
Certification of Bottleneck Task Assignment with Shortest Path Criteria

Tony A. Wood and Maryam Kamgarpour

Abstract— Minimising the longest travel distance for a group
of mobile robots with interchangeable goals requires knowledge
of the shortest length paths between all robots and goal
destinations. Determining the exact length of the shortest paths
in an environment with obstacles is NP-hard however. In this
paper, we investigate when polynomial-time approximations of
the shortest path search are sufficient to determine the optimal
assignment of robots to goals. In particular, we propose an
algorithm in which the accuracy of the path planning is itera-
tively increased. The approach provides a certificate when the
uncertainties on estimates of the shortest paths become small
enough to guarantee the optimality of the goal assignment. To
this end, we apply results from assignment sensitivity assuming
upper and lower bounds on the length of the shortest paths.
We then provide polynomial-time methods to find such bounds
by applying sampling-based path planning. The upper bounds
are given by feasible paths, the lower bounds are obtained
by expanding the sample set and leveraging the knowledge of
the sample dispersion. We demonstrate the application of the
proposed method with a multi-robot path-planning case study.

I. INTRODUCTION

Cooperative multi-robot systems provide great value in
applications such as coordinated search and rescue, large-
scale agriculture, and efficient transportation. Given a group
of robots with interchangeable goals, deciding which one
is assigned to which goal is crucial for achieving a joint
objective. For instance, in a search and rescue mission
robots should be assigned to goal destinations such that all
possible locations of distressed humans can be visited in a
minimal amount of time. Apart from the obvious incentive
to complete a cooperative mission at minimum cost or time,
an optimal goal assignment can also provide other benefits
for multi-robot coordination such as inter-agent collision-
avoidance guarantees, [1]–[3]. If the costs of sending robots
to goals are known, optimally deciding which robot should
go to which goal corresponds to a well-studied problem
called task assignment, see [4] for an overview. Typically,
the costs are dependent on the lengths of the shortest paths
between each robot and each goal. When the robots have
the same constant velocity, minimising the shortest path is
equivalent to minimising the travel time.

When the environment contains obstacles, finding the
shortest obstacle-avoiding path function that links two loca-
tions is an infinite-dimensional and challenging optimisation
problem. Finite-dimensional formulations involve constraints
that are either smooth non-convex, see e.g. [5] or mixed-
integer, see e.g. [6]. While these methods are powerful in

The authors are with the SYCAMORE Lab, École Polytech-
nique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
{tony.wood,maryam.kamgarpour}@epfl.ch

finding good solutions, the problem is NP-hard to solve op-
timality. There exist sampling-based approaches for shortest
path search, see e.g. [7], but they only converge to an optimal
solution asymptotically as the number of samples and the
computational complexity approach infinity. The problem
of multi-agent goal assignment to minimise the shortest
obstacle-avoiding paths is therefore hard and understudied.

We investigate when approximate knowledge of the short-
est paths obtained in polynomial time is sufficient to de-
termine an optimal assignment. We focus on the Bottleneck
Assignment Problem (BAP), see e.g., [8], where the objective
is to minimise the largest cost among the assigned agent-task
pairs, referred to as the bottleneck. The BAP is particularly
relevant for minimum-time requirements when a team of
agents operates in parallel because the largest assigned agent-
task cost then relates to the time of completing all tasks,
[4]. In this work, we follow an iterative approach to find
an assignment where the accuracy of the path planning
is increased step by step. As a stopping criterion of the
iterative increase of accuracy, we check if the assignment
is guaranteed to be a minimiser of the BAP defined with
respect to the true shortest paths.

For multi-agent path planning with adjustable accuracy,
we consider sampled roadmap graphs as they are a popular
approach for obtaining obstacle-avoiding paths, see e.g. [7],
[9], [10]. The key idea is to probe the configuration space
with a desired number of samples and check if they can be
connected without intersecting any obstacles. Intuitively, the
complexity of the approach increases when more samples are
considered. When the subset of the configuration space that
has a safe distance from obstacles is known and the areas that
are reachable from every configuration are easily computed,
the special case of visibility-based roadmaps provides an
efficient approach to optimal path planning [11]. In this
paper, we consider a more general safe set setting where the
visibility domain is not known. The most common roadmap
algorithm for this setting, called Probabilistic Road-Map
(PRM), utilises probabilistic sampling where samples are
drawn from the configuration space at random. It has been
shown to provide probabilistic completeness [9], meaning
that the probability of finding a feasible path, if one exists,
goes to one when the number of samples goes to infinity.
Variants of PRM [7] have been shown to also be asymptot-
ically optimal, meaning that the obtained path converges to
the shortest obstacle-avoiding path with probability one. In
[12] the convergence rate of such algorithms is investigated
as a function of the sample dispersion. However, these results
do not directly provide a converging lower bound on the
shortest path length.

ar
X

iv
:2

21
2.

12
72

4v
2

 [
cs

.R
O

]
 8

 J
un

 2
02

3

To obtain a stopping criterion for the iterative algorithm
we apply assignment sensitivity analysis. In particular, given
estimates of the path lengths between all robots and goals
and a bottleneck optimising assignment, we quantify how
much error in the estimates can be tolerated in order for
the assignment to remain optimal. Methods to quantify such
sensitivity for different types of assignment objectives and
perturbation models have been derived in [13]–[15]. While
these methods have been used for post-assignment analysis,
they have not been applied to determine whether the accuracy
of the cost estimates is sufficient for knowing the true optimal
assignment in a scenario where the estimates are being
refined at the time the assignment is made.

