navigation agents,” arXiv preprint
arXiv:1807.06757, 2018.

[29] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh,
M. Savva, and D. Batra, “Dd-ppo: Learning near-perfect pointgoal

navigators from 2.5 billion frames,” arXiv preprint arXiv:1911.00357,
2019.

[30] M. Sorokin, W. Yu, S. Ha, and C. K. Liu, “Learning human search
behavior from egocentric visual inputs,” in Computer Graphics Forum,
vol. 40, no. 2. Wiley Online Library, 2021, pp. 389–398.

[31] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov,
“Object goal navigation using goal-oriented semantic exploration,”
Advances in Neural Information Processing Systems, vol. 33, pp.
4247–4258, 2020.

[32] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi,
M. Savva, A. Toshev, and E. Wijmans, “Objectnav revisited: On
evaluation of embodied agents navigating to objects,” arXiv preprint
arXiv:2006.13171, 2020.

[33] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. E. Tchapmi, A. Toshev,
R. Martı́n-Martı́n, and S. Savarese, “Interactive Gibson Benchmark:
A Benchmark for Interactive Navigation in Cluttered Environments,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 713–720,
2020.

[34] K.-H. Zeng, L. Weihs, A. Farhadi, and R. Mottaghi, “Pushing it
out of the way: Interactive visual navigation,” in Proceedings of the
IEEE/CVF CVPR, 2021, pp. 9868–9877.

[35] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Autonomous
skill acquisition on a mobile manipulator,” in Twenty-Fifth AAAI
Conference on Artificial Intelligence, 2011.

[36] K. N. Kumar, I. Essa, and S. Ha, “Graph-based cluttered scene gener-
ation and interactive exploration using deep reinforcement learning,”
in 2022 ICRA. IEEE, 2022, pp. 7521–7527.

[37] M. Danielczuk, A. Angelova, V. Vanhoucke, and K. Goldberg, “X-ray:
Mechanical search for an occluded object by minimizing support of
learned occupancy distributions,” IROS, pp. 9577–9584, 2020.

[38] H. Huang, M. Dominguez-Kuhne, J. Ichnowski, V. Satish, M. Daniel-
czuk, K. Sanders, A. Lee, A. Angelova, V. Vanhoucke, and K. Gold-
berg, “Mechanical search on shelves using lateral access x-ray,” arXiv
preprint arXiv:2011.11696, 2020.

[39] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, 2017.

[40] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[41] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierarchical
reinforcement learning: A comprehensive survey,” ACM Computing
Surveys (CSUR), vol. 54, no. 5, pp. 1–35, 2021.

[42] T. Li, N. Lambert, R. Calandra, F. Meier, and A. Rai, “Learning gen-
eralizable locomotion skills with hierarchical reinforcement learning,”
in 2020 IEEE ICRA. IEEE, 2020, pp. 413–419.

[43] D. Jain, A. Iscen, and K. Caluwaerts, “Hierarchical reinforcement
learning for quadruped locomotion,” in 2019 IEEE/RSJ IROS. IEEE,
2019, pp. 7551–7557.

[44] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and
D. Silver, “Learning and transfer of modulated locomotor controllers,”
arXiv preprint arXiv:1610.05182, 2016.

[45] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp.
1–13, 2017.

[46] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine, “Mcp:
Learning composable hierarchical control with multiplicative compo-
sitional policies,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[48] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[49] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song, “Densephysnet:
Learning dense physical object representations via multi-step dynamic
interactions,” arXiv preprint arXiv:1906.03853, 2019.

[50] K. N. Kumar, I. Essa, S. Ha, and C. K. Liu, “Estimating mass
distribution of articulated objects using non-prehensile manipulation,”
arXiv preprint arXiv:1907.03964, 2019.

	I INTRODUCTION
	II RELATED WORK
	II-A Robotic Locomotion
	II-B Interactive Navigation
	II-C Hierarchical Reinforcement Learning

	III Cascaded Compositional Residual Learning
	III-A Background: Markov Decision Process
	III-B Background: Residual Learning
	III-C Problem Definition: Multi-skill Learning
	III-D Cascaded Compositional Residual Learning
	III-E Auxiliary Loss

	IV EXPERIMENTS
	IV-A Problem Formulation
	IV-B Simulation Setup
	IV-C Simulation Results
	IV-D Simulation Analysis
	IV-E Sim2real transfer

	V CONCLUSION
	References

