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A Deep Learning-based Approach for Foot Placement Prediction

Sung-Wook Lee

(ABSTRACT)

Foot placement prediction can be important for exoskeleton and prosthesis controllers,

human-robot interaction, or body-worn systems to prevent slips or trips. Previous stud-

ies investigating foot placement prediction have been limited to predicting foot placement

during the swing phase, and do not fully consider contextual information such as the pre-

ceding step or the stance phase before push-off. In this study, a deep learning-based foot

placement prediction approach was proposed, where the deep learning models were designed

to sequentially process data from three IMU sensors mounted on pelvis and feet. The raw

sensor data are pre-processed to generate multi-variable time-series data for training two

deep learning models, where the first model estimates the gait progression and the second

model subsequently predicts the next foot placement. The ground truth gait phase data

and foot placement data are acquired from a motion capture system. Ten healthy subjects

were invited to walk naturally at different speeds on a treadmill. In cross-subject learning,

the trained models had a mean distance error of 5.93 cm for foot placement prediction. In

single-subject learning, the prediction accuracy improved with additional training data, and

a mean distance error of 2.60 cm was achieved by fine-tuning the cross-subject validated

models with the target subject data. Even from 25-81% in the gait cycle, mean distance

errors were only 6.99 cm and 3.22 cm for cross-subject learning and single-subject learning,

respectively.
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(GENERAL AUDIENCE ABSTRACT)

This study proposes a new approach for predicting where a person’s foot will land during

walking, which could be useful in controlling robots and wearable devices that work with

humans to prevent events such as slips and falls and allow for more smooth human-robot

interactions. Although foot placement prediction has great potential in various domains,

current works in this area are limited in terms of practicality and accuracy. The proposed

approach uses data from inertial sensors attached to the pelvis and feet, and two deep learning

models are trained to estimate the person’s walking pattern and predict their next foot

placement. The approach was tested on ten healthy individuals walking at different speeds

on a treadmill, and achieved state-of-the-arts results. The results suggest that this approach

could be a promising method when sufficient data from multiple people are available.
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Chapter 1

Introduction

The placement of the foot is crucial for maintaining balance and stability, and it has a

significant impact on gait behavior [? ? ]. Foot placement influences the length and width

of the stride, as well as the amount of force applied to the ground during each step [? ]. It

also plays a crucial role in indicating if a person is trying to restore balance, accelerate or

decelerate, or if a person is in danger of losing balance and about to fall. Additionally, it is

a great indicator of the trajectory of the body’s center of mass and its orientation relative to

the ground as well as a meaningful predictor of the future motions [? ]. Overall, analyzing

foot placement can provide insights into the underlying mechanisms of human gait, help

identify factors that may lead to gait abnormalities or instability, and predict future events.

While the importance of foot placement is well-established, predicting it accurately can

be challenging. The placement of the feet during locomotion is determined by a complex

interplay between internal and external factors. External factors such as the nature of the

walking surface can influence foot placement. Meanwhile, internal factors like changes in

intention, physical and cognitive conditions also play a significant role in foot placement.

[1]. This complex interplay of the various factors makes it very difficult to accurately predict

foot placement.

Despite the challenges of foot placement prediction, it presents with high potential across

various domains, such as fall prevention, rehabilitation, human-machine interaction, and

bipedal robot control. It can be employed to identify risk factors for falls in elderly or at-risk
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2 CHAPTER 1. INTRODUCTION

populations, and to design interventions to mitigate such risks [1]. In the context of rehabili-

tation, it can be leveraged to create personalized rehabilitation programs for individuals with

mobility impairments, such as those caused by stroke or spinal cord injury. Additionally, it

can enable natural and intuitive control of devices, such as virtual reality systems, through

foot gestures in human-machine interaction [2]. In the field of robotics, anticipating the next

foot placement in advance can help enhance the stability and robustness of bipedal robot

control in changing environments [3].

Until recently, limitations in sensor technology and computational capacity of processing

units have hindered the analysis and prediction of human kinematics/motions. However,

with the advent of advanced sensors with higher accuracy and frequency, deep learning

models capable of processing millions of data points, and the parallel computation units

that allow for rapid learning, it has become possible to implement a large-scale deep learning

model using big data. As a result, deep learning has recently emerged as a viable option for

analyzing real-time data and generating predictive conclusions in various domains, and the

interest for deep learning-based methods for sensor fusion has been growing rapidly in the

last few years.

1.1 Organization

This thesis is organized as follows:

Review of Literature

This section examines relevant studies and research papers related to foot placement predic-

tion. It focuses on identifying key findings and insights from previous research and discussing
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their implications for our study. Additionally, it highlights the limitation of the existing

works and makes a strong case for the proposed approach.

Background

This section includes the background information needed to understand the study, such

as the sensor system, deep learning models, and the mathematical notations used in the

Methods section. This section also defines the objective of the study.

Methods

In this section, the methods used to conduct our study on the prediction of foot placement are

explained in detail, including the sensor data pre-processing, deep learning model structures,

data collection procedures, and the training scheme.

Results

In this section, the results of the study are presented and analyzed. The findings are visu-

alized in a number of figures, and any relevant statistical data is provided.

Discussion

In this section, the results are compared to the existing literature, highlighting any differences

between the current study and previous research. The implications of the findings are also

discussed, and suggestions for future research are presented.
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Conclusions

In this section, the main findings of the study are summarized, and the implications of the

results are discussed. The conclusions drawn from the study are presented.



Chapter 2

Review of Literature

2.1 Human gait estimation

The majority of previous research on foot placement has been focused on measuring foot

placement. In [4], a single IMU sensor was used to measure the step length, achieving error

smaller than 3% of the traversed distance. In [? ], a method for measuring the step length

and the step width using four IMUs mounted on both feet achieved a mean stride length

and duration within 1% of the ground truth.

Another very important gait estimation task is the continuous gait phase estimation. In the

context of walking, gait phase refers to the specific stages of a person’s walking cycle, and

heel strike is usually defined as the start of a gait cycle. The aim of the continuous gait phase

estimation is to process sensor information in real time to estimate the current gait phase

with high frequency. In [5], Lee continuously estimated the gait phase during walking and

reported an average error of 1.67±1.36% and 1.45±1.47% for walking speeds of 0.5 m/s and

1.5 m/s, respectively, using two IMU sensors. In [? ], Zhang used an IMU sensor to estimate

the thigh angle and continuously estimate the gait phase with the root-mean-square error

(RMSE) of 4.14 ± 1.68% for steady walking.

5
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2.2 Foot placement prediction

Predicting the trajectory of human motion has been extensively studied for a variety of

applications, including robotics, autonomous vehicles, and human-robot interaction [6]. More

recently, many lower body joint angle prediction studies have been proposed [7, 8]. However,

in the context of foot position prediction, the existing literature is limited. [9] analyzed the

single footstep for recovery after an external perturbation and reported R2 value of 0.858

between the perturbation momentum and the step position. [10] expanded to multiple steps

for recovery, and found a mean error of 15 cm and 18 cm for the first foot step and the second

foot step, respectively, using a passive walking model and a cost optimization method. For

continued walking, [11] concluded that 80% of the next foot step can be explained using

the pelvis states during mid-stance phase. Also, Zhang et al. [12] used a vision sensor for

3D gaze estimation to predict foot placements on rough terrain, achieving a mean error of

18 cm. They improved the resultsto 8.6 cm by fusing it with a pre-defined environment

context. Chen et al. [13] manually extracted features from a single IMU on the foot and

used a Bayesian inference algorithm to achieve 10 cm RMSE error along the forward axis

and horizontal axis early in the swing phase. In a separate study, Chen et al. [14] used

foot position data from a motion capture system and compared three machine learning

algorithms, achieving an RMSE error of 4.4 cm in the forward direction and 4.2 cm in the

sideways direction.ving an RMSE error of 4.4 cm in the forward direction and 4.2 cm in the

sideways direction.
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2.3 Limitations of the prior works

The previous methods for predicting foot placement during human walking have been limited

by many assumptions that make them impractical for realistic use cases. For example,

[14] uses motion capture data during inference, which requires offline calibration, and is

limited to a laboratory setting. [13] requires manual extraction of features and is evaluated

on a discrete set of walking speeds picked by the researchers. None of the above studies

consider the temporal dependencies between the sensor readings of different timestamps and

between neighboring steps, and the prediction time window is limited to the first half of the

swing phase. These methods also rely on having the ground truth start of a gait, which is

impractical in realistic use cases without gait phase estimation. Additionally, the prediction

frequency for all the existing methods is once per step, which means that they are not

capable of updating its prediction location using the most recent sensor data within a gait

cycle. Lastly, none of these methods predict the full 3d information of the foot placement

location, and relies on an absolute coordinate system for evaluation. The above shortcomings

contribute to why they struggle with accuracy, particularly when predicting early or across

subjects.



Chapter 3

Background

3.1 Vector/Matrix Notations

We use the following notation for representing vectors: A
Bv is a vector v relative to frame

B, expressed in frame A. RB,A(t) is the rotation matrix describing the rotation from frame

B to frame A, and qB,A(t) is the quaternion representation of the identical rotation matrix.

Lastly, CpB,A(t) is the distance vector describing the translation from from frame B to frame

A, expressed in frame C.

3.2 Sensor system

To experiment with an IMU-based foot placement prediction approach and obtain accurate

foot placement data, we utilize a motion capture system known as the MVN Link system.

The MVN Link system is a wireless motion capture system that uses miniature inertial

measurement units (IMUs) to track the motion of the human body in real-time.

Each MTx and MTx-STR tracker contains a suite of sensors, including 3D linear accelerom-

eters, 3D rate gyroscopes, 3D magnetometers, and a barometer to measure atmospheric

pressure. These sensors work together to provide highly accurate measurements of the mo-

tion of each body segment.

8
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Figure 3.1: The sensor system. The figure on the left shows the fully-body MVN link system.
The true placement of the foot mounted sensors is inside the shoes. The figure on the right
is the MTx tracker.

The MTx trackers are fixed to the pelvis, sternum, hands, and head using a suit or harness,

while the MTx-STR trackers are used to chain the upper and lower legs and feet, as well as

the upper body. The MTx-STR trackers are connected in series, with one tracker placed on

the upper leg, one on the lower leg, and one on the foot.

Each sensor unit fuses the inertial and magnetic sensor signals to estimate orientation, and

calculates the gravity-compensated acceleration. The raw sensor data are used as inputs to

our prediction algorithms. The raw sensor outputs of interest are as follows: 1) the gravity-

compensated acceleration of the pelvis (PV), right foot (RF), and left foot (LF) sensor
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module with respect to the global origin (G), expressed in the global coordinate system:
G
GaPV , G

GaLF , G
GaRF ; and 2) the estimated orientation of the pelvis, right foot, and left foot

sensor module with respect to the global coordinate system: qG,PV , qG,LF , qG,RF .

3.3 Sensor Placement-Free Orientation

The orientation of sensors can be different between recording sessions even with careful

measures, due to the variability of people’s physical characteristics such as foot shape. The

varying sensor orientation across different recording sessions introduces a misalignment be-

tween sensor data. To address this, we propose a methodology for calculating the sensor

placement-free orientation.

For a given session, the desired orientation RG_Target is determined using the distance vector

dfwd, which is measured while the participant is commanded to walk forward on level ground.

The corresponding unit vector utravel is calculated using the following equations.

dtravel =
GPG,PV (tend) (3.1)

ufwd =
dtravel

||dtravel||
(3.2)

RTarget =


ufwd,X −ufwd,Y 0

ufwd,Y ufwd,X 0

0 0 1

 (3.3)

The transformation matrix from the sensor orientation at each instance to the desired orien-

tation RG_Target is averaged based on [15], and the transformation matrix for each sensor unit

is multiplied with the corresponding sensor orientation to calculate the sensor placement-free
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orientation:

Rcalibrated(t) = Rsensor(t)·

avg(Rsensor(ti)
−1 ·RTarget, ∀ti ∈ {0, ..., tend})

(3.4)

3.4 Foot Placement

The next foot placement is calculated as the displacement of the right heel (RH) from its

previous foot placement to its next foot placement in the calibrated coordinate system of

the pelvis. The foot is assumed to be ’placed’ at the gait cycle percentage with the lowest

magnitude of the ground truth mean foot velocity. The next foot placement is defined

mathematically as:

F (t) = RG,PV (t)
−1 ·

(G
PG,RH(tGP=100+nR%)−

GPG,RH(tGP=nR%)
)
, ∀t ∈ {tGP=nR%, ..., tGP=100+nR%},

(3.5)

where nR is the gait phase percentage for foot placement; nR is found separately for each

training dataset.

The post-processed foot position data and the heel strike (tGP=0%) is provided by MVN

Analyze 2021. A visual illustration of foot placement is shown in Fig. 3.2. The objective

of this study is to predict the right foot placement using the raw sensor data from 3 IMUs

mounted on pelvis and feet, before the foot placement occurs.
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Foot placement
        vectorFoot placement

(nR% GP)
Foot placement
(100+nR% GP)

Future trajectory
of the right heel

Right
 foot

Left
foot

Pelvis

Figure 3.2: Illustration of sensor-fixed coordinate systems and foot placement vector. Leg-
end: x-axis: blue, y-axis: red, z-axis: green. Foot placement is defined as the displacement
of right heel from the initial position when GP = nR% to the next foot placement when GP
= 100+nR%, expressed in the coordinate system of the pelvis.

3.5 Recurrent Neural Networks for IMU Data

Recurrent Neural Networks (RNNs) are well-suited for processing IMU data as they can

handle temporal dependencies and high-dimensional and highly frequency data [16, 17, 18].

RNNs can also learn non-linear relationships and store information from previous time steps.

In this study, we choose GRUs (Gated Recurrent Units) for sequential data processing, a

computationally efficient and low-memory variation of RNNs. A GRU network is composed

of a series of interconnected cells, with each cell having a hidden state that is updated at each

time step. The update process in a GRU network is controlled by a set of gating mechanisms

that regulate the flow of information through the network. These mechanisms include an

update gate, which determines how much of the previous hidden state should be retained,

and a reset gate, which determines how much of the new input should be incorporated. GRUs

have been shown to effectively model long-term dependencies while mitigating the vanishing

gradient problem that is common in traditional RNNs. In this study, we use GRUs to process
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pre-processed multi-variable time-series data obtained from raw sensor data.



Chapter 4

Methods

Figure 4.1: A visual illustration of the proposed approach. The proposed foot placement
prediction method consists of two deep learning models: a GRU (Gated Recurrent Unit)
model for gait phase estimation and a GRU model for foot placement prediction. For the foot
placement prediction model, position and velocity features are corrected using ZUPT (Zero-
Velocity Potential Update). The ground truth gait cycle data and 3D foot placement data
are generated by processing the full-body recording data using the MVN Analyze software.

Figure 4.1 shows the overview of the approach.

14



4.1. GAIT PHASE ESTIMATION 15

4.1 Gait Phase Estimation

In this section, the methodologies for developing a recurrent neural network for gait phase

estimation are discussed.

4.1.1 Data Processing

The raw sensor data are pre-processed to build the dataset for training the deep learning

model. The input features are:

Acceleration: The pelvis, right foot, and left foot acceleration data are expressed in the

orientation of the calibrated pelvis coordinate system, denoted as PV
G âPV ,

PV
G âRF , and PV

G âLF ,

respectively.

Orientation: The quaternion representation of the right foot and left foot orientation with

respect to that of the pelvis are expressed in the orientation of the calibrated pelvis coordinate

system, denoted as q̂PV,RF and q̂PV,LF , respectively.

Velocity: The pelvis, right foot, and left foot velocity are calculated by integrating the high-

pass filtered (5th order Butterworth filter with 0.1 Hz cutoff frequency) acceleration data.

The velocity features are normalized to the pelvis coordinate system, and are denoted as
PV
G v̂PV (ti),

PV
G v̂RF (ti), and PV

G v̂LF (ti).

The acceleration, orientation, and velocity data are each scaled to zero mean and unit vari-

ance then concatenated along the feature axis, which is denoted as FGP (t): To better handle

different sensor placements and local peaks that can affect the scaling especially when the

training data is small, the zero mean and the unit variance scaling is done per feature cate-

gory, instead of per feature. For example, 6 velocity features (3 from right foot and 3 from

left foot) are scaled by the same scaler, instead of 6 individual scalers.
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The input time series data are generated by vertically concatenating the combined sensor

output with a look-back window of 2 seconds (480 data points), as shown below. The 2

second look-back window is chosen because it is sufficient enough to capture at least a single

full gait cycle.

FGP (ti) =
{

PV
G âPV (ti),

PV
G âRF (ti),

PV
G âLF (ti),

q̂PV,RF (ti), q̂PV,LF (ti),
PV
G v̂PV (ti),

PV
G v̂RF (ti),

PV
G v̂LF (ti)

}
∈ R26

(4.1)

XGP (ti) =



FGP (ti−480)

FGP (ti−479)

...

FGP (ti−1)


∈ R480×26 (4.2)

In order to accurately label gait phase data, we define a continuous vector YGP,R which is 0

at 0% gait phase of each gait cycle (heel strike) and linearly increases to 1 at 100% before

resetting back to 0. To eliminate discontinuities at the reset points, we transform the this

vector into a two-dimensional continuous vector (YGP1,R, YGP2,R), similar to [5, 19, 20].

YGP1,R = sin(2π · YGP,R) (4.3)

YGP2,R = cos(2π · YGP,R) (4.4)
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Figure 4.2: The gait phase label data and the 2d transformation. Note that for both right foot
(RF) and left foot (RF), heel strike (HS) information provided by the MVN Analyze software
is used to identify the foot placement (PM) instance independently. nR and nL indicate the
gait phase progression percentages for right and left foot placements, respectively. Linear
gait progression is assumed for linear extrapolation.

The inverse transform equation to derive YGP given (YGP1, YGP2) is:

YGP,R =
atan2(−YGP1,R,−YGP2,R) + π

2π
(4.5)

Similarly, YGP,L refers to the left foot gait phase data. The resultant gait phase labeled data

YGP (t) is
(
YGP,R1(t);YGP,R2(t);YGP,L1(t);YGP,L2(t)

)
∈ R4, as shown in Fig. 4.2.

4.1.2 Deep Learning Model Architecture

Each training sample X ∼ XGP ∈ Rl×m is a multi-variable time-series of length l (480) with

m (26) features.

The uni-directional and single-layered GRU (Gated Recurrent Unit) with k-dimensional

hidden states sequentially processes the time-series data and outputs the hidden states from

each unit. The hidden state of the final layer of the GRU goes through a feedforward layer

to output the estimated gait phase vector:
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o, h =GRU(X), (4.6)

ŶGP =Wwh+ bw, (4.7)

LMSE =
d∑

i=1

(ŶGPi − YGPi)
2, (4.8)

where o and h are the output and the hidden state of the GRU, Ww and bw are the learnable

parameters of the final feedforward network. YGP is the ground truth gait phase data of d

dimensions, which is 4. The mean square error (MSE) loss is used for learning.

4.2 Foot Placement Prediction

In this section, the methodologies for developing a recurrent neural network for foot place-

ment prediction are discussed.

4.2.1 Gait Phase-based ZUPT (Zero Velocity Potential Update)

Correction

To provide more information to the deep learning model, position features are generated by

double-integrating the acceleration data from the foot sensors. To correct the position drift

error, we employ a ZUPT correction method, similar to [21]. We assume that the movement

of the feet is significantly correlated to gait phase, and that it is possible to identify a range

of percentages in the gait cycle during which the foot velocity is zero. This is particularly

advantageous because it allows for automatic labeling of the zero velocity region by utilizing

the gait phase estimates. It is also a more direct and interpretable way of identifying the

zero-velocity interval compared to other ZUPT methods, which usually consider factors such

as sensor characteristics, detection threshold, and gait type [21, 22, 23]. Since the exact
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Figure 4.3: The ZUPT interval is parameterized by the start and end of the interval expressed
in terms of gait phase percentage. The boxed green cell on the left indicates the interval with
the least position drift MSE error. On the right, the foot velocity expressed in the sensor
coordinate system is shown with the gait cycle progression. The foot velocity is set to zero
during the ZUPT interval (grey area).

range of this interval is subject-dependent, we perform a two-dimensional grid search for

the start and end of the interval to find the optimal range for each subject. The optimal

interval minimizes the mean squared error (MSE) of the total position drift error. During

the zero-velocity interval, the foot velocity is set to zero (Fig. 4.3).

4.3 Data Processing

The raw sensor data are pre-processed again to build the dataset for training the deep

learning model. The input features are:

Acceleration and Orientation: The pelvis, right foot, and left foot acceleration data are ex-

pressed in the orientation of the calibrated pelvis coordinate system, denoted as PV
G âPV ,

PV
G âRF ,

and PV
G âLF , respectively.

Velocity: After each ZUPT interval (where the velocity is set to zero), the right foot, and

left foot velocity are calculated by integrating the high-pass filtered (5th order Butterworth

filter with 0.01 Hz cutoff frequency) acceleration data. The velocity features are normalized
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to the pelvis coordinate system, and are denoted as PV
G v̂RF (ti), and PV

G v̂LF (ti), respectively.

Displacement: The estimated displacement of right foot and left foot is calculated by inte-

grating the ZUPT-corrected velocity data to estimate the feet positions and subtracting by

the previous foot placement. The estimated right foot and left foot positions at time stamp

ti are denoted as p̂G,RF (ti) and p̂G,LF (ti), respectively, and the estimated last foot placement

is denoted as p̂G,RF (tRFLP ) and p̂G,LF (tLFLP ).

Estimated Gait Phase: The estimated gait phase for both right and left foot from the gait

phase estimation model are used as input features for foot placement prediction (Fig. 4.1).

The features listed above are are each scaled to zero mean and unit variance and concatenated

along the feature axis, denoted as FFP (t). The input time series data are generated by

vertically concatenating the combined sensor output with a look-back window of 2 seconds

(480 data points):

FFP (ti) =
{

PV
G âPV (ti),

PV
G âRF (ti),

PV
G âLF (ti), q̂PV,RF (ti),

q̂PV,LF (ti),
PV
G v̂RF (ti),

PV
G v̂LF (ti),

PV(p̂G,RF (ti)− p̂G,RF (tRFLP )),

PV(p̂G,LF (ti)− p̂G,LF (tLFLP )),

ŶGP (ti)
}
∈ R33

(4.9)

XFP (ti) =



FFP (ti−480)

FFP (ti−479)

...

FFP (ti−1)


∈ R480×33 (4.10)
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4.4 Deep Learning Model

Each training sample X ∼ XFP ∈ Rl×m is a multi-variable time-series of length l (480) with

m (33) features. The uni-directional and single-layered GRU (Gated Recurrent Unit) with

k-dimensional hidden states and a final feedforward layer to output the predicted value are

selected as the deep learning model. The structure of the model is similar to that of the gait

phase estimation model.

o, h =GRU(X), (4.11)

ŶFP =Wwh+ bw, (4.12)

LMSE =
d∑

i=1

(ŶFPi − YFPi)
2, (4.13)

where o and h are the output and the hidden state of the GRU, Ww and bw are the learnable

parameters of the final feedforward network. YFP is the ground truth foot placement data

of d dimensions, which is 3. The mean square error (MSE) loss is used for learning.

4.5 Pre-Training and Fine-Tuning

In this study, we conduct a comparison between three different training cases for predicting

foot placement. The first, referred to as the pre-training case, involves cross-subject training

on a large, diverse dataset of walking data from multiple people excluding the target subject.

Pre-training is a widely used machine learning technique in fields such as Natural Language

Processing, image processing, and speech recognition, where a model is first trained on a

larger, more diverse dataset before being fine-tuned on a specific task or dataset[24, 25, 26].

In this study, through cross-validating with other people’s walking data, the models are
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trained to generalize to the walking patterns of an unseen person. These cross-validated

models are also used for cross-subject evaluation, which measures the models’ effectiveness

to learn without any supervision (ground truth) from the target subject.

The second case, referred to as the base case, involves training the models on the target

subject dataset without pre-training.

Finally, the third case, referred to as the fine-tuning case, uses the pre-trained models as

the initial models and subsequently trains them with the target subject datasets of different

sizes. This fine-tuning process allows the models to identify important parameters of the

target’s gait such as the sensor orientation transformation matrix, foot placement timing,

and the zero-velocity interval, and to directly learn the gait patterns of the target subject.

4.6 Human Subjects Data Collection

The IMU data and the ground truth foot placement data are collected using an XSens MVN

Link suit. The locations of the sensors are shown in Fig. 3.2. Ten (8 male and 2 female)

healthy subjects participated in the experiment, which was approved by the Virginia Tech

Institutional Review Board (IRB #22-665). The average age and height is 25.6 and 173.2 cm.

All participants had never suffered from musculoskeletal diseases. During the experiment,

subjects were asked to walk naturally on a treadmill. During each walking session, the

treadmill speed increased from 1.0 mph (∼0.45 m/s) speed to 3.0 mph (∼1.34 m/s) with

increments of 0.1 mph then slowed back down to 1.0 mph with 0.1 mph decrements. The

treadmill stayed at each speed for different periods of time, depending on the session. The

intervals used for each of the sessions were 1 second, 2 second, 5 second, 10 second, 15 second,

and 30 second. Using these different intervals in different sessions allowed us to investigate

how the size of the training dataset affects the performance of a foot placement prediction
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model. For each participant, the dataset with the 15-second interval was selected as the

evaluation set. For cross-subject training and evaluation, all the available intervals were

used.

4.7 Model Training

The deep learning models for gait phase estimation and foot placement prediction are trained

successively, as the evaluation of ZUPT intervals depends on the output of the gait phase es-

timation model. Except for the fine-tuning case, the learnable parameters of the models are

initialized from a normal distribution. Also, Adam optimizer and cross validation scheme

are used[27, 28]. For pre-training, group-fold cross-validation for 9 datasets from 9 other

people is performed. Hyperparameter search is done using the TPE (Tree-structured Parzen

Estimator) algorithm from Optuna, which is an open-source Python library for hyperparam-

eter optimization [29]. For each training scenario, at least 100 hyperparameter searches are

made. The data-processing and training are carried out using AMD EPYC 7742 CPUs and

NVIDIA Tesla A100 GPUs. In Table 4.1, decay factor is the multiplicative factor for the

learning rate after every epoch for the base case, and initialization std refers to the standard

deviation of the normally distributed initial weights of deep learning models. A single-epoch

with a batch size of 1024 and a batch-wise learning rate decay are used for pre-training due

to the large size of the dataset.
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Table 4.1: Training Parameters

Parameters
Values

Base Pre-training Fine-tuning
Epoch 5 1 5
Batch 256 1024 256

Cross-validation 5 fold 4 group-fold 5 fold
Learning rate 1e-5∼1e-3 1e-5∼1e-3 1e-7∼1e-5
Decay factor 0.05∼0.5 0.9∼1 0.5∼1

Initialization std 0.01∼0.1 0.01∼0.1 pre-trained

4.8 Foot Placement Prediction Evaluation

In this experiment, we evaluate the trained models for each participant using the following

metrics:

Mean Squared Error (RMSE) =
1

N

N∑
i=1

(Ŷi,k − Yi,k)
2, (4.14)

Mean Distance Error (MDE) =
1

N

N∑
i=1

√√√√ d∑
j=1

(Ŷi,j − Yi,j)2, (4.15)

where N is the number of evaluation data points, k is the index of the output, and d is

the output dimension. To summarize the results from 10 participants, the mean and the

standard error are calculated across the 10 cases. Additionally, to compare the results, we

perform statistical analyses, including paired sample t-tests and F-tests. We also investigate

the linear relationships between the performance metrics of different prediction methods

using Pearson’s coefficient.

Since the collected data are on a treadmill, some correlation is expected between successive

foot placements. To show that the trained models make inference from the previous gait

cycles better than simply referring to the previous foot placement, we compare the trained
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models to a simple predictor that uses the ground truth last foot placement vector as the

next foot placement.

4.9 Interpretable AI/SHAP (SHapley Additive exPla-

nation)

Deep learning models are typically views as black-box models that does not provide in-

sights on how it makes the prediction. This becomes a problem in applications where the

explainablity is crucial.

SHAP (SHapley Additive exPlanation) is a recently developed game-theory method that is

used to explain the output of a black box model[30]. The method is based on Shapley values,

a concept used in game theory that analyze the contribution of multiple agents working in

coalition. The SHAP values are model-agnostic and provide a local interpretability of a

predictive model, meaning that it is able to quantify the level of contribution given sample

input-output pairs.

In this study, the trained deep learning models are analyzed using SHAP values to assess

the contribution of the input data and analyze the spatio-temporal importance in making

the foot placement prediction. In order to analyze the impact of input data on prediction

accuracy in a uni-variate context, the Mean Squared Error (MSE) is used as the output

metric instead of the 3D foot placement prediction vector.

There are two dimensions along which the SHAP values are analyzed. First, to explain

how much each feature is contributing to the prediction accuracy, the calculated absolute

SHAP values are added along the temporal dimension. Similarly, to explain the temporal

contribution, the calculated absolute SHAP values are added along the spatial dimension.
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The average summation of the absolute SHAP values for sample data points are used as the

metric for determining the contribution level. To perform the evaluation, a sample of data

consisting of 512 points is selected from the test dataset. Additionally, a set of 2048 data

points is chosen as background data.
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Results

5.1 Dataset Metrics

The mean and standard deviation of the number of right foot steps for the intervals of 1

second, 2 second, 5 second, 10 second, 15 second, and 30 second from 10 participants are:

24.7 ± 2.5, 53.8 ± 3.2, 146 ± 9.4, 301.5 ± 12.3, 473.9 ± 27.0, and 910.3 ± 40.5 steps,

respectively. The corresponding dataset sizes are: 7153 ± 558, 16928 ± 168, 46898 ± 1169,

98702 ± 1641, 154069 ± 8197, and 297862 ± 11984 points (data is collected at 240 Hz).

Overall, the nR value where the foot placement occurred was an average of 25.2% in the

ground truth gait cycle.

5.2 Gait Phase Estimation and Foot Placement Pre-

diction Accuracy

As shown in Fig. 5.2(a) and (d), gait phase detection accuracy as well as foot placement pre-

diction accuracy are consistently improved when the models are trained with larger datasets.

For example, the models trained with all the available data have significantly better per-

formance than the foot placement prediction models trained with the 30 s interval data for

both the base case (P ≤ 0.024) and the fine-tuning case (P ≤ 0.007).

27
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Figure 5.1: Results of foot placement prediction with deep learning models. (a) The right
gait phase RMSE for training datasets of different sizes. (b) and (c) Normalized histogram
for right foot gait phase error for the base (orange) and fine-tuning (green) case. Note that
this error is calculated by reconstructing the gait phase value from the output of the gait
phase evaluation model. (d) Foot placement error when trained with datasets of different
sizes. (e) and (f) Normalized histogram for foot placement error for the base (orange) and
fine-tuning (green) case.

It is also observed that the fine-tuned models consistently outperform the models from the

base case across all the dataset sizes (see Fig. 5.2(a) and (d)). The largest improvement is

made when the models are trained with the 1 second interval datasets; when trained with

the 1 second interval datasets, the base models have 3.0% and 1.69 cm or less for the gait

phase estimation error and the foot placement prediction, 95% of the time, respectively,

whereas the fine-tuned models have them lower than 2.3% and 7.57 cm 95% of the time

(see Fig. 5.2(b), (c), (e), and (f)). When trained with all the available data, the difference

becomes smaller; the corresponding values are 1.8% and 5.81 cm for the base models and

1.7% and 5.58 cm for the fine-tuned models. In addition, the fine-tuning process generally

reduces cross-subject variance in terms of prediction accuracy, compared to the base models.
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Figure 5.2: (a) Foot placement error with gait progression. Gait phase values denote an
interval of gait progression after the last foot placement, for example, 20 means 20∼21% gait
progression after the last foot placement, 40 means 40∼41%, and so on. (b) Foot placement
error for different step lengths. The step length refers to the distance between the last foot
placement to the succeeding one. Note that the Gait Phase percentage is the percentage
after the foot placement; this corresponds to approximately 25% in the traditional gait cycle
after heel strike, so 87% on the graph is approximately the next heel strike. (c) X,Y, and
Z components of foot placement error. (d) The foot placement prediction results for each
participant using the last foot placement predictor, the base models, the pre-trained models,
and the fine-tuned models. The shaded areas and the error bars indicate 95% confidence
intervals.

Overall, the best foot placement prediction accuracies are achieved by the models trained on

all the available data: 2.69 cm MDE for the base case and 2.60 cm MDE for the fine-tuning

case. Additionally, for cross-subject evaluation, the pre-trained models have a 5.93 cm MDE

(Fig. 5.2g). The overall RMSEs of foot placement prediction in the X, Y , and Z axis of the

pelvis coordinate system are, respectively, 4.04 cm, 4.46 cm, and 3.21 cm for the pre-trained

models, 2.25 cm, 2.21 cm, and 0.94 cm for the base models, and 2.15 cm, 2.12 cm, and

0.97 cm for the fine-tuned models, when trained by all the available data. Note that the

performance improvement is statistically insignificant for the all datasets case (P ≥ 0.46),

and the cross-subject variance reduction is statistically insignificant for the 5 second interval
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case (P ≥ 0.21).

5.3 Early Gait Phase Foot Placement Prediction

Fig. 5.2(g) shows the foot placement prediction error given different ranges for gait progres-

sion when the models were trained using all the available data. The base and fine-tuned

models achieve competitive performance even at very early in the gait phase. For exam-

ple, the base models (P ≤ 0.001) and the fine-tuned models (P ≤ 0.001) trained by all the

available data have the foot placement prediction MDE of 4.60 cm and 4.70 cm with gait

progression less than 1% after the previous foot placement, respectively, which are signif-

icantly lower than the prediction MSE error of the last foot placement predictor at 5.34

cm. The pre-trained models have the corresponding MDE of 6.88 cm, which is higher than

that of the last foot placement predictor. With gait progression less than 56% after the

previous foot placement (half way through swing), the foot placement prediction MDEs are

6.99 cm, 3.32 cm, and 3.22 cm from the pre-trained, base, and fine-tuned models, respec-

tively. The intervals that achieve the best accuracy are 81-82%, 84-85%, and 82-83% after

the last foot placement for the pre-trained, base, and fine-tuned models, respectively, with

the corresponding MDEs of 3.95 cm, 1.69 cm, and 1.59 cm within the specified intervals (see

Fig. 5.2(g)). This is after the time of heel strike for the foot.

Throughout the experiment, a positive correlation between the performance of the last foot

placement predictor and the trained models is observed: For the base case and the fine-tuning

case trained by all the data, the Pearson correlation coefficients are r = 0.76 and 0.91, N = 10,

respectively, indicating strong linear relationships (see Fig. 5.2(j)). In a similar context, the

best foot placement prediction accuracy is achieved when the step length ranges from 1.3 m

to 1.7 m for both the base case and the fine-tuning case, where the highest correlation exists
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between the previous foot placement and the subsequent foot placement (Fig. 5.2(h)).

5.4 Interpretation using SHAP values

As the fine-tuned models have demonstrated the highest level of foot placement accuracy,

it is conjectured that the SHAP values derived from these models can provide a more pre-

cise understanding of the impact of individual features on foot placement prediction. This

assumption is motivated by the fact that the models achieving the best accuracy are more

likely to be capturing the most relevant information in the data, and thus the SHAP values

computed from these models can be indicative of the most influential features in the predic-

tion process. This section seeks to leverage the insights gained from SHAP values to identify

the features that contribute the most to foot placement prediction.
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Figure 5.3: The average SHAP values for all 480 timestamps using the fine-tuned models.
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Figure 5.4: The average SHAP values computed for all 33 features using the fine-tuned
models.
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Figure 5.5: The average SHAP values for each feature using the fine-tuned models across 10
participants.

Fig. 5.3 shows the relationship between contribution and time progression. The plot demon-

strates that the temporal contribution increases exponentially over time, indicating that the

most recent data points carry greater weight in predicting the foot placement. This trend is

consistent with the underlying assumption that recent events are more relevant than earlier

events in time-series data.

Fig. 5.4 and Fig. 5.5 present the average contribution of each feature. The descending order

of the most influential features, based on their average contribution, includes p̂RF,x, p̂LF,x,

v̂LF,x, p̂RF,x, GP2, and âPV,x. It is observed that features that represent the x-component

(forward direction) have the highest contribution among the same feature category. Position

features in average have the highest impact on the prediction, followed by velocity features.

Interestingly, pelvis acceleration features have higher contribution that feet acceleration fea-

tures.
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Discussion

In this study, we present a new approach for predicting foot placement using three IMU

sensors and a deep learning algorithm (Fig. 4.1). Our approach employs a time-series pro-

cessing deep learning model that predicts foot placement in three dimensions. Unlike any of

the existing methods, the proposed method relies completely on local sensor information for

inference and is thus a mobile solution once implemented. It is also relatively free of man-

ual engineering such as feature extraction or data labeling, and is capable of cross-subject

learning and small dataset learning through cross-validated training and fine-tuning. To the

best of our knowledge, we are the first to use recurrent neural networks for foot placement

prediction, and our approach achieves state-of-the-art foot placement prediction accuracy in

comparison to other studies.

Our algorithm produces state-of-the-art results in comparison to prior wearable sensor-based

works. In [5], Lee continuously estimated the gait phase during walking and reported an

average error of 1.67 ± 1.36% and 1.45 ± 1.47% for walking speeds of 0.5 m/s and 1.5

m/s, respectively. This means that the corresponding upper bounds for the 95% confidence

interval are approximately 4.34% and 4.32%, respectively, which are higher than our best

reported upper bound of 1.7%.

For foot placement prediction, Chen [14] found an RMSE of 4.4 cm and 4.2 cm in the forward

and sideways directions, respectively, using a motion capture system to make predictions

after the first 0.2 s of the swing phase. Also, Chen [13] used a foot-mounted IMU and found

35
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an RMSE of 12.2 cm and 10.6 cm in the forward and sideways directions in single-subject

learning and 13.3 cm and 13.7 cm in cross-subject learning, respectively, with a prediction

window of the first 50% of the swing phase. Using the same prediction window, Zhang

found a best MDE of 8.6 cm in single-subject learning when subjects walked through rough

terrain [12]. In both [13] and [12], the earliest a prediction can be made is at least 50%

in gait phase percentage after the last foot placement, which corresponds to the mid-swing

phase. In comparison, our method achieves the foot placement prediction MDEs of 6.99

cm, 3.32 cm, and 3.22 cm from the pre-trained, base, and fine-tuned models, respectively,

with gait progression up to a similar point (around 56% in Fig. 5.2(e)), which are significant

improvements from the above studies in accuracy.

Additionally, our models begin making predictions immediately after the previous foot place-

ment (around nR =25% in the gait cycle), with increasing accuracy over time. This is in

contrast to the previous works that only consider the foot motion during the swing phase.

Interestingly, early in the gait cycle the pre-trained models are less accurate than an esti-

mate based on the person’s last footstep until the mid-swing phase. However, if the models

are trained on target subject data (base-trained and fine-tuned), then they are always more

accurate than the previous foot placement, even early in the gait cycle. Also, increasing the

amount of training data leads to better accuracy in both gait estimation and foot placement

prediction.

The competitive early gait-phase foot placement prediction accuracy indicates that the deep

learning models are capable of extracting valuable information from the pelvis and feet

kinematics before the swing phase to create a more informed prediction. The deep learning

models look back the previous 2 seconds of sensor data, which is sufficient to capture at

least a single gait cycle. This approach differs from other studies, such as [13] and [14],

which only consider the foot motion during the swing phase. Our deep learning models also
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update predictions at the IMU sensor sampling rate, which enhances the interpretability and

reliability of the predictions.

Our method also offers several notable other advantages over the existing methods for prac-

tical implementation. First, it does not need a reference coordinate system and relies on

internally normalized sensor data for inference, making it a viable mobile solution. Ad-

ditionally, our method is scalable to the dimensionality of foot placement, whereas other

distribution-based studies can suffer from exponentially higher computational loads when

an additional dimension is introduced.

One interesting finding is that the foot placement prediction accuracy increases with longer

steps, which is contrary to the suggestion made by many step length evaluation studies that

scale the distance error by the true step length [4, 31]. A possible explanation is that the

walking speed that the participants found natural is close to the maximum allowed speed

during the experiment: when asked to walk in low speeds, the participants had to make

conscious adjustments to slow down, potentially introducing additional patterns that the

trained models had a harder time generalizing. This could also be a reason why there was

higher correlation between neighboring foot placements for step length range of 1.3∼1.7 m

than that of 0.5∼1.0 m.

Also, in many studies, gender differences in walking are reported [32, 33]. However, in terms

of cross-subject foot placement prediction, no gender-specific discrepancy is found between

the female participants (7 and 8) and the male participants in this study. Female participants

showed lower prediction error than the average during cross-subject learning, although the

models were trained on a dataset consisting mainly of walking data from male participants.

Thus, it appears it is more beneficial to build a pre-training dataset with diverse walking

patterns from the general population rather than to limit it to specific target attributes.



38 CHAPTER 6. DISCUSSION

Based on the computed SHAP values, several observations are made. Firstly, among the

acceleration features, the pelvis features are the most significant ones. This aligns with the

bipedal walking models, including LIPM (Linear Inverted Pendulum Model), which assert

that the kinematics of the center of mass (COM), which can be approximated as the pelvis, is

the primary factor for foot placements. Secondly, most of the orientation features are found

to be least relevant for foot placement prediction, except for the third quaternion components

for both feet. Lastly, the gait phase estimation model’s output plays a meaningful role in

predicting foot placements.

In future work, we will extend our method to uncontrolled walking settings and implement

online learning methods. Since the current prediction models were trained and tested on a

computer with multiple GPUs, we will improve this system by making it a fully wearable

solution. From the deep learning perspective, future work includes using Bayesian deep

learning networks to capture a distribution of potential foot placements, better explaining

model with interpretable AI techniques, and making the learning completely end-to-end with

better feature extraction ability and a shorter latency period.



Chapter 7

Conclusions

In this study, we present a new approach for foot placement prediction using three IMU

sensors and deep learning models with state-of-the-art results for gait phase estimation and

for foot placement prediction during human walking. In cross-subject learning, the trained

deep learning models had the mean distance error as low as 5.93 cm. In single-subject

learning, when the models were initialized without pre-training prior to learning, a mean

distance error as low as 2.69 cm was achieved. When using the cross-subject trained models

as the initial models instead, the prediction accuracy of the trained models were improved

especially with smaller training datasets, and cross-subject variances in performance were

reduced, with the best mean distance error of 2.60 cm.

The experimental results demonstrate that deep learning models are able to capture temporal

dependencies by sequentially processing time-series sensor data to make informed predictions

even early in the gait cycle. The prediction accuracy increased by training on the target

individual, and by increased data set sizes. The proposed foot placement prediction method

can help lower-body wearable robots to provide better safety to users by anticipating the next

foot placement and performing risk-aversion techniques such as fall prevention or obstacle

avoidance, or by improving control systems to be more in tune with the body. This study

is also expected to open up more deep learning-based works for practical human motion

anticipation.
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Appendix A

Discussion of Methods and Findings

Not Included in the Main Body

The main body of this thesis presents the results and conclusions of our research. However,

as with any research project, there were many aspects that were explored and attempted

that did not make it into the final analysis. In this bonus chapter, we aim to provide a

comprehensive discussion of the methods and findings that were not included in the main

paper. This chapter covers the approaches that were explored but ultimately found to be

unfeasible or not as effective as initially hypothesized. Additionally, we discuss other relevant

findings that did not make it into the journal paper, including preliminary results, but may

be of interest to readers seeking a more comprehensive understanding of the research process.

A.1 Deep Learning Architecture

Given the same input dataset, many different deep learning architectures were compared

in terms of the foot placement prediction accuracy. With some preliminary testing, follow-

ing conclusions were made: First, transformer models with spatio-temporal self-attention

mechanisms, similar to [34], performed noticeably worse than GRU models with attention

mechanisms. Additionally, models with attention mechanism, including the GRU models,

not only suffered from longer training and inference time, but also did not provide mean-
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ingful advantages compared to the vanilla GRU model used in the method section in terms

of performance. The structure of the GRU models with and without attention mechanism

is illustrated in Fig. A.1. Because the vanilla GRU model without attention led to faster

training and inference time and the best prediction accuracy, it was selected as the optimal

model. The possible explanation for why the vanilla GRU model worked better than the

other models is, as shown in Fig 5.3, that GRU model without attention inherently places

higher importance on the more recent data points, which aligns with the task of predicting

the foot placement, where the more recent sensor data are expected to have higher impact

on the predictions made.

(a) GRU network without attention mechanism

GRU
Layer

FGP(ti-240) FGP(ti-239) FGP(ti-2) FGP(ti-1)

Attention
Scores

. . .

Weighted Sum of
GRU Outputs

Concat

Feed-
foward

ŶGP(ti)

. . .Embed
Layer

. . .

Final
State

(b) GRU network with attention mechanism

Figure A.1: Different deep learning architectures

A.2 Temporal Rescaling

It is commonly observed that many deep learning models designed for time series data employ

a fixed look-back window. This is because some models, such as Transformers, cannot process

variable length inputs without zero-padding as their architecture requires a fixed input size.

Other models like RNNs, LSTMs, and GRUs are capable of handling variable-length inputs
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but often prefer fixed-length inputs for efficient batch learning.

Figure A.2: Raw time series data vs temporally re-scaled series data for each gait. Green
color indicates fast walks, and blue color indicates slow walks.

The time window within which the sensor readings carry relevant information for the next

foot placement prediction is affected by the current gait cycle progression as well as the gait

frequency. This observation was used to hypothesize that it leads to a high variability of the

optimal look-back window between different input data. Also, as suggested by [35, 36, 37],

the time series data interpolated to a certain temporal scale can lead to for better deep

learning performances. The time-series input data for foot placement prediction were re-

scaled according to the gait progression instead of time. As a preceding step, the gait

progression was estimated at each time instance for proper rescaling.

However, preliminary results showed that the temporal rescaling does not lead to better

prediction accuracy. It also introduces an additional hyperparameter, the re-scaling ratio,

and is affected by the current gait progression estimation. The selected deep learning models

were able to capture information from the input data using data without re-scaling regardless

of the rate of the gait progression.
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A.3 Additional Features

Additional features were generated in an attempt to achieve better accuracy, but omitted in

the final work because there was no observed improvement. The additional features are:

Time: the time progression data from the last right foot flat instance in time-series were

used as follows:

Time progression features =
{
t− tGP=nR%, t− tGP=nL%

}
LIPM-based COM position: According to the LIPM model, the center of mass position of

the system is:

PCOM(t) = −x0cosh
( t

Tc

)
+ Tcv0sinh

( t

Tc

)
, (A.1)

where Tc is the time constant computed as
√

l
g
, l is the length of the inverted pendulum, g

is the gravity constant, and v0 is the initial COM velocity. The second term of the equation

is used as the input feature, where Tc is replaced by the estimated step completion duration
t

2πYGP,R(t)
, and v0 is estimated by averaging the previous swinging foot velocity until the heel

strike. Note that in the SLIP model, the z-position of the COM is assumed to be constant,

so only the x and y component are used. We define the x and y component of the estimated

COM position as SLIPx and SLIPy, respectively. Mathematically,

SLIPx =
t

2πYGP,swf (t)
v̂0,xsinh

(
2πYGP,swf (t)

)
SLIPy =

t

2πYGP,swf (t)
v̂0,ysinh

(
2πYGP,swf (t)

)
v̂0 ∝

∫ sw,e

sw,i

vswf,prev(t)dt

(A.2)

The estimated initial COM velocity v̂0 is replaced by the integral of the estimated previous
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swinging foot velocity during the swinging phase. Note that the swinging foot (swf) switches

every half of the gait cycle: From GP = 0% to GP = 50%, the left foot is the swinging foot,

and from GP = 50% to GP = 100%, the right foot is the swinging foot, and so on.

The inclusion of both time progression and SLIP features in the model did not result in any

improvement, according to the preliminary results. The reasons behind this are twofold:

Firstly, the time progression feature may not have provided any additional information that

was not already provided by the output of the gait estimation model (GP in Fig. 4.1).

Secondly, the LIPM model, being a passive model with pre-determined walk trajectory based

on initial conditions such as the initial COM velocity, differs from actual human walking,

thus rendering the SLIP features less useful in improving prediction accuracy.

A.4 SHAP-based Feature Selection

To more accurately predict foot placements and to enhance the autonomy of the learning pro-

cess, a SHAP-based feature selection method was proposed. Recursive Feature Elimination

(RFE) is a feature selection methodology which iteratively eliminates the least contributing

feature from the current feature subset until a certain condition is met. In the proposed

SHAP-based feature selection method, at each iteration, SHAP values are assessed to calcu-

late the feature contribution and eliminate the least contributing feature to. When there is

no improvement in the performance after an iteration, the process stops and the final feature

subset is selected.

Although preliminary results were positive, the practical application of this method was

hindered by the training time required for GRU models with large datasets at each iteration,

and the need to customize models for the selected features in each scenario (e.g., different

dataset size and participant). Therefore, it was deemed practically impossible to rigorously
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apply this method.

A.5 Multiple Foot Placements Prediction

An additional aspect of the study was to test if the model is able to make predictions for

the multiple future foot placements. Although this is a valuable capability for long-term

motion predictions, it was not included in the paper due to the controlled nature of the data

collection process, where the speed and direction of the walks were managed. Consequently,

the prediction accuracy achieved in this study could differ significantly from the case where

the speed and direction of the walk are not controlled, and therefore, the results were not

reported in the paper. The future works include collecting uncontrolled overground walking

data and use the deep learning models to perform multiple foot placement predictions.

A.6 Different Sensor Placements

In our study, each participant did not try multiple sensor placements during data collection.

This means that, during the single-subject learning, the training dataset and the test dataset

had the same sensor orientation for each participant, assuming no slippage of the sensors.

In contrast, during the cross-subject learning, each subjects had different sensor placements.

It is worthwhile to mention that if each participant had to don and doff the system after

each session to test different sensor placements, the single-subject models would have yielded

results comparable to that of the pre-trained models, which learned across different subjects

and sensor placements.
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