The contributions of this paper are twofold:
i) The first contribution is providing a generic approach for

testing whether polynomial-time path planning is sufficient
for guaranteeing optimal goal assignment. We apply recent
results on bottleneck assignment sensitivity presented in
[15] and propose a novel iterative algorithm that increases
the accuracy of the path planning step-wise and returns a
certificate when an assignment can be obtained that is known
to be optimal. We prove that if the certificate is returned, it
is guaranteed that the assignment made with estimates of the
path lengths is optimal for the true shortest paths. The generic
approach relies on the existence of polynomial-time methods
to determine upper and lower bounds on the shortest paths
between all robots and goals that converge as the invested
computational complexity increases.

ii) The second contribution is deriving specific bounds
on the shortest paths between robots and goals. Given a
map of obstacles and the required safety distance that robots
must keep from them, we propose a sampling-based method
to obtain both upper and lower bounds. The upper bounds
are determined by finding feasible paths via a roadmap
that is generated within the safe set. The lower bounds are
obtained by generating a second roadmap that contains nodes
representing positions that can be closer to the obstacles than
the required safety distance. The distance from the obstacles
is a function of the sample dispersion. Results from [12] are
then applied to these non-feasible paths in a novel manner to
bound the optimal path lengths from below. We prove that
the bounds converge to the true shortest safe paths as the
sample size increases.

II. SHORTEST BOTTLENECK PATH

We begin by providing some definitions required to formu-
late the problem mathematically. Let X ⊂ Rd be a compact
Euclidean configuration space with dimension d ∈ N. For
a given margin, δ > 0, and a subset of the configuration
space, C ⊂ X , the δ-interior of C, denoted Cδ := {x ∈
X | infy∈X\C ∥x− y∥2 ≥ δ}, is the set of all configurations
that are at least a distance of δ away from X \ C. Given a
closed set of obstacles, Xobs ⊂ X , we define the obstacle
free-space as Xfree := cl(X \ Xobs), where cl(S) denotes the
closure of set S. Let there be a set of agents, A, where
each agent, i ∈ A, is a robot with initial configuration
pi ∈ Xfree. Cooperatively the agents are required to fulfil

a set of tasks, T , where each task, j ∈ T , represents a goal
configuration gj ∈ Xfree. A path is a continuous function,
σ : [0, 1]→ X , with bounded variation. Let Σ denote the set
of all paths and c : Σ → R≥0 map a path to its arc length.
For obstacle-avoiding path planning, we define the following
two particular subsets of paths.

Definition 1 (Robot-goal path). A path, σ ∈ Σ, connects
robot i ∈ A and goal j ∈ T , with positions pi and gj ,
respectively, if σ(0) = pi and σ(1) = gj . The set of all
paths connecting i and j is denoted by Σi,j .

Definition 2 (δ-clearance path). For δ > 0, a path, σ ∈ Σ,
has δ-clearance in C ⊂ X if σ(τ) ∈ Cδ for all τ ∈ [0, 1].
The set of all paths with δ-clearance in C is denoted by Σδ

C .

We assume that there are no more goals than robots,
i.e. |A| ≥ |T |, and that each robot is contained inside a
ball centred at its reference position with radius s > 0.
We then formulate the cooperative obstacle-avoiding path-
planning problem for a scenario where the largest required
travel distance of all assigned agents is to be minimised,

minimise max
(i,j)∈A×T

c(σi,j)πi,j (1a)

subject to πi,j ∈ {0, 1} ∀(i, j) ∈ A× T , (1b)∑
i∈A

πi,j = 1 ∀j ∈ T , (1c)∑
j∈T

πi,j ≤ 1 ∀i ∈ A, (1d)

σi,j ∈ Σi,j ∩ Σs
Xfree

∀(i, j) ∈ A× T . (1e)

The decision variables in (1) are the assignment Π :=
(πi,j)(i,j∈A×T) and the path functions (σi,j)(i,j∈A×T).

A. Challenge of Finding Optimal Assignment

If the length of the shortest robot-goal path with s-
clearance in Xfree, denoted c(σs

i,j), where

σs
i,j ∈ argmin

σ∈Σi,j∩Σs
Xfree

c(σ), (2)

was given for all (i, j) ∈ A × T , then (1) would reduce to
an optimisation over the binary decision variables defining
the assignment Π. This problem is the well-known BAP, see
[4], and is equivalent to a search for an optimal matching
in a bipartite graph with weights W = (c(σs

i,j))(i,j)∈A×T .
Let B(W) be an operator that returns the set of optimal
assignments that solve the BAP. We note that for known
weights the BAP can be solved efficiently, see [4]. However,
the shortest paths, defined in (2), are not known a-priori
and are hard to find. There exist methods that estimate the
shortest paths with finite complexity, e.g. optimisation with
a convex approximation of the constraints. Some methods
converge to the optimum as the complexity of the approach
approaches infinity, e.g. PRM* [7]. While the true shortest
paths are not found in polynomial time, the paths returned
by the algorithms with finite complexity may provide suffi-
ciently good estimates to obtain an optimal assignment.

We therefore would like to know how much uncertainty
in the path lengths can tolerated for each robot-goal pair in
order for a considered assignment to be optimal. This cor-
responds to quantifying allowable perturbations to nominal
weights that are given by path-length estimates.

Definition 3 (Allowable perturbation). Given a family of
weights, W = (wi,j)(i,j)∈A×T , with wi,j ∈ R, let Π ∈
B(W) be a bottleneck assignment. A family of perturbations
V = (vi,j)(i,j)∈A×T , with vi,j ∈ R, is allowable with respect
to Π for W if Π ∈ B(W + V), where W + V = (wi,j +
vi,j)(i,j)∈A×T . Let Λ = ([−λi,j , λi,j])(i,j)∈A×T be a family
of intervals. A family of perturbations, V = (vi,j)(i,j)∈A×T ,
is contained in Λ, denoted V ∈ Λ, if for all (i, j) ∈ A × T
we have vi,j ∈ [−λi,j , λi,j]. The family of intervals Λ is
allowable relative to assignment Π for weights W if for all
perturbations V ∈ Λ it is guaranteed that V is an allowable
perturbation with respect to Π for W .

B. Certification Algorithm
Algorithm 1 outlines the approach we follow to obtain

an assignment. Given a considered accuracy, parameterised
by n, the algorithm involves computing families of upper
and lower bounds on shortest path lengths for every robot-
goal pair with subroutines Lower and Upper, respectively.
The averages of the upper and lower bounds are used as
assignment weights to determine a candidate assignment with
subroutine BottleneckAssignment. To determine whether
the returned assignment is guaranteed to be optimal for the
true shortest paths a subroutine AllowableIntervals is
executed. If for all agent-task pairs the upper and lower
bounds lie within the range of perturbed weights defined
by the allowable intervals, the algorithm terminates with a
certificate, Q = true. Otherwise, the accuracy is increased
and the procedure is repeated until either a certificate is found
or the maximal complexity defined by nmax is reached.

Several methods of obtaining upper and lower bounds
for the optimal costs, (c(σs

i,j))(i,j)∈A×T , are conceivable.
Such bounds should converge as the planning parameter
n is increased. In Section III we focus on a sampling-
based method where the planning parameter is given by the
sampling size n. The requirements for a generalisation to
other methods are summarised in the following.

Requirement 1. The complexities of Upper and Lower are
polynomial in the number of robots and planning parameter
n. Furthermore, limn→∞ ui,j = limn→∞ li,j = c(σs

i,j)
while ui,j ≥ c(σs

i,j) and li,j ≤ c(σs
i,j) for all A× T .

We use an edge removal algorithm introduced in [8]
to implement BottleneckAssignment but any other ap-
proach to solve a BAP, see [4], can be used. To implement
AllowableIntervals we use the method derived in [15].
This method performs a sensitivity analysis to determine how
much every weight can independently be altered while guar-
anteeing that a considered optimising assignment remains
optimal. As an output, it produces the lexicographic maximal
family of intervals that are allowable relative to a given
assignment and weights according to Definition 3.

Algorithm 1: Iterative planning and assignment
Input: Agent positions P = (pi)i∈A,

goal positions G = (gj)j∈T , free space Xfree,
safety distance s;

Output: Assignment Π, certificate Q;
Parameters: Initial planning parameter nmin ∈ N,

planning parameter limit nmax ∈ N,
increase factor α > 0;

1 Q← false

2 n← nmin
3 while Q = false and n ≤ nmax do
4 (ui,j)(i,j)∈A×T ← Upper(P,G,Xfree, s, n)
5 (li,j)(i,j)∈A×T ← Lower(P,G,Xfree, s, n)

6 W ←
(

li,j+ui,j

2

)
(i,j)∈A×T

7 Π← BottleneckAssignment (W)
8 Λ← AllowableIntervals(W,Π)

9 if
([

li,j−ui,j

2 ,
ui,j−li,j

2

])
(i,j)∈A×T

⊆ Λ then

10 Q← true

11 else
12 n← α · n

C. Theoretical Guarantees

Assumption 1. For safety distance, s > 0, obstacle map,
Xobs ⊂ X , all robots i ∈ A, and all goals j ∈ T there
exists a connecting path with s-clearance, as defined in
Definitions 1 and 2, i.e. the set Σi,j ∩ Σs

Xfree
is non-empty.

Theorem 1. Given Assumption 1, assume Requirements 1
is satisfied. If Algorithm 1 terminates with Q = true, then
the returned assignment, Π, is bottleneck minimising for the
shortest paths between robots and goals, i.e., Π∗ = Π is an
optimiser of (1).

Proof. Consider an arbitrary iteration of the while-loop given
in Lines 3-12 of Algorithm 1. Because Requirement 1 is sat-
isfied, we have (c(σs

i,j))(i,j)∈A×T ∈ ([li,j , ui,j])(i,j)∈A×T ,
where (ui,j)(i,j)∈A×T and (li,j)(i,j)∈A×T are determined in
Lines 4 and 5. In Line 7, Π is determined such that it is a
bottleneck assignment for weights W = (wi,j)(i,j)∈A×T ,
with wi,j = 1

2 (li,j + ui,j) according to Line 6. From
[15] and Definition 3, we know that Π ∈ B(W + V) for
all V ⊆ Λ, where Λ is an allowable family of intervals
determined in Line 8. If the algorithm returns Q = true,
it means that the condition on Line 9 is satisfied and the
difference between the weights and the true shortest paths
corresponds to an allowable perturbation. Then, we have that
Π ∈ B((c(σs

i,j))(i,j)∈A×T).

From Theorem 1 we know that Algorithm 1 returning a
certificate is a sufficient condition for assignment optimality.
Note that given a finite complexity limit, parameterised by
nmax, the algorithm may terminate with Q = false in which
case no statement about the assignment optimality can be
made. The individual subroutines of the algorithm have been

shown to have polynomial complexity. Next, we show that
if a significantly large increase in the value of the planning
parameter from one iteration to the next is chosen, then the
complete algorithm terminates in polynomial time.

Proposition 1. Given Assumption 1, assume Requirements 1
is satisfied. If the increase factor is such that

α >

(
nmax

nmin

) 1
nmax

, (3)

then Algorithm 1 has a computational complexity that is
polynomial in parameter nmax and the number of robots |A|.

Proof. For a given parameter n and at most |A| tasks, let
CU (|A|, n) denote the complexity of Upper, CL(|A|, n)
denote the complexity of Lower, CB(|A|) denote the com-
plexity of the bottleneck assignment, and CA(|A|) denote
the complexity of computing the allowable intervals. If (3) is
satisfied, there will be at most nmax iterations of the while-
loop on Lines 3-12 of Algorithm 1. Therefore, the worst-
case complexity is O(nmax(CU (|A|, nmax)+CL(|A|, nmax)+
CB(|A|)+CA(|A|))). We know that CB(|A|) and CA(|A|)
are polynomial in |A| from [16] and [15], respectively.
Given the satisfaction of Requirement 1, it follows that the
algorithm is polynomial in |A| and nmax.

III. SAMPLING-BASED PATH PLANNING

A. Background on Sampled Roadmaps

Sampling-based planning consists of finding paths be-
tween desired starting and goal points by connecting samples
of the configuration space. A popular approach that is suited
for multi-query path planning, e.g. the planning for multiple
robots and goals simultaneously, consists of building a so-
called roadmap. A roadmap is a graph with vertices repre-
senting points in a desired set, C ⊆ X , and edges representing
lines contained in C that connect such points. The roadmap-
building approach outlined in Algorithm 2 (closely related
to sPRM in [7] and gPRM in [12]) relies on the following
subroutines: Sample first generates a set of n ∈ N samples
of the configuration space, N := {x1, . . . xn} ⊂ X and
then returns the subset of these samples that are in C, i.e,
S = N ∩ C; Near returns the set of nodes within a radius
r of node v, i.e, XNear = {x ∈ V \ {v} | ∥x − v∥2 < r};
UninterruptedEdge returns true if and only if the linear
interpolation between nodes u and v lies entirely in the
sample space C. For details, we refer to the discussion of
the function CollionFree in [7].

If the graph returned by Algorithm 2 connects nodes pi
and gj , then a routine for finding the shortest path in a graph,
such as Dijkstra’s algorithm, can be applied. The resulting
path remains in C and connects robot i ∈ A and goal j ∈ T ,
i.e. σ̂i,j ← ShortestPath(pi, gj ,V, E), where σ̂i,j ∈ Σi,j ∩
Σ0

C . Crucially, this procedure can be run in polynomial time.

Remark 1 (Shown in [7]). The computational complexities
of RoadMap and one query of Dijkstra’s algorithm in the
resulting graph are each O(n2).

Algorithm 2: RoadMap
Input: Agent positions P = (pi)i∈A,

goal positions G = (gj)j∈T , sample space C,
connection radius r, sample size n;

Output: Rode-map nodes V , roadmap edges E ;
1 S ← Sample(C, n)
2 V ← S ∪ P ∪G
3 E ← ∅
4 for v ∈ V do
5 XNear ← Near(V, v, r)
6 for x ∈ XNear do
7 if UninterruptedEdge(C, v, x) then
8 E ← E ∪ {(v, x)} ∪ {(x, v)}

In [12] conditions for feasibility, see Remark 2, and ac-
curacy, see Theorem 2, of the roadmap-based path planning
were derived as functions of the sample dispersion.

Definition 4 (l2-dispersion). For a finite non-empty set S ⊂
X , the dispersion of S in the compact set C ⊂ X , with
positive Lebesgue measure, is

D(C,S) := sup
c∈C

min
s∈S
∥s− c∥2.

The dispersion of the node set generated in Line 2 of
Algorithm 2, i.e. D(C,V), can be described as the radius of
the largest ball in C that does not contain a node v ∈ V .

Remark 2 (Shown in [12]). If the connection radius in
Algorithm 2 is selected such that r > 2D(C,V), then the
graph returned by Algorithm 2 not connecting pi and gj
means that there does not exist a path for robot i ∈ A and
goal j ∈ T with δ-clearance, for any δ ≥ 2D(C,V).

The implication of this statement is that the dispersion
should be small in relation to the connection radius r and a
parameter δ that quantifies a desired minimum distance from
the boundary of the sample set C.

Assumption 2. The connection radius, r, in Algorithm 2, is
selected such that r ∈ (2D(C,V), δ −D(C,V)).

We note that for Assumption 2 to be satisfied, we must
have δ > 3D(C, V).

Theorem 2 (proven in [12]). For a given margin, δ > 0,
assume there exists a path, σ ∈ Σi,j ∩Σδ

C , connecting robot
i ∈ A and goal j ∈ T with δ-clearance as defined in
Definitions 1 and 2. Let c(σ̂i,j) be the length of the path
between pi and gj returned by shortestPath(pi, gj ,V, E),
where (V, E) is the graph obtained by Algorithm 2 on
samples with l2-dispersion of D(C,V) and a connection
radius, r, that satisfies Assumption 2. Then, we have

c(σ̂i,j) ≤
(
1 +

2D(C,V)
r − 2D(C,V)

)
min

σ∈Σi,j∩Σδ
C

c(σ).

The sample dispersion depends on the sampling scheme
applied in the subroutine Sample. Intuitively, the more

samples considered the smaller the dispersion is, i.e, D(C,V)
decreases for increasing n. Given just the set of samples, it is
difficult to determine the dispersion. However, if the samples
are generated with a deterministic procedure, a bound on
the dispersion, D̂ ≥ D(C,V), can be computed. In the case
where C = [0, 1]d and the samples are obtained by gridding
with a cubic lattice with n = kd uniformly spaced grid points
and k ∈ N, the dispersion is bound by D̂ = 0.5d

1
2n− 1

d ,
see [17]. For the two-dimensional case, i.e., C = [0, 1]2

the lowest possible dispersion bound of D̂ = 0.62n− 1
d

is achieved with triangular tiling, see [10]. In probabilistic
sampling-based motion planning algorithms, such as PRM
and PRM∗ [7], the samples are randomly drawn from a
probability distribution. For random samples drawn from a
known distribution, probabilistic properties of the dispersion
can be expressed. The dispersion of n independently uni-
formly sampled points on [0, 1]d is O(log(n) 1

dn− 1
d) with

probability 1, see [18].

B. Implementation of Upper

To obtain upper bounds for the shortest paths with s-
clearance, we apply the subroutine described in Algorithm 2
and generate a feasible path, σi,j ∈ Σi,j ∩ Σs

Xfree
for all

(i, j) ∈ A × T via a roadmap graph (V, E) created by
sampling from C = X s

free. Based on the properties discussed
in Section III-A, the connection radius, r, is selected such
that it decreases with the dispersion bound, D̂, for increasing
sample sizes, n, such that Assumption 2 is satisfied. If the
dispersion is sufficiently small, paths are found for every
robot-goal pair. The solid blue lines in Figure 1 illustrate
examples of such paths for varying sample sizes. The sample
set, X s

free, is represented by the white area that consists of all
points that have a greater distance from all obstacles than s.

The arc lengths of the feasible paths are then used as upper
bounds on the optimal path costs, i.e., (ui,j)(i,j)∈A×T =
(c(σi,j))(i,j)∈A×T ≥ (c(σs

i,j))(i,j)∈A×T . In [12] it is shown,
based on Theorem 2, that these paths converge to the
optimal paths asymptotically as n → ∞. We know from
Remark 1 that the complexity of finding these upper bounds
is O(|A|2n2). To fulfil the second half of Requirement 1 we
derive lower bounds next.

C. Implementation of Lower

To determine lower bounds on the shortest paths with s-
clearance, we consider an alternative roadmap graph, (V, E).
It is generated by expanding the space from which samples
are taken to include some points that are outside of the s-
interior of Xfree, i.e., in the (s− δ)-interior of Xfree with δ ∈
[0, s]. In other words, we allow for samples that are closer
to obstacles than s. We note that the path constructed from
such samples may not be feasible. However, by regulating the
amount of the extension of the sample space with parameter
δ, lower bounds on the shortest feasible paths are obtained. If
the dispersion of the nodes in the roadmap has a known upper
bound, D̂ ≥ D(X s−δ

free ,V), we can bound the optimal path
lengths with the following corollary derived from Theorem 2.

Corollary 1. If Assumptions 1 holds, the connection radius,
r, is selected such that Assumption 2 is satisfied for a margin,
δ ∈ [0, s], then we have(

1− 2D̂

r

)
c(σi,j) ≤ c(σs

i,j), (4)

where σi,j is the shortest path in roadmap (V, E) connecting
pi and gj , the optimal path σs

i,j is defined in (2), and D̂ ≥
D(X s−δ

free ,V) is any upper bound on the sample dispersion.

Algorithm 3 is a specific procedure to implement Lower.
Given knowledge of the sampling scheme, see Section III-A,
a bound is computed in subroutine DispersionBound as a
function of the sample size. If the dispersion bound is too
large, i.e., 3D̂ ≥ s, then Algorithm 3 returns infinitely low
lower bounds on the optimal path lengths. If the dispersion
bound is sufficiently small, i.e., 3D̂ < s, then the shortest
paths in the roadmap graph (V, E) are used to compute lower
bounds on the optimal path lengths based on (4). Analogue
to the procedure for Upper the connection radius is selected
such that it decreases with the dispersion bounds as sample
size n increases. However, in the case of Lower the set from
which the samples are drawn, X s−δ

free , varies as it shrinks
towards X s

free with increasing n. The dotted blue lines in
Figure 1 illustrate the path obtained from (V, E) for varying
sample sizes. The sample set, X s−δ

free , is the union of the white
and red areas consisting of all points that have a greater
distance from all obstacles than s− δ.

Algorithm 3: Lower
Input: Initial positions P = (pi)i∈A,

goal positions G = (gj)j∈T , free space Xfree,
safety distance s, sample size n;

Output: Lower bounds L = (li,j)(i,j)∈A×T ;
Parameters: Margin tuning parameter ζ ∈ (0, 1),

radius tuning parameter η ∈ (0, 1);
1 D̂ ← DispersionBound(Xfree, n)

2 if D̂ ≥ s
3 then

3 (li,j)(i,j)∈A×T ← (−∞)(i,j)∈A×T
4 else
5 δ ← (3D̂)ζs1−ζ

6 r ← η2D̂ + (1− η)(δ − D̂)

7 (V, E)← RoadMap(P,G,X s−δ
free , r, n)

8 β ← 1− 2D̂
r

9 for (i, j) ∈ A× T do
10 σi,j ← ShortestPath(pi, gj ,V, E)
11 li,j ← βc(σi,j)

From Remark 1 we know that the complexity of Algo-
rithm 3 is also O(|A|2n2). We conclude this section by
showing in Lemma 1 that Requirement 1 can be satisfied
with this sampling-based implementation.

Lemma 1. The values (li,j)(i,j)∈A×T returned by Al-
gorithm 3 are lower bounds on the optimal paths

0 2 4 6

x-coordinate [m]

0

1

2

3

4
y
-c

o
o
rd

in
a
te

[m
]

s

/

(a) Sample size n = 128

0 2 4 6

x-coordinate [m]

0

1

2

3

4

s

/

(b) Sample size n = 2048

0 2 4 6

x-coordinate [m]

0

1

2

3

4

s

/

(c) Sample size n = 32768

Fig. 1: Shortest paths generated from roadmaps (V, E) [solid blue line] and (V, E) [dotted blue line] with robot position
[blue dot], goal [green star], obstacles [black area], expansion of obstacles by s [red area], and expansion of obstacles by
s− δ [grey area], for parameter values ζ = 0.5, η = 2.2 · 10−16, and samples obtained from triangular tiling.

(c(σs
i,j))(i,j)∈A×T , defined in (2), and converge to the opti-

mal values if D̂ ≥ D(X s−δ
free ,V) and D̂ → 0 as n→ 0.

Proof. If s ≤ 3D̂, Algorithm 3 returns (li,j)(i,j)∈A×T =
(−∞)(i,j)∈A×T and we have li,j < c(σs

i,j) for all (i, j) ∈
A × T . If s > 3D̂, then from Lines 5 and 6, we have δ >
3D̂ ≥ 3D(X s−δ

free ,V) and r > 2D̂(n) ≥ 2D(X s−δ
free ,V). We

also have r < δ − D̂ ≤ δ −D(X s−δ
free ,V) and Assumption 2

is therefore satisfied. From Assumption 1 and the fact that
X s

free ⊂ X
s−δ
free we know that there exists a path in Σs−δ

Xfree
that

connects pi and gj for all (i, j) ∈ A×T . From Remark 2 it
follows that there exists a path in (V, E) that connects pi and
gj for all (i, j) ∈ A×T . The path σi,j determined in Line 10
is the shortest path in (V, E) connecting pi and gj . From
Corollary 1 it follows that li,j = (1 − 2D̂

r)c(σi,j) ≤ c(σs
i,j)

for all (i, j) ∈ A×T . Moreover, we have D̂
r → 0 and δ → 0

as n →∞. Thus, X s−δ
free → X s

free and for all (i, j) ∈ A × T
c(σi,j)→ c(σs

i,j) as n→∞.

IV. NUMERICAL ANALYSIS

A. Case Study

We consider agents, A, representing 5 ground robots. The
positions of the robots p1, . . . p5 ∈ X are illustrated in
Figure 2a in blue. The configuration space contains obstacles,
Xobs ⊂ X shown in black, from which the robot positions
must keep a safety distance of at least s, indicated in red.
The cooperative mission is to visit all 3 goals, g1, g2, g3 ∈ X
shown in green, that represent the task set, T .

Figure 2 shows the results of Algorithm 1 using a deter-
ministic sampling based on triangular tiling [12]. The initial
sample size for the path length bounding schemes is selected
to be nmin = 1024 and the sample increase factor is α = 4.
The maximum sample size is set to nmax = 66688. We note
for this choice of parameters we have 3D̂ < s in the first
iteration and (3) is satisfied. The margin tuning parameter
is set to ζ = 0.1 and the radius tuning parameter is set
to η = 0.1. In each iteration of the while-loop, two paths
are generated for each robot-goal pair: one, shown with
a solid line, lies in X s

free based on roadmap graph (V, E)

and one, shown with a dotted line, lies in X s−δ
free based on

roadmap graph (V, E). The lengths of these paths are used to
determine the upper and lower bounds on the shortest paths,
where the lower bound computation includes the scaling
factor β = 1 − 2D̂

r . The candidate assignment is made
based on the averages of the upper and lower bounds. The
resulting robot-goal pairings are illustrated by thick lines.
The allowable ranges of path lengths for the optimality of
the candidate assignments are given in Table I. The numerical
values of the other evolving variables are listed in Table II.
Note that the computation time, t, is provided for a non-
optimised code implementation in Matlab where the bounds
for all 15 agent-tasks pairs are computed in series.

In the first iteration the roadmaps are coarse, see Figure 2b.
Given the resulting small value of the scaling factor, β,
and the significant difference between X s

free and X s−δ
free , we

observe that the upper and lower bounds are not tight enough
to satisfy the stopping criteria on Line 9 of Algorithm 1,
i.e. [li,j , ui,j] ̸⊆ [wi,j − λi,j , wi,j + λi,j], for several agent-
goals pairs (i, j) ∈ A × T highlighted with yellow in
Figure 2b and Table I. In the second iteration, the roadmaps
are generated from more samples. As shown in Figure 2c,
the paths are therefore smoother, the obstacles have been
expanded slightly more by shrinking the margin parameter δ,
and the scaling factor, β, has increased. We observe that the
candidate assignment has changed in comparison to the first
iteration, see the framed cells of Table I. But still, some of the
path bounds lie outside of the allowable range, shown again
in yellow. The sample size is therefore increased further. In
the third iteration, illustrated in Figure 2d, the bounds on the
optimal paths have converged enough to certify the candidate
assignment as optimal and the algorithm terminates.

B. Design Choices and Comparisons

a) Tuning parameters: From Table II we see how
different values of the tuning parameters η, ζ ∈ (0, 1), affect
the performances. For larger η the connection radius, r,
follows the lower bound of its range defined in Assumption 2
more closely. For larger ζ, the margin δ decreases faster

-1 0 1

x-coordinate [m]

-2

-1

0

1

2
y
-c

o
or

d
in

at
e

[m
]

p1

p2

p3

p4

p5
g1

g2

g3

(a) Initial configuration

-1 0 1

x-coordinate [m]

-2

-1

0

1

2

(b) Iteration 1 (n = 1024)

-1 0 1

x-coordinate [m]

-2

-1

0

1

2

(c) Iteration 2 (n = 4168)

-1 0 1

x-coordinate [m]

-2

-1

0

1

2

(d) Iteration 3 (n = 16672)

Fig. 2: Iterative multi-query path planning with robot positions [blue dots], goals [green stars], obstacles [black area],
expansion of obstacles by s [red area], and expansion of obstacles by s − δ [grey area]. Shortest paths generated from
roadmaps (V, E) [solid blue lines] and (V, E) [dotted blue lines] are shown, where assigned robot-goal pairs [thick] and paths
corresponding to assignment weights that are not contained in the allowable intervals [yellow background] are highlighted.

TABLE I: Allowable range of path length in [m] for each agent-goal pair. Assigned pairs are indicated with box framing,
and pairs violating the stopping condition of Algorithm 1 are highlighted in yellow.

Iteration 1 (n = 1024) Iteration 2 (n = 4168) Iteration 3 (n = 16672)
Goal 1 Goal 2 Goal 3 Goal 1 Goal 2 Goal 3 Goal 1 Goal 2 Goal 3

Agent 1 (−∞,∞) [1.94,∞) [1.94,∞) (−∞,1.47] [1.66,∞) (−∞,∞) (−∞,1.61] [1.80,∞) (−∞,∞)
Agent 2 (−∞,1.22] [1.94,∞) [1.94,∞) (−∞,∞) (−∞,1.66] (−∞,∞) (−∞,∞) (−∞,1.80] (−∞,∞)
Agent 3 (−∞,∞) [1.22,1.94] [1.94,∞) [1.47,∞) [1.66,∞) [1.47,∞) [1.61,∞) [1.80,∞) [1.59,∞)
Agent 4 (−∞,∞) (−∞,∞) (−∞,1.94] [1.47,∞) [1.66,∞) (−∞,1.46] [1.61,∞) [1.80,∞) (−∞,1.59]
Agent 5 (−∞,∞) [1.94,∞) [1.94,∞) [1.47,∞) [1.66,∞) [1.47,∞) [1.61,∞) [1.80,∞) [1.59,∞)

TABLE II: Evolving variable values in case study.

n 1024 4168 16672 66688
D̂ 0.0706m 0.0353m 0.0177m 0.0088m

ζ = 0.1
δ 0.290m 0.270m 0.252m 0.235m
r 0.211m 0.219m 0.215m 0.206m

η = 0.1
β 0.332 0.677 0.836 0.914
t 1.5s 13.0s 155.4s 2075.3s
Q false false true true

ζ = 0.1
δ 0.290m 0.270m 0.252m 0.235m
r 0.180m 0.153m 0.135m 0.122m

η = 0.5
β 0.216 0.538 0.738 0.855
t 1.2s 6.2s 71.0s 864.6s
Q false false false true

ζ = 0.5
δ 0.252m 0.178m 0.126m 0.089m
r 0.178m 0.136m 0.101m 0.074m

η = 0.1
β 0.204 0.480 0.651 0.762
t 1.2s 5.6s 35.6s 285.8s
Q false false false false

which means that the obstacles get extended more quickly
but also decreases r. Lower values of r lead to smaller values
of the scaling factor, β, which in the considered case makes
the algorithm require more iterations to certify. However,
because a smaller r means checking fewer samples, the
computation time for a given sample size decreases.

b) Allowable interval bounds: We compare the method
chosen for obtaining the lexicographic largest allowable

perturbations from [15] against an alternative method for
AllowableIntervals that considers a uniform bound
on all perturbations [13]. Note that by construction uniform
allowable intervals are smaller or equal to the lexicographic
largest ones. Using the uniform allowable intervals for the
scenario above results in the uncertainty being too large for
5 robot-goal pairs and no certificate being returned.

c) Sampling scheme: Because triangular tiling provides
the lowest possible dispersion for two-dimensional config-
urations spaces [10], we know that alternative sampling
schemes lead to looser bounds on the shortest path lengths.
If we consider randomised sampling as is used in PRM∗,
the probabilistic dispersion bounds decrease slower than
deterministic ones, see [19], and for the considered scenario
no certificate can be found within the maximal sample size
limit, i.e., for n = 66688, we have δ = 0.268m, r = 0.219m,
β = 0.70, t = 2440.6s, and Q = 0.

d) Preformance analysis: To evaluate the proposed
method we compare it to two naive approaches. We define
the simple-naive approach to be a bottleneck assignment with
the weight equal to the upper bounds on the path lengths
found with the accuracy given by nmin whereas the complex-
naive approach is defined by making a bottleneck assignment
with weights equal to the upper bounds found with the
accuracy given by nmax. For the scenario above, we observe

TABLE III: Results for randomised configurations.

|A| |T | m s Certification Simple fails Savings
3 2 5 0.30m 75% 5% 59%
5 3 3 0.30m 78% 5% 61%
5 3 5 0.25m 67% 1% 38%
5 3 5 0.30m 73% 6% 55%
5 3 5 0.35m 80% 4% 62%
5 3 7 0.30m 82% 8% 62%
7 4 5 0.30m 78% 5% 61%

that the assignment obtained with the simple-naive approach
is not optimal when considering the weights used for the
complex-naive approach. Because the assignment obtained
with Algorithm 1 is certified for n = nmax, we know that
the complex-naive assignment is optimal.

The benefit of starting the planning with low accuracy
and increasing it until a certificate is reached compared to
just considering the maximal accuracy can be measured in
the time saved. Note that the time saved is negative if the
assignment is certified in the last iteration or not certified at
all. In the considered scenario the time saved normalised by
the time it takes for the complex-naive approach is 93%.

C. Randomised configurations

To analyse the approach in a more general setting we
consider randomised examples. Different maps are generated
in the configuration space X = [−1m, 1m]2 with obstacles
consisting of balls with randomised radii and centres. Only
obstacle configurations that satisfy Assumption 1 are consid-
ered. The position of the robots and goals is also randomised
within the set of safe positions. Table III lists the results
of applying Algorithm 1 to the randomised configurations
with the same tuning parameters as in Section IV-A expect
nmin = 310 and nmax = 19840. For each listed choice
of the number of agents |A|, goals |T |, and obstacles m,
and the required safety distance, s, 100 simulations are
considered. The results include statistics on how often the
assignment is certified (Certification), how often the simple-
naive assignment is not optimal for the complex-naive paths
(Simple fails), and the average normalised time saved by
iteratively increasing the sample size (Savings).

V. CONCLUSIONS

We introduced a method that certifies if polynomial-time
approximations of the shortest obstacle-avoiding paths be-
tween robots and goal are sufficient to guarantee bottleneck
optimal goal assignment. If no certificate is returned, the
accuracy of the polynomial approximation procedure is in-
creased and repeated until either sufficiently tight bounds are
computed or a predefined maximum complexity is reached.

Numerical examples demonstrated the possibility of cer-
tifying the optimality of the goal assignment using only
estimates for the optimal path lengths. We observed however
that to achieve tight bounds, a large number of samples may
be required which quickly leads to computational and storage
challenges. In future work, the approach should be imple-
mented efficiently and tested in real-world environments and
benchmarking tools such as [20]. Our current work focuses

on alternative methods to bound the shortest paths given
some knowledge about the obstacles. Extending research
should investigate the optimal adaptation of the planning
accuracy between iterations and identify conditions under
which a certificate of optimality is returned in finite time.
Furthermore, we are interested in extending this work to the
case of safety rather than shortest path objectives [21].

REFERENCES

[1] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal Assignment
and Trajectory Planning for Large Teams of Interchangeable Robots,”
Auton. Robots, vol. 37, no. 4, pp. 401–415, 2014.

[2] P. MacAlpine, E. Price, and P. Stone, “SCRAM: Scalable Collision-
Avoiding Role Assignment with Minimal-Makespan for Formational
Positioning,” in Natl. Conf. Artif. Intell., vol. 3, 2015, pp. 2096–2102.

[3] T. A. Wood, M. Khoo, E. Michael, C. Manzie, and I. Shames, “Col-
lision Avoidance Based on Robust Lexicographic Task Assignment,”
IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5693–5700, 2020.

[4] R. E. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems,
Revised Reprint. Siam, 2012.

[5] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-Based Collision
Avoidance,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, pp.
972–983, 2021.

[6] T. Marcucci, J. Umenberger, P. A. Parrilo, and R. Tedrake, “Shortest
Paths in Graphs of Convex Sets,” pp. 1–26, 2021. [Online]. Available:
http://arxiv.org/abs/2101.11565

[7] S. Karaman and E. Frazzoli, “Sampling-Based Algorithms for Optimal
Motion Planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, 2011.

[8] M. Khoo, T. A. Wood, C. Manzie, and I. Shames, “A Distributed
Augmenting Path Approach for the Bottleneck Assignment Problem,”
IEEE Trans. Autom. Control (in press), 2023.

[9] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe, “Analysis
of Probabilistic Roadmaps for Path Planning,” IEEE Trans. Robot.
Autom., vol. 14, no. 1, pp. 166–171, 1998.

[10] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[11] C. Nissoux, T. Simeon, and J. P. Laumond, “Visibility Based Prob-
abilistic Roadmaps,” IEEE Int. Conf. Intell. Robot. Syst., vol. 3, pp.
1316–1321, 1999.

[12] L. Janson, B. Ichter, and M. Pavone, “Deterministic Sampling-Based
Motion Planning: Optimality, Complexity, and Performance,” Int. J.
Rob. Res., vol. 37, no. 1, pp. 46–61, 2018.

[13] Y. N. Sotskov, V. K. Leontev, and E. N. Gordeev, “Some Concepts
of Stability Analysis in Combinatorial Optimization,” Discret. Appl.
Math., vol. 58, no. 2, pp. 169–190, 1995.

[14] C. Nam and D. A. Shell, “When to do Your Own Thing: Analysis of
Cost Uncertainties in Multi-Robot Rask Allocation at Run-Time,” in
IEEE Int. Conf. Robot. Autom., no. June, 2015, pp. 1249–1254.

[15] E. Michael, T. A. Wood, C. Manzie, and I. Shames, “Sensitivity
Analysis for Bottleneck Assignment Problems,” Eur. J. Oper. Res.,
vol. 303, no. 1, pp. 159–167, 2022.

[16] D. W. Pentico, “Assignment Problems: A Golden Anniversary Survey,”
Eur. J. Oper. Res., vol. 176, no. 2, pp. 774–793, 2007.

[17] A. G. Sukharev, “Optimal Strategies of the Search for an Extremum,”
USSR Comput. Math. Math. Phys., vol. 11, no. 4, pp. 119–137, 1971.

[18] P. Deheuvels, “Strong Bounds for Multidimensional Spacings,”
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
vol. 64, no. 4, pp. 411–424, 1983.

[19] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast Marching
Tree: A Fast Marching Sampling-Based Method for Optimal Motion
Planning in Many Dimensions,” Int. J. Rob. Res., vol. 34, no. 7, pp.
883–921, 2015.

[20] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L. E. Kavraki, “MotionBenchMaker:
A Tool to Generate and Benchmark Motion Planning Datasets,” IEEE
Robot. Autom. Lett., vol. 7, no. 2, pp. 882–889, 2022.

[21] D. Tihanyi, Y. Lu, O. Karaca, and M. Kamgarpour, “Multi-Robot Task
Allocation for Safe Planning Against Stochastic Hazard Dynamics,”
in Eur. Control Conf. (in press), 2023.

http://arxiv.org/abs/2101.11565

	Introduction
	Shortest Bottleneck Path
	Challenge of Finding Optimal Assignment
	Certification Algorithm
	Theoretical Guarantees

	Sampling-Based Path Planning
	Background on Sampled Roadmaps
	Implementation of Upper
	Implementation of Lower

	Numerical Analysis
	Case Study
	Design Choices and Comparisons
	Randomised configurations

	Conclusions
	References

