
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023 1

STTracker: Spatio-Temporal Tracker for 3D Single Object Tracking
Yubo Cui, Zhiheng Li, Zheng Fang∗

Abstract—3D single object tracking with point clouds is a
critical task in 3D computer vision. Previous methods usually
input the last two frames and use the predicted box to get the
template point cloud in previous frame and the search area point
cloud in the current frame respectively, then use similarity-based
or motion-based methods to predict the current box. Although
these methods achieved good tracking performance, they ignore
the historical information of the target, which is important for
tracking. In this paper, compared to inputting two frames of
point clouds, we input multi-frame of point clouds to encode
the spatio-temporal information of the target and learn the
motion information of the target implicitly, which could build
the correlations among different frames to track the target in
the current frame efficiently. Meanwhile, rather than directly
using the point feature for feature fusion, we first crop the point
cloud features into many patches and then use sparse attention
mechanism to encode the patch-level similarity and finally fuse
the multi-frame features. Extensive experiments show that our
method achieves competitive results on challenging large-scale
benchmarks (62.6% in KITTI and 49.66% in NuScenes).

I. INTRODUCTION
Single object tracking with point clouds is one of the most

important tasks in 3D computer vision. Given the 3D box of
the target in the initial frame, single object tracking requires
the tracker to make successive predictions of the given target
in subsequent frames to obtain the target’s 3D pose, which
could provide useful information for downstream tasks, such
as path planning in autonomous following robots.

Currently, most previous methods [4], [6]–[10] use sim-
ilarity computation to match the current frame point cloud
with the template point cloud of the tracking target, and then
find the target in the current frame point cloud. Meanwhile,
since the first frame point cloud is the most accurate and
has strong prior information, they usually update the template
point cloud by fusing the predicted target point cloud of the
previous frame with the initial frame target point cloud to
achieve the best tracking results. However, the performance
of this similarity-based matching paradigm is often limited
due to the sparsity and disorder of point clouds. Recently,

Manuscript received: February, 11, 2023; Revised May, 12, 2023; Accepted
June, 12, 2023.

This paper was recommended for publication by Editor Cesar Cadena upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by the National Natural Science Foundation of China under
Grants 62073066 and U20A20197, in part by the Fundamental Research Funds
for the Central Universities under Grant N2226001, and in part by 111 Project
under Grant B16009. (Corresponding author: Zheng Fang.)

Yubo Cui, Zhiheng Li, Zheng Fang are with Faculty of Robot Science and
Engineering, Northeastern University, Shenyang 110819, China, and also with
the National Frontiers Science Center for Industrial Intelligence and Systems
Optimization, Shenyang 110819, China (e-mail: ybcui21@stumail.neu.edu.cn,
zhihengli@stumail.neu.edu.cn, fangzheng@mail.neu.edu.cn)

Zheng Fang is also with the Key Laboratory of Data Analytics and Opti-
mization for Smart Industry Northeastern University), Ministry of Education,
Shenyang 110819, China.

Digital Object Identifier (DOI): 10.1109/LRA.2023.3290524.

Fig. 1. Multi-frame point clouds input. Our input includes N frames point
clouds and the past N−1 frame 3D boxes of target. Different colors represent
different timestamps.

M2-Tracker [11] proposed a motion-based tracking paradigm,
suggesting that regressing the relative target motion from the
two consecutive point cloud frames could be more suitable for
the point cloud tracking task than similarity-based matching.
By inputting the last two frames of point cloud and the
predicted box of the previous frame, they first segmented the
two point clouds to obtain the foreground point cloud, i.e., the
approximate target point cloud. Then, by regressing the offset
between the two foreground point clouds, a coarse current box
prediction is obtained based on the previous predicted 3D box.
Finally, they fused the target point cloud in two frames and
refined the coarse box to get a more accurate box.

However, no matter the similarity-based matching or
motion-based estimation, they both only input two consecutive
point cloud frames and ignore the earlier historical information
of the target, which is also important for the tracking task. For
example, if the target is taking a turn in recent frames, this
long-time global motion information can be used to constrain
the angle prediction in the current frame, while this motion
information is difficult to be detected in only two local frames.
Also, all previous similarity-based algorithms complement the
template point cloud with the target information from the first
frame. However, this skip-completion ignores the successive
spatio-temporal information of the target in the historical
frames and only superimposes the aligned point clouds, thus
also not fully utilizing the spatio-temporal information during
tracking.

To address the above issues, in this paper, we propose a
point cloud tracking algorithm based on spatio-temporal in-
formation, termed STTracker. Different from previous works,
we input the point clouds of the past N −1 frames and their
corresponding 3D boxes of the target, as well as the point
cloud of current frame to predict the current 3D box, as
shown in Fig. 1. Meanwhile, the input can be of any length

ar
X

iv
:2

30
6.

17
44

0v
1

 [
cs

.C
V

]
 3

0
Ju

n
20

23

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

and any frame, such as [t, t − 1, t − 2, t − 3] or [t, t − 2, t − 4],
etc. Therefore, using two consecutive frames of point clouds
as input in previous methods can be considered as one of
our input modes. After getting the multi-frame input, we
propose a similarity-based spatio-temporal fusion module to
build correlations between multi-frame point clouds and fuse
the historical information into the current frame features for
prediction. Given the previous 3D boxes of the target, the
fusion module could learn the motion information implicitly.
Furthermore, to reduce the computational effort of the fusion
module and speed up the training and inference speed, we
use a sparse patched-based attention mechanism for multi-
frame feature fusion. Our method proves that by learning the
spatio-temporal information of the target from multiple his-
torical frames, the similarity-based matching paradigm could
break the limitations and track the target with point clouds
effectively. Compared to M2-Tracker [11] which only learns
the short motion information between two frames, our method
not only fully utilizes the long spation-temporal information
brought by multiple frames to implicitly learn motion infor-
mation, but also learns the appearance similarity information
between multiple frames to better locate the target position.
Comprehensive evaluation results show that our STTracker
achieves competitive results on KITTI [1] and NuScenes [2]
datasets.

Overall, our contributions are as follows:
• We propose a spatio-temporal learning framework that

introduces multiple frames into 3D single object tracking.
• We propose a novel multi-frame features fusion method

to implicitly learn the motion information of the target
and build correlation among multiple frames.

• Experiments on KITTI and NuScenes datasets show that
our STTracker achieves promising performance, and ex-
tensive ablation studies also verify the effectiveness of
our method.

The rest of this paper is organized as follows. In Sec. II,
we discuss the related work. Sec. III describes the proposed
STTracker. In Sec. IV we first compare our methods with
previous methods in KITTI and NuScenes datasets, and then
conduct ablation studies on each module of our methods. We
finally conclude in Sec. V.

II. RELATED WORK

A. 3D Single Object Tracking

3D single object tracking with point cloud has developed
fast in recent years. SC3D [4] compares template and search
point clouds with cosine similarity and selects the highest
score one to track. P2B [6] proposes an augmentation module
to fuse the point features with the point-wise cosine simi-
larity, and then takes VoteNet [3] to have an accurate 3D
box. Following this pipeline, PTT [8], BAT [7], LTTR [9],
V2B [10], PTTR [12] and SMAT [37] also take the two-branch
siamese architecture and similarity-based matching paradigm.
By enhancing the point features [7], [8], [10], computing the
similarity with transformer [9], [12], [37], the similarity-based
matching pipeline makes great progress in 3D single object
tracking task. PCET [40] proposes two modules to extract

Backbone

T-3 Frame

T-2 Frame

T-1 Frame

T Frame

Shared

Backbone
Prediction

Head

Spatial

Learning

Block

Temporal

Learning

Block

STLM

Fig. 2. Architecture of the proposed STTracker. Given N point cloud and
corresponding N − 1 3D boxes, we first use a shared backbone to extract
features from point clouds. Second, we input N features with N−1 3D boxes
into our spatio-temporal fusion module to learn spatio-temporal information.
Finally, we use a center-based regression to predict the current box.

discriminative features and improve the robustness to sparse
point clouds and respectively. Different from these similarity-
based methods, M2-tracker [11] points out that the motion-
based tracking paradigm may be more suitable for 3D SOT
than similarity matching. They first segment the foreground
points to find the target points and then regress the relative
target motion between the two frame points to get a coarse
3D box. Finally, they aggregate the target from two successive
frames by using the predicted motion state and refine the
coarse 3D box to get a better prediction. Moreover, STDA [43]
proposes a temporal motion model to learn the spatio-temporal
information to track object by predicting the state and variance
of the target. However, their method depends on the detector
and could not track the object in end-to-end manner. In this
paper, different from STDA [43], we propose an end-to-end
network to directly learn the spatio-temporal information from
multi-frame data.

B. Spatio-Temporal Learning

Learning spatio-temporal information across multiple
frames has been exploited for 3D vision tasks, such as 3D
object detection and point cloud prediction. Faf [20] jointly
conducts object detection, tracking, and motion forecasting
together by inputting multiple point cloud frames and designs
two schemes for temporal fusion. StarNet [21] uses the previ-
ous detection results as prior to improve the current detection.
STINet [22] inputs multiple frames to extract features and
temporal proposals to detect in current frame and predict future
trajectories simultaneously. MVFuseNet [24] designs multi-
view temporal fusion of LiDAR in RV and BEV for current
detection and motion forecasting. 3DSTCN [23] projects past
N frame point clouds into 2D range images and apply a U-
Net-like spatio-temporal 3D CNN to obtain the future 3D point
cloud predictions. MGTANet [14] designs short-term feature
extraction and long-term feature enhancement to learn spatial-
temporal information. SpOT [42] represents tracked objects
as sequences and proposes a sequence-level 4D refinement

CUI et al.: STTRACKER: SPATIO-TEMPORAL TRACKER FOR 3D SINGLE OBJECT TRACKING 3

Deformable Attention

Temporal Learning

T Frame
To Patch Patch Conv Flatten

T-1 Frame
To Patch Patch Conv FlattenMask

Fusion

T-2 Frame
To Patch Patch Conv FlattenMask

Fusion

Spatial Learning

T-3 Frame
Mask

Fusion

To Patch Patch Conv Flatten

Fusion Conv

Concatenate

Box Mask

BEV Feature

Mask Conv

Add&Box Conv

Mask Fusion

H

W

Fi

Mi

Pt-3

Pt-2

Pt-1

Pt

U

Base Feature Patch Feature Final Patch Feature

Fused Feature

Fig. 3. Illustration of the proposed STLM. The STLM includes two components, spatial learning block and temporal learning block respectively. The first
block learns the spatial information for each frame feature, and the second block learns the temporal information from all frame features.

network. PF-Tracker [41] proposes a multi-camera 3D MOT
framework that adopts the “tracking by attention” pipeline.

III. METHODOLOGY

A. Overall Architecture

Given the current point cloud, and previous N − 1 frames
point clouds with their corresponding 3D bounding boxes, we
aim at estimating the current target 3D box, which could be
represented as (x,y,z,w, l,h,θ), where (x,y,z) is the center,
(w, l,h) is the size and θ is the orientation of the box
respectively. Meanwhile, following the assumption [6] that the
size of the target object is known through the first frame, we
only need to estimate (x,y,z,θ).

As shown in Fig. 2, our proposed STTracker (Spatial
Temporal Tracker) is a one-stage network that has a simple
pipeline. We first input all N frames of point cloud into a
shared backbone to extract per-frame point features. Unlike
previous works [6]–[9] which only input the points within
the predicted 3D box in the template branch, our N − 1
previous frames of point cloud adopt the same input size
as the current frame, as shown in Fig. 2. Meanwhile, we
add the timestamps for all points to construct time-aware
point cloud Pt = {x,y,z, t}, and use dynamic pillar [29] to
extract basic features for its fast speed. We refer the readers
to paper [29] for more details. Second, we input all N extracted
features and previous N − 1 3D boxes to our fusion module
to learn spatio-temporal information. Finally, by using center-
based prediction, we predict the 3D box of the target in
current frame. We will introduce the details in the following
subsections.

B. Spatio-Temporal Learning

After per-frame feature extraction, we have N frames of
point cloud features and their sizes are all W × H ×C1,

where N − 1 are from previous frame point clouds and the
last one is from the current point cloud, C1 is the feature
channel. Meanwhile, we multiply the voxel size with the final
downsampling rate of our network to get the final grid size.
Based on the point cloud range and the grid size, we generate
a corresponding empty BEV (Bird’s Eye View) grid map
(H ×W × 1). We assign the mask value of each grid as 1
if the center of its center is in the BEV box, otherwise as
0. Therefore, we could obtain N − 1 box masks. Our goal is
to extract useful spatio-temporal relationships to guide current
prediction. The simplest approach is concatenating them to-
gether and applying 2D convolutional block to directly extract
the spatio-temporal features. However, we argue that this
approach could not learn the information efficiently due to the
misalignment among features at different timestamps. Because
of the motion from the LiDAR sensor or the target itself, the
same position in the feature maps from different timestamp
features represents different point clouds. Although sometimes
the ego-motion of the LiDAR sensor is available, the motion of
the target is always unknown. Therefore, simple concatenation
would lead to ambiguity of features [14]. Another approach
is applying 3D convolutional block [23] to the concatenated
features. However, the 3D convolutional block would incur
huge computation cost.

To align the features from different timestamps and learn
the spatio-temporal information of the target, we proposed an
attention-based feature fusion module, as shown in Fig. 3,
termed STLM (Spatio-Temporal Learning Module). STLM
adopts a similarity-based matching to fuse different timestamp
features, and could be divided into spatial learning block and
temporal learning block respectively.

Spatial Learning Block. The spatial learning block aims
to learn the spatial information for each frame feature, thus
it only involves single-frame features. Different from previ-
ous similarity-based works [6]–[10], we input previous point

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

clouds not only including the points within the 3D box but
also including the points out of the 3D box, as the same as
the current search point cloud. Therefore, to distinguish the
foreground points from input, we need a BEV mask to repre-
sent the box’s spatial location. We propose the MaskFusion to
incorporate the box mask into the extracted features. As shown
in Fig. 3, we first apply a Conv2D layer named MaskConv
to project the mask into features, then add the mask feature
with the BEV features and further apply a Conv2D layer
named BoxConv to further extract the foreground features with
channel C2. Compared to the methods which only extract the
feature from points within the 3D box, we could keep and
extract much more texture information. This operation could
be formulated as follows:

F̂i = BoxConv(MaskConv(Mi)+Fi) (1)

where i ∈ {t −1, ..., t −N} and Fi,Mi denote the point feature
and box mask for i-th frame, respectively. Meanwhile, since
we need to compute the similarity among N frames of features
in the following temporal learning block, the W ×H size would
incur high computation cost. Therefore, following previous
vision transformer works [15]–[18], we also divide per-frame
feature map into many non-overlapping local patch grids.
Specially, we set the patch size to R×R and crop per-frame
W ×H ×C2 features to S patches with size of R× R×C2,
then apply a Conv2D layer named PatchConv to extract the
per-patch features with channel C3. Finally, we flatten the
R×R×C3 patch features to S×C3, where S = R×R. Denoting
the patch transformation as φ , this procedure is represented as
follows:

Pi = PatchConv(φ [F̂i]) (2)

where i ∈ {t, ..., t−N} and Pi refers to the final patch features.
The patch transformation could not only reduce the compu-
tation cost, but also provide a larger receptive field for the
following similarity-based matching.

Overall, we apply the proposed MaskFusion and patch
transformation φ for all N − 1 previous features, while we
only apply the patch transformation φ for current frame feature
since we do not have the 3D box of current frame.

Temporal Learning Block. Given N patch features Pi from
different timestamps, the temporal learning block uses a sparse
attention-based paradigm to fuse them and finally outputs
the feature including the spatio-temporal information of the
target. In particular, we first concatenate these per-frame patch
features to have the fused spatial-temporal feature G of size
N×S×C3, where the horizontal axis represents space and the
vertical axis represents time. Then, inspired by the attention
mechanism [34], we apply the deformable attention [35] to
align the different timestamp patch features by themselves.
Specially, we first use two linear layers for each query patch
feature to generate sampling offsets ∆G and attention weights
A respectively. Based on the location of query patch itself
and the output sampling offsets, we can sample reference
patch features from the feature G by bilinear interpolation.
Finally, the original patch feature could be aggregated with

(a) (b)
Fig. 4. (a). The previous gaussian kernel heatmap assignment; (b). Our all
foreground heatmap assignment.

the reference features with their corresponding weights. The
procedure could be formulated as follows:

∆G = MLPo(G) (3)

A = MLPs(G) (4)

Vk = S(G,g+∆gk) (5)

Ĝ =
L

∑
l=1

Wl

(
K

∑
k=1

Alk ·Vk

)
(6)

where S(·) is the bilinear sampling, K is the number of
predicted offset for each grid, L is the number of attention
heads. In Equ. 3 and Equ. 4, we use two MLP layers to predict
K offsets ∆gk and corresponding similarity scores Ak for each
feature grid respectively. Then, in Equ. 5, we add the offsets
∆gk to the grid coordinate g to get new grid coordinate and
use bilinear sampling S(·) to sample the feature at gk +∆gk
from G. Moreover, in Equ. 6, the sampled features Vk are
multiplied with the similarity scores Ak. Finally, following the
multi-head mechanism, we use Wl to project each head feature
back and sum them up. We refer the reader to paper [35] for
more details.

Finally, we reshape the fused feature Ĝ back into the size of
W ×H ×C4 and concatenate it with the original current frame
feature W ×H ×C1 to strengthen current frame features. The
final fused feature U is generated as follows:

U = Conv2D(cat[Ĝ,Ft]) (7)

By using the sparse deformable attention [35], each patch
could find its corresponding region to align based on the sim-
ilarity. Meanwhile, the sparsity also avoids all-to-all similarity
matching and further limits the computation cost.

C. Prediction

Following CenterPoint [33], we also adopt the center-
manner to predict the target 3D box. Specially, in the training
phase, we first generate the heatmap according to the (x,y)
of the 3D box center, and then compute the offset of (x,y) to
compensate the error from the downsample operation. For the
height and orientation, we directly regress the height value of
the center and (sinθ ,cosθ). However, the original heatmap in
CenterPoint [33] uses Gaussian kernel locating at the center
of the box, thus the number of positive samples would be
not enough for the single object tracking problem since there
is only one target, as shown in Fig. 4 (a). To alleviate this
problem, following SMAT [37], we also assign all points in

CUI et al.: STTRACKER: SPATIO-TEMPORAL TRACKER FOR 3D SINGLE OBJECT TRACKING 5

TABLE I
PERFORMANCE COMPARISON ON THE NUSCENES DATASET. THE BEST

RESULT AND THE SECOND RESULT ARE MARKED IN RED AND BLUE,
RESPECTIVELY.

Category Car Ped Truck Bic Bus Trailer Mean
Frame Number 64159 33227 13587 2292 2953 3352 119570

Success

SC3D [4] 22.31 11.29 30.67 16.70 29.35 35.28 20.63
P2B [6] 38.81 28.39 42.95 26.32 32.95 48.96 36.29
PTT [8] 41.22 19.33 50.23 28.39 43.86 61.66 36.55
BAT [7] 40.73 28.83 45.34 27.17 35.44 52.59 37.89

V2B [10] 54.40 30.10 53.70 - - 54.90 -
C2FT [39] 40.80 - 48.40 - 40.50 58.50 -

MLSET [38] 53.20 33.20 54.30 - - 53.10 -
M2-Tracker [11] 55.85 32.10 57.36 36.32 51.39 57.61 48.99

Ours 56.11 37.58 54.29 36.23 36.31 48.13 49.66

Precision

SC3D [4] 21.93 12.65 27.73 28.12 24.08 28.12 20.36
P2B [6] 43.18 52.24 41.59 47.80 27.41 40.05 45.13
PTT [8] 45.26 32.03 48.56 51.19 39.96 56.05 42.24
BAT [7] 43.29 53.32 42.58 51.37 28.01 44.89 45.82

V2B [10] 59.70 55.40 51.10 - - 43.70 -
C2FT [39] 43.80 - 46.60 - 36.60 51.80 -

MLSET [38] 58.30 58.60 52.50 - - 40.90 -
M2-Tracker [11] 65.09 60.92 59.54 67.50 51.44 58.26 62.82

Ours 69.07 68.36 60.71 71.62 36.07 55.40 66.77

the box as positive samples and generate the heatmap label as
follows:

Hp =

{
1, if p ∈ B
0, else

(8)

where B is the 3D label box in BEV representation. In this
way, we could get more positive samples during training, as
shown in Fig. 4 (b). In the inference phase, after getting the
predicted heatmap and predicted offset o, we could compute
the x,y value of the center:

x̂c = (j+ox)×b× vx + xmin, (9)
ŷc = (i+oy)×b× vy + ymin. (10)

where (i, j) is the index of the peak value in the heatmap,
(ox,oy) is the predicted offset for (x,y), b is the downsample
stride, (vx,vy) and (xmin,ymin) are the voxel size and the
minimal value point cloud range of (x,y) axes respectively.

IV. EXPERIMENTS

A. Experimental Setting

Dataset. We evaluate our method on KITTI [1] and
NuScenes [2] datasets. For both datasets, we follow previous
works [6], [7], [9], [11] to split the training and testing sets.
For NuScenes dataset, we also follow CenterPoint [33] to
accumulate 10 sweeps to densify the keyframe.

Implementation Details. Our model is implemented in
Pytorch and based on the popular codebase1, trained on RTX
3090 GPU. For feature extraction, we use dynamic pillar [29]
and backbone [28] which are widely used in 3D detection [27],
[28]. In the training phase, we train the STTracker with
Adamw [19] optimizer with the initial learning rate of 0.003,
weight decay of 0.01 for both datasets.

Evaluation metric. One Pass Evaluation (OPE) [32] is used
to measure Success and Precision. The Success measures the
3D IoU between the predicted box and the ground-truth box,

1https://github.com/open-mmlab/OpenPCDet

TABLE II
PERFORMANCE COMPARISON ON THE KITTI DATASET. THE BEST RESULT

AND THE SECOND RESULT ARE MARKED IN RED AND BLUE,
RESPECTIVELY.

Category Car Pedestrian Van Cyclist Mean
Frame Number 6424 6088 1248 308 14068

Success

SC3D [4] 41.3 18.2 40.4 41.5 31.2
SC3D-RPN [5] 36.3 17.9 - 43.2 -

P2B [6] 56.2 28.7 40.8 32.1 42.4
PTT [8] 67.8 44.9 43.6 37.2 55.1
BAT [7] 60.5 42.1 52.4 33.7 51.2

LTTR [9] 65.0 33.2 35.8 66.2 48.7
V2B [10] 70.5 48.3 50.1 40.8 58.4
C2FT [39] 67.0 48.6 53.4 38.0 57.2

MLSET [38] 69.7 50.7 55.2 41.0 59.6
PTTR [12] 65.2 50.9 52.5 65.1 57.9
SMAT [37] 71.9 52.1 41.4 61.2 60.4
STNet [13] 72.1 49.9 58.0 73.5 61.3

M2-Tracker [11] 65.5 61.5 53.8 73.2 62.9
PCET [40] 68.7 56.9 57.9 75.6 62.7
STDA [43] 66.4 45.8 - 59.2 -

Ours 66.5 60.4 50.5 75.3 62.6

Precision

SC3D [4] 57.9 37.8 47.0 70.4 48.5
SC3D-RPN [5] 51.0 47.8 - 81.2 -

P2B [6] 72.8 49.6 48.4 44.7 60.0
PTT [8] 81.8 72.0 52.5 47.3 74.2
BAT [7] 77.7 70.1 67.0 45.4 72.8

LTTR [9] 77.1 56.8 45.6 89.9 65.8
V2B [10] 81.3 73.5 58.0 49.7 75.2
C2FT [39] 80.4 75.6 66.1 48.7 76.4

MLSET [38] 81.0 80.0 64.8 49.7 78.4
PTTR [12] 77.4 81.6 61.8 90.5 78.1
SMAT [37] 82.4 81.5 53.2 87.3 79.5
STNet [13] 84.0 77.2 70.6 93.7 80.1

M2-Tracker [11] 80.8 88.2 70.7 93.5 83.4
PCET [40] 80.1 85.1 66.1 93.7 81.3
STDA [43] 75.1 61.3 - 72.2 -

Ours 79.9 89.4 63.6 93.9 82.9

TABLE III
PERFORMANCE COMPARISON BETWEEN OURS AND M2-TRACKER ON THE

MODIFIED KITTI.

Category Car Pedestrian Van Cyclist Mean
Frame Number 1328 1248 255 65 2896

Success M2-Tracker [11] 40.4 19.9 16.4 16.6 28.9
Ours 52.2 22.8 25.6 39.3 36.9

Precision M2-Tracker [11] 46.9 34.0 16.0 17.3 38.0
Ours 60.4 35.6 28.1 61.3 46.9

the Precision measures the AUC (area under curve) of distance
between the center of two boxes from 0 to 2m. Moreover, the
Mean value in each dataset is computed as follows:

Vmean =
∑

N
n=1 Vn ∗Fn

∑
N
n=1 Fn

(11)

where Vn and Fn represent the value and frames of each
category respectively.

B. Comparison with State-of-the-arts

Results on NuScenes. As shown in Table I, our STTracker
achieves state-of-the-art tracking performance in NuScenes
dataset. Specially, our STTracker outperforms M2-Tracker by
0.26% and 5.48% in Success in Car and Pedestrian categories
respectively, and finally has a 0.67% improvement in the
Mean. Meanwhile, our method shows superior performance
in Precision, which exceeds M2-Tracker in all categories and

https://github.com/open-mmlab/OpenPCDet

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

Fig. 5. Advantageous cases of our STTracker compared with BAT, M2-Tracker on the Car, Pedestrian and Cyclist categories of KITTI Dataset.

(a) (b) (c)

Fig. 6. (a) The performance of different numbers of the first-frame point cloud of the target. (b) Compared to M2-Tracker under different numbers of
distractors. (c) The performance with different patch sizes in spatial learning block.

TABLE IV
COMPARISON OF THE RUNNING SPEEDS.

Method SC3D P2B BAT LTTR V2B PTTR
FPS 1.8 45.5 57.0 22.3 13.0 51.0

Method STNet M2-Tracker SMAT MLSET C2FT STTracker
FPS 35.0 57.0 17.6 61.0 50.0 23.6

finally outperforms M2-Tracker by 3.95% in Mean. We believe
this is due to our ability to model the motion of the target
through multiple frames of input point clouds and embed this
information into the measurement of similarity in the attention
mechanism, thereby obtaining more accurate localization of
the target. Moreover, we notice that our method performs
better performance in the small-size object (Car, Pedestrain)
but not that good for the large-size object (Truck, Bus, Trailer).
Following the discussion in FSD [44], we also believe that it
is challenging for the CenterHead [33] to predict large objects
since the object centers are usually empty (most of the points
are on the surface of objects).

Results on KITTI. As shown in Table II, STTracker per-
forms competitive performance on the KITTI dataset. In terms

of Success and Precision, our method only trails M2-Tracker
by 0.3% and 0.5% respectively. We believe the difference
in performance between KITTI and NuScenes is due to the
differing annotation frequencies of the two datasets. Specially,
NuScenes is annotated at 2 Hz, while KITTI is annotated at
10 Hz, making the relative motion between frames on KITTI
smaller and easier to estimate, thus it is more advantageