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TacMMs: Tactile Mobile Manipulators for
Warehouse Automation

Zhuochao He, Xuyang Zhang, Simon Jones, Sabine Hauert, Dandan Zhang, Nathan F. Lepora1

Abstract—Multi-robot platforms are playing an increasingly
important role in warehouse automation for efficient goods
transport. This paper proposes a novel customization of a multi-
robot system, called Tactile Mobile Manipulators (TacMMs).
Each TacMM integrates a soft optical tactile sensor and a
mobile robot with a load-lifting mechanism, enabling cooperative
transportation in tasks requiring coordinated physical interac-
tion. More specifically, we mount the TacTip (biomimetic optical
tactile sensor) on the Distributed Organisation and Transport
System (DOTS) mobile robot. The tactile information then helps
the mobile robots adjust the relative robot-object pose, thereby
increasing the efficiency of load-lifting tasks. This study compares
the performance of using two TacMMs with tactile perception
with traditional vision-based pose adjustment for load-lifting. The
results show that the average success rate of the TacMMs (66%)
is improved over a purely visual-based method (34%), with a
larger improvement when the mass of the load was non-uniformly
distributed. Although this initial study considers two TacMMs,
we expect the benefits of tactile perception to extend to multiple
mobile robots. Website: https://sites.google.com/view/tacmms.

Index Terms—Tactile Sensing, Multi-robot system, Warehouse
transportation

I. INTRODUCTION

With the increasing number of online customized orders,
there are higher requirements for transportation and warehouse
management [1]. Currently, traditional mobile robots, such
as Automated Guided Vehicles (AGVs) [2] and forklifts [3],
automatically localize products then lift and transport them in
the warehouse. Of these, load-lifting is an important step for
warehouse automation, for which a robot must: 1) perceive
the pose of the load; 2) determine the optimal lifting position
on the target based on the perceived pose; and 3) control the
contact pressure to achieve robust lifting and avoid damage to
the load. However, due to difficult to precisely control object
contact for robust lifting, traditional visually-guided mobile
robots are limited for transporting goods with a distal non-
contact modality.

Motivated by these shortcomings, multi-robot cooperative
systems with soft end-effectors have been developed for ware-
house transportation [4]–[6], resulting in more efficient and
robust systems, with higher performance and the ability to lift
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Figure 1: TacMM system lifting a box. Top: a box lifted by
two DOTS mobile robots each with a TacTip optical tactile sensor
mounted on a raisable platform; tactile images also shown. Bottom:
steps to lift a box: (a) approach object; (b) adjust pose after initial
contact; (c) establish a second contact with object; (d) adjust pose
after the second contact; (e) lift object; (f) lower object.

heavier products. The transportation strategies of this kind of
robotic system include pushing, grasping and caging [7]–[9].
Moreover, grasping or lifting with multiple robots is analogous
to using the fingers of a human or robot hand, where it is
known that to achieve safe lifting the fingers must pre-adjust
to a desired pose and apply a reasonable force. In multi-robot
cooperative systems, the robots commonly rely on an external
vision system to feedback the relative pose of the target
objects. However, as is well known in robot grasping, such
vision systems are limited by occlusion, calibration issues and
inaccuracy from a camera situated away from the target [10].

In contrast, tactile sensing offers the capability to estimate
the relative robot-object pose for the lifting task without the
aforementioned issues of vision. Here we use an optical tactile
sensor called the TacTip (Tactile fingerTip) [11], [12] which
has a 3D-printed soft dome-like structure mounted over an
internal camera and lighting. This sensor is well-suited for
Tactile Mobile Manipulators (TacMMs), being of the right size
and shape to mount on the top liftable platform of DOTS (Dis-
tributed Organization and Transport System) mobile robots
designed for cooperative automation [13]. Furthermore, both
the TacTip and DOTS are open-source and easily fabricated,
enabling others to customize and build upon this work.
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To the best of our knowledge, the TacMM represents the first
multi-robot system that integrates a high-resolution soft tactile
sensor into mobile manipulators for warehouse automation.
The main contributions of this work are as follows:
1) We propose a novel tactile multi-robot system, which inte-
grates the TacTip and DOTS mobile robots, with application
to warehouse transportation and logistics (Figures 1,2).
2) We show the tactile sensors are effective at estimating the
pose of the contact surface, and propose a tactile servo control
policy to adjust the robot to a desired pose on the object.
3) We successfully demonstrate the load-lifting task with
two TacMMs using the tactile feedback to work together
collaboratively to improve the stability of lifting the load.
In this work, we introduce the tactile mobile manipulator
concept with a minimal configuration of two TacMMs; how-
ever, we expect this paradigm for mobile manipulation will be
far more effective with multiple tactile manipulators working
collaboratively to handle large and complex loads.

This paper is organized as follows. First, we review ware-
house robots and their control systems. The hardware, software
and vision/tactile movement strategies for the TacMM system
are described, and experiments are illustrated. Experiments are
conducted to estimate the relative pose estimation errors and
compare the performance of TacMM with the baseline (vision
only) system. Finally, we summarise the experiment results
and discuss the future work and limitations of this system.

II. RELATED WORK

A. Lifting-based transport strategies

Transporting objects by lifting can avoid frictional damage
of objects caused by traditional pushing strategies if there
is no carrier underneath the object [14]. In [15] and [16],
Kume et al proposed a virtual 3D caster control in the leader-
follower decentralised system. Based on the virtual 3D caster,
the follower robots were able to estimate the motion of the
leader. In [17], Hichri et al applied Force Closure Grasping
(FCG) to determine the position of each robot before they try
to lift the object. After lifting, the object is placed on top of
the robot. However, one of the requirements of FCG is that
the robot must adjust its pose until its end-effector is normal
to the contact surface of the target before lifting.

B. Visual pose estimation

Inspired by human lifting behavior, pose estimation and
adjustment can be completed before lifting the object, resulting
in a more efficient and stable lifting behavior. Currently,
transportation robots still rely on vision to detect the pose
of the target object, such as [18] detects the 6D pose of the
target for manipulation. Also using 6D pose, a robot arm is
controlled to approach the estimated pose to guide a gripper
to the target [19]. In warehouse transportation, vision systems
can give an approximate pose of the target, but do not provide
contact information needed for object manipulation.

Another solution is to integrate the vision system into the
mobile manipulator to provide local information such as the
relative pose and shape of the target object [20]. Usually, these
local systems use stereo vision, which has a minimum usable

Figure 2: Overview of the TacMM tactile mobile manipulator. Left:
the DOTS distributed organization and transport system mounted with
a TacTip soft high-resolution tactile sensor on its lifting platform.
Right: schematic of the DOTS mobile robot, with two of the four
cameras in the base visible to the left.LEPORA: SOFTBOTS 3

(a) Skin physiology (b) Biomimetic tactile sensor

(c) Skin transduction (d) Biomimetic transduction

Fig. 1. Biomimetics of the TacTip. (a) Diagram of the layered morphology of hairless skin; (b) Cut-through of the 3D-printed BRL TacTip (2018);
(c) Close-up of the interdigitation of dermis and epidermis, with sites of mechanoreceptors; (d) Close-up of a cut-through of the TacTip skin. The
morphology of the artifical skin is based on natural skin. (Credits: Wikipedia, ‘Skin Layers’, ‘Hegasy skin layers Receptors’, CC By-SA License.)

Neurophysiology Function Biomimetic counterpart
epidermal ridges & dermal papillae transmits & amplifies deformation of surface to mechanoreceptors pins & markers [5], [6]
reticular dermis & subcutaneous fat soft structure & compliance elastomer gel [5], [6]

SA-I mechanoreceptors (Merkel cells) sense sustained skin deformation; perception of shape & edges pin displacements [6], [36]
RA-I mechanoreceptors (Meissner corpuscles) sense transient skin movement; perception of flutter & surface slip pin velocities [37], [38]
RA-II mechanoreceptors (Pacinian corpuscles) vibration sensing; perception of surface texture under investigation [39], [40]

nociceptors (free nerve endings) noxious touch under investigation [40]
thermoceptors (free nerve endings) temperature difference sensing thermoactive skin [41]

overlapping sensitive receptive fields hyperacuity super-resolution [42]
epidermal ridges (fingerprint) friction & improved transduction; induces incipient slip 3D-printed fingerprint [38], [39], [43]

neural spiking efficient signal encoding event-based imaging [44], [45]

TABLE I
BIOMIMETICS OF THE TACTIP, MATCHING THE NEUROPHYSIOLOGY AND FUNCTION.

tion (peak sensitivity ∼250 Hz). A partial mimicry of their
function can be attained by using the TacTip with a high
frame-rate (kHz) camera [39], [40]; however, questions remain
about whether this approach to vibration sensing is effective
or even biomimetic, since it images fast pin movement rather
than vibration in the deeper gel. In our view, a biomimetic
counterpart of the vibration sense would be to embed a
pressure sensor in the gel of the TacTip, like the vibration
modality of the BioTac [18]. Other tactile sensing modalities
can also be included, such as temperature sensing by using a
thermoactive smart material for the outer TacTip skin, which
is imaged as a background to the markers [41].

A consequence of the biomimetic design of the TacTip
is that other properties of human perception emerge. An
important aspect of human tactile perception is hyperacuity:
a capacity to discriminate extended spatial features to a sub-
millimetre acuity that is finer than the millimetre-scale spacing

between mechanoreceptors [49]. The TacTip also exhibits
tactile hyperacuity, with a sub-millimetre capacity for spa-
tial discrimination that is finer than its millimetre-scale pin
spacing [42]. Fundamentally, the hyperacuity arises because
both the biological and artificial tactile senses are comprised
of arrays of overlapping, broad but sensitive receptive fields.
This structure enables spatial interpolation over neighbouring
receptors, which is analogous to a well-known technique in
optical imaging known as super-resolution [50].

Perhaps surprisingly, the role of the human fingerprint in
the sense of touch is still being investigated [51] after two
centuries of study. A 3D-printed fingerprint can be reproduced
in the TacTip as raised bumps [39], [43] or concentric raised
rings over the papillae [52]. Benefits of a biomimetic finger-
print include increased sensitivity to texture [39] and spatial
localisation [43]. A ringed biomimetic fingerprint can also
induce incipient slip [52], where a local region of skin slips

Figure 3: Overview of the TacTip tactile sensor concept and con-
struction. (a,b) skin physiology and transduction via internal dermal
papillae where the mechanoreceptors are located. (c,d) multi-material
3D-printed structure of the TacTip featuring biomimetic papillae
tipped with markers that are imaged with an internal camera (images
from Ref. [12]).

camera line-of-sight that is not suited for nearby objects.
Moreover, local vision cannot provide contact information
required for stable lifting, particularly for delicate objects.
Because of these drawbacks, we focus here on a system fusing
visual and tactile feedback or just using tactile alone.

C. Tactile pose estimation

Pose estimation using tactile sensing has been studies in
detail because it is needed to controlling robot hands and
other end effectors using tactile feedback, and underlies meth-
ods for tactile servoing to control contact with an unknown
object [21], [22]. High-resolution tactile sensing using an
internal camera to image deformation of the sensing surface
offers the opportunity to leverage advances in computer vision
with convolutional neural networks, which has been applied
to accurate estimation of surface hardness [23], shape [24]
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and pose [25] amongst others. In this study, we use a high-
resolution, optical tactile sensor (the TacTip, Fig. 3) that
has established capabilites for pose estimation and tactile
servoing [12], [22], [26].

A subtlety with pose estimation for soft tactile sensors is
that the manner of contact affects the deformation of the tactile
sensor along with the pose of the contacted surface [25], [26];
for example, shearing from the left or right to a given pose
will produce different tactile images. Therefore, for effective
tactile servo control, the neural network needs to be trained
to ignore the effects of shear upon contact, which can be
done by introducing random shear perturbation during the
data collection [22], [26]. This leverages that deep neural
networks are highly effective at predicting labelled quantities
and ignoring unlabelled variations on complex data. As a
consequence, tactile pose estimation with the TacTip has
been successfully applied to range of tasks including object
exploration and contour following [22], [25], non-prehensile
manipulation and object pushing [27].

III. METHODOLOGY

A. Hardware methods

The proposed TacMM tactile mobile manipulator system
comprises three parts: (i) the DOTS distributed organization
and transport system mobile robot; (ii) the mounted TacTip
tactile sensor; and (iii) a custom 3D-printed connecting base
(see Fig. 2).

1) DOTS mobile robot system: this mobile robot features
a wheeled omnidirectional base with 4 cameras mounted in
the base and an actuated lifting platform (Fig 2). The overall
system includes an integrated remote development platform
and physical mobile robots [13], which allows researchers to
develop this system in simulation before physical experimen-
tation. The integrated remote development platform is based
on Robot Operating System version 2 (ROS2) and utilizes
Gazebo. This robot has omniwheels and its lifting platform is
capable of a 2 kg maximum payload. The multiple cameras
provide a local vision system with stereo at the front and
additional rear/side viewpoints.

2) Tactile end effector: The high-resolution tactile fingertip
(TacTip) is mounted using a connection base on top and
oriented to the front of the mobile robot (Fig. 2). The stan-
dard TacTip is about 100 mm long with a 40 mm diameter
hemispherical soft dome, which is well-suited for mounting
horiontally on the lifting platform to protrude to the front.
Then the lifting platform gains a new functionality as being a
vertical actuator for a soft tactile fingertip.

The TacTip is a camera-based tactile sensor with a
biomimetic 3D-printed soft skin based on the physiological
structure of human skin [12] (Fig. 3. A TacTip is composed of
a built-in camera, a mounting base, a LED ring for illuminating
the internal skin, and a 3D-printed skin with internal pins that
mimic the structure of the dermal-epidermal boundary [11],
[12]. The tips are designed to be modular and replaceable,
with an acrylic window below the 3D-printed biomimetic skin,
between which a gel is injected to give the tip a softness close
to adipose tissue of the human fingertip. When the tip of the

Figure 4: Tactile and vision control system architectures.

TacTip contacts an object, the skin deformation causes the
internal pins to lever which amplifies the sideways motion of
the markers captured by the internal camera.

For applications such as contact pose estimation, using the
tactile image as the input to a convolutional neural network
is the easiest and most robust method [12] (compared to
extracting and processing the marker locations, for example.)
Therefore, OpenCV is used capture and pre-process the tactile
images to view cropped view of just the markers, convert the
image to grey-scale then binarize with an adaptive threshold,
then sub-sample to 128×128 pixels for efficient learning and
prediction. These pre-processed tactile images are fed into a
PoseNet, a pose estimation neural network [26] to predict the
relative sensor-object contact pose, including contact orienta-
tion and depth, whose training is described later.

B. System design and control

The effectiveness of the TacMM system is first evaluated in
simulation before real-world deployment.

The control methods for each mobile robot are based on
ROS2, which processes the sensor data, controls the robot mo-
tion and implements communications between robots (Fig. 4).
The tactile-based system adjusts the relative pose between
the mobile robot and the object sequentially over multiple
contacts. The vision system is an open-loop control system that
adjusts the motion planning before contact, with no feedback
during the contact and the lifting process.

1) Simulated system: For validation, we also use simulated
versions of the real vision and tactile sensors described below.
In the simulation, all experiments rely on ROS2. For example,
the camera is a plug-in from Gazebo and the tactile sensors
that will be used to estimate the relative pose of the target
are substituted by a bumper that returns the exact pose on
contacting the object. This allows us to both assess the
effectiveness of the TacMMs in simulation alongside the real-
world deployment.

2) Real vision system: An external camera is mounted on
a tripod with a view of the robot and TacTip from above,
with the relative pose of the TacTip and object detected using
ArUco markers. The robot then adjusts its pose until the
central line of the TacTip end effector is normal to the surface
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Figure 5: Top: A dobot Magician is used to gather pose-labelled
training and test tactile images for training, validation and testing
the pose-prediction network. Bottom: Labelled angle and depth
parameters used in the data collection.

of the target object. The TacTip deformation upon contact is
captured by an internal camera and the tactile images are used
as an input into the PoseNet neural network [26].

3) Real tactile system: The TacTip is mounted as described
in the previous hardware section and used to collect tactile
images of the contact against the object. The contact depth
Depth and the relative angle θ between the normal of the
object and the TacTip (Fig. 5), using a PoseNet neural network
whose training and architecture will be described later. In
addition, the contact Depth prediction will also be used to
distinguish between contact and non-contact situations. We
aim for a control strategy that tunes the Depth until it reaches
a maximum threshold, then adjusts the angle θ of the TacTip.

4) Multi-robot system: After adjusting their poses, the two
TacMMs must cooperate to lift the object. The robot poses
should satisfy the Force Closure Grasp (FCG) condition from
[17], assuming that the force from each TacTip is perpendicu-
lar to the object surface. Specifically, the forces on the object
form two friction cones (Fig. 6) that, to lift the object, the
summed forces and summed torques must equal zero. This
also assumes the centre of mass of the object is within the
intersection of all friction cones. The examples in Fig. 6(d)-
(g) demonstrate the requirements of the FCG for two robots,
leading to constraints:
I) The two robots must be on opposite sides of the object.
II) The contact position of the TacTip must be as close as
possible to the centre of the contacted flat surface of the object.
III) The angle between the normal of the contacted flat surface
and the contact pose should be as small as possible.
IV) The contact depths are equal and the summed torques
should be zero.

5) Control strategies via behaviour trees: Two tactile con-

Control strategies used for pose adjustment

The examples of the FCG

Figure 6: Strategies where (a) The robot rotates around its centre, (b)
the robot rotates around an object’s centre and (c) the robot rotates
around an object’s centre contacting it several times. (d) and (e)
illustrate satisfying the FCG, while (f) and (g) illustrate failure cases
according to the friction cones.

trol strategies are proposed for pose adjustment (Fig. 6(a,b)),
both of which rrotate around the object’s centre (estimated
using the vision system), with the first using a single contact
(a) and the other using multiple contacts (b). Similar control
strategies will also be used to assess visual control. All
strategies use Behavior Trees (BTs) for robot motion control
[28]. Every movement behavior is considered as a branch in
each strategy within the behavior tree. The attribute of every
branching contains Sequence, Selector and Parallel operations.
Furthermore, the strategies for lifting an object in the tactile
and visual systems are also in the form of BTs.

The BT for the self-rotation controller shown in Fig. 6(a)
is similar to the object-rotation controller Fig. 6(b), each
having three parts comprising TacTip information, Gather and
Action order. TacTip information receives the pose from the
PoseNet for the physical experiments (with a bumper used
instead in simulation). Gather sets up the ROS2 subscription
and publisher in the strategy. Action order commands the
robot towards the object until the bumper or TacTip contact,
then to move back and adjust its pose according to the sensor
feedback; this is repeated until the contact depth reaches a
threshold for the lifting task. In the Fig. 5(a), after the bumper
or the TacTip returns the results of the relative pose, the
mobile robot will rotate based on a proportional gain until
the orientation of the TacTip is normal to the target. In the
BT in Fig. 5(b), the robots rotate around the centre of the
object which is assumed known in advance.

TacMM pose adjustment strategy: This strategy contacts
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the target multiple times (Fig. 6(c)). The BT repeats Ac-
tion order to contacting the object multiple times, stepping
back and rotating around the object centre (estimated from
the vision system) until the absolute value of the predicted
angle is less than a preset angle threshold.

Vision-based pose adjustment strategy: The BT of this
strategy is similar to the TacMM pose adjustment strategy,
instead using an ArUco marker for pose estimation between
the TacMM and the target object.

TacMM lifting strategy: This strategy uses the optimal
tactile strategy (see Section IV-B later) to lift an object, with
each robot in the lifting task adjusts its pose as in the tactile
pose adjustment strategy. After each robot completes its pose
adjustment, this strategy ensures they communicate with each
other, allowing both robots to concurrently activate the lifting
platform and then lower it (example shown Fig. 1).

Vision-based lifting strategy: This strategy is the Vision-
based pose adjustment strategy counterpart of the TacMM
lifting strategy, giving a baseline in the load-lifting task. After
adjusting the robots’ pose according to vision, the robots
communicate with each other to concurrently lift and lower
the platform.

C. Experiment details and model training
Five experiments were conducted. Training and testing of

the tactile pose estimation was conducted both offline on a test
set and online. The third experiment was in Gazebo simulation
and the last two experiments compared the performance of
TacMM with traditional vision-based control as a baseline.

1) Tactile pose model and testing: The first experiment
focused on building a model for pose estimation, which we call
PoseNet. We needed to gather training data of tactile images
with labelled poses, for which we used a Dobot Magician
robot arm with the TacTip mounted as end effector contacting
a 3D-printed flat surface (Fig. 5). The Dobot Magician is a
low-cost four-axis desktop robot arm (Fig. 5(d)) accurate to
0.2 mm. The TacTip is detached from the robot manipulator
and mounted on the robot arm with a 3D-printed connection
ring (Fig. 5(b)). A laptop (AMD Ryzen 7 5800H with NVIDIA
GeForce RTX 3060 GPU) is used to set the robot arm end
effector pose, store tactile images and train/test the PoseNet.

During data collection, the robot arm moved the TacTip to
contact the 3D-printed flat surface at random depths and angles
within a set range, and recorded the corresponding poses and
depth as labels. 5000 tactile images were collected with pose
angles θ ∈ [−25◦, 25◦] and contact depths ∈ [1, 5]mm. These
tactile images were captured after a random horizontal linear
and rotation shear of less than 5 mm and 5 degrees, which
as discussed in the background is necessary for robustness
to how the sensor contacts the object [26]. An addition set of
500tactile images were gathered at a non-contact depth, where
the depth label was set to 0mm, enabling the PoseNet to serve
as a predictor of contact/non-contact.

For PoseNet model training and testing, the 5500 tactile
images were randomly split into a 75% for training and a 25%
for testing. We refer to [26] for the hyperparameters and other
implementation details. The Mean Absolute Error (MAE) of
the Depth and θ are used to measure performance.

2) Online tactile pose prediction testing in real environ-
ment: The trained tactile pose prediction PoseNet model was
verified in the physical environment, by controlling the TacTip
to interact with the 3D-printed flat test surface at a known
relative contact depth and angle. The trained PoseNet predicted
the angle and depth, repeating 5-fold every 5° from -25° to
25° and every 1 mm from 1 mm to 5 mm. The MAE of the
relative angle and contact depth and the PoseNet computation
time are used as metrics.

3) Tactile pose adjustment in simulation: The perfor-
mance of pose adjustment for TacMM was evaluated in
simulation, by substituting the TacTip with a bumper that
returns the precise pose of the contact object. This experiment
assessed errors from the kinematics of the DOTS mobile robot
in simulation.

The Gazebo simulation was used to test the performance of
the pose adjustment. A cube of size 60 mm×30 mm×30 mm
and variable orientation was located 1.1 m in front of the
mobile robot. For every 5° from -25° to 25°, the robot repeated
the pose adjustment using the single and multiple-contact pose
adjustment strategies (Figs 6(a,b)) repeated 5-fold each. We
measured the angle error θ and the translation distance D
along the contact surface, measured between its centre and
the contact point (Figs 6(f,g)). The angle and distance MAEs
at various cube poses are used as performance metrics.

4) Tactile and visual pose Adjustment in real environ-
ment: The TacMM and visual control systems were then
compared using the pose adjustment with the real robot.
A plastic cube (weight 8.58 kg) was used in the TacMM
experiment, and replaced by a box with ArUco marker in the
vision experiment. A tripod-mounted camera videoed the pose
adjustment from a top view.

We conducted 55 experiments with the TacMM and vision
systems, with the same experiment settings as in the simulated
pose adjustment above. The TacMM and vision systems used
their respective pose adjustment strategies (1 and 2) described
above. The distance error was measured by a ruler and the
angle error by OpenCV detection of the ArUCo marker. The
angle and distance MAEs are used as performance metrics.

5) Load Lifting: The performance of the load lifting was
tested using the TacMM and vision systems. Two robots were
controlled identically, with a box placed between them. Two
ArUco markers on the box were used for tactile validation and
for the vision-based strategy.

Varied attributes of the box included: 1) empty box, 2) two
empty boxes stacked vertically, 3) a 200g weight on the top
of an empty box, 4) a 200g weight on the bottom of an empty
box and 5) a payload weighted almost 500g on the top of an
empty box (Fig. 10(a)). For each attribute, the experiment was
tested 10 times and success rate recorded.

IV. RESULTS AND ANALYSIS

A. Evaluation of tactile pose prediction performances

The performance of tactile pose prediction with the PoseNet
is first described in terms of the pose adjustment and object
lifting tasks. The performance of the tactile pose prediction
is then quantified in an online experiment, and a threshold
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Figure 7: Pose prediction performance for (a) contact depth and
(b) angle, using a robot arm. Performance was good with the
elliptical regions indicating regions of interest, demonstrating the
depth network can distinguish between non-contact (labelled 0 mm)
and contact data (labelled 1 mm and above).

Table I. Pose prediction performance trained with and without non-
contact tactile images collected using a robot arm.

Dataset MAE of Depth (mm) MAE of θ (°)
With non-contact images 0.26 1.06

Without non-contact images 0.19 1.07

is established to distinguish between contact and non-contact
states.

Overall, the MAE of the contact depth and the angle are
0.26 mm and 1.06° respectively (Fig. 7), when using a robot
arm to collect a dataset containing both contact and non-
contact tactile images. We judge this performance of the
trained model as sufficiently accurate for the pose adjustment
task and the object lifting task. That said, it is worht noting
that the accuracy of the contact depth in the range from 4 mm
to 5 mm and from 2.5 mm to 1 mm (blue ellipse in Fig. 7) is
less that that of the 2.5 mm to 4 mm range. Further, when the
angle is over 20°, the accuracy of the model declines slightly
(Fig. 7).

Although the depth of a non-contact tactile image is labelled
as 0 mm, the predicted value has a discrepancy in being close
to 1 mm. Thus, there is a question whether the non-contact
images during training have influenced the predictions at other
contact depths. To examine this, we used a dataset composed
solely of tactile images from the contact situation to train
and test the PoseNet. The error of predicting contact depth
improved slightly to 0.19 mm and the angle predictions were
little affected (Table I). Given these relatively small changes,
we will train with non-contact images so the PoseNet can
distinguish non-contact and sufficiently contacting states.

In the online test with the TacMM system, the PoseNet
model performance has angle errors mainly between 1° and 3°
(Fig. 8(a)), which as expected is less accurate than those with
a robot arm. Likewise, the predicted angle errors are between
2° and 2.5° for predicted depths less than 3.6 mm, after which
there is a steep rise to over 4° (Fig. 8(b)); there is also a
discrepancy in the predictions of contact depth in this region
on the robot arm (Fig. 7(a), top-right). Overall, we consider a
good depth for making angle predictions to be 2.6 mm, near
the centre of the accurate predicted depth range and just above

(a) (b)

Figure 8: PoseNet performance for predicted angle against (a) target
relative angle and (b) predicted depth, collected using the TacMM
system with the mobile manipulator.

Simulated (a) Simulated (b)

TacMM (c) TacMM (d)

Figure 9: Performance of pose adjustment quantified by the MAE of
the angle θ and translation distance D, in simulation for single- and
multiple-contact strategies and on the TacMM system (with additional
multiple contact strategy using vision).

a region for poorer contact depth prediction performance of
the PoseNet (Fig. 7(a)). We will use this as a threshold for the
contact depth control strategy for the lifting task below.

The model operates in just 1 ms, consistent with real time
performance expectations for the pose-adjustment and object-
lifting tasks.

B. TacMM and Vision-based pose adjustment performances

First, the pose adjustment strategy is tested in simulation
to clarify the relationship between the errors and kinematics
as the TacMM rotates around the object centre. The results
show that both single- and multiple-contact strategies complete
the task of placing the TacMM system against the object
surface (Fig. 9(a,b)). For both strategies, the MAEs of the
angle and distance increase with absolute initial angle to
about 5° and 50 mm errors, as expected because the larger
overall movements introduce more errors. The single-contact
controller seems slightly more accurate than the multiple-
contact controller at large initial contact angles, which we
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(a) Load lifting under different attributes

(b) Failure cases relying on the purely vision-based baseline

Figure 10: Performance of load lifting with TacMM and the vision-based baseline. (a) Successful examples of load lifting with attributes
including (1) an empty box, (2) two empty boxes stacked vertically, (3) a 200 g weight on top of the box, (4) a 200 g weight at the bottom
of the box and (5) a 500 g payload on top of the box. (b) Some failure cases when lifting using vision.

Table II. Success rates of the TacMM and vision-based baseline in
the lifting task.

Box attributes TacMM Baseline
Empty box 80% 50%

Two empty boxes stacked
vertically 60% 30%

A 200g weight on the
bottom of the empty box 80% 60%

A 200g weight on the top
of the empty box 60% 10%

A 500g payload on the
top of the empty box 50% 10%

Average successful rate 66% 32%

attribute to the simulated TacMM pose estimation having low
error, so the errors accumulate on multiple contacts.

Second, the pose adjustment strategies are tested on the
real mobile robot to examine how the real-world environment
affects performance. The angle errors in the real-world are
close to the sum of the error from the pose model and
the robot kinematics (Fig. 9(c)). The single-contact TacMM
controller performed poorly on angle, showing the benefits of
a multiple-contact controller when there are prediction errors.
The distance errors were similar for both single- and multiple-
contact controllers (Fig. 9(d)). Overall, the multiple-contact
TacMM system performed similarly to the multiple-contact
vision-based system, except for poorer distance performance
of the vision system at large initial contact angles.

C. Lifting task performance

The success rate of each control system was compared for
lifting various attributes of loads, with each load lifted ten
times (Table II). Although we saw in the previous section that
the TacMM is similar to the purely vision-based (baseline)

control systems for angle adjustment, we now see that the
TacMM is clearly superior to the baseline in the load lifting
task, with an average success rate improvement of 34% over
all considered loads (Table II, bottom line).

Depending on the attributes of the load, the success rate
of the TacMM system can reach 40% higher than the vision
system as the payload weight increases (Table II). This holds
under demanding situations when the payload is close the
maximum that the robots are able to lift, giving 50% reliability
for TacMM compared with only 10% for with vision. Overall,
TacMM outperforms the vision system in the load lifting task
and shows promise to be improved further.

We believe the main reason for the TacMM’s superior
performance is its ability to accuracy predict and control
the contact depth. This was not possible to verify in the
previous section when comparing TacMM and vision-based
pose adjustment because we did not have a independent
measure of this depth at the required mm-scale, only of the
angle and translation distance accuracy.

In consequence of the superior depth performance, the
deformations of the tactile sensors on the two robots are
nearly the same, which enables two uniform forces to press on
opposite sides of the load. In addition, the robots controlled
by the TacMM system will only touch the box slightly instead
of pushing the box. On the other hand, for the vision-based
baseline, after the camera detects the pose of object according
to the global view of the ArUco marker, controlling the contact
depth relies just on the kinematics of the robot, which is less
accurate. In consequence, the force and torques may not sum
to near zero or the frictional force may not be enough to raise
the object, resulting in more failures of lifting (Fig. 10).
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V. DISCUSSION
Overall, this paper demonstrates the feasibility of TacMM

tactile mobile manipulators for collaboratively performing
load-lifting tasks with box objects typical of those in ware-
houses. Each TacMM comprises an open-sourced DOTS mo-
bile robot equipped with a lifting platform, on which we
mounted a 3D-printed open-source high-resolution tactile fin-
gertip (TacTip) as an end effector. Thus, we extended a robot
designed for researching automated logistics to use tactile
sensing to interact with its surroundings.

A key aspect of lifting tasks with such robots is to adjust
the pose of the end effector relative to the object to be lifted.
For the pose adjustment stage, the TacMM system showed
modest improvement over a purely vision-based system for
the angle and translational position of the robot. However, for
load lifting, the performance increase from touch became more
pronounced because of the capability to control the force of
the contact via adjusting the contact depth.

In this first study of tactile mobile manipulators we con-
sidered a minimal configuration of two TacMMs working
collaboratively. Clearly, while two mobile manipulators can
perform a basic task of lifting a regular box, they would be
limited in handling more complex objects. Also, having just
two small regions of contact will limit the robustness of the
grasp, as the object could rotate or be more prone to slip. For
this reason, we expect that TacMMs will be far more adept
with three or more robots, and even be capable of sophisticated
dexterity such as collaborative manipulation of the object.

The challenge of scaling up to three or more TacMMs
will involve developing control algorithms that use pose and
other tactile information to collaboratively lift and handle
complex objects. This has a close relation to the in-hand
manipulation and grasping using multi-fingered robot hands
with tactile fingertips. One could interpret the TacMMs as
a reconfigurable robot hand where the fingertips can move
around independently of each another. Thus, we hope that
this study with two TacMMs could lead to a new cross-over
between research on tactile dexterity with robot hands and the
coordination of fleets of mobile robots for warehousing.
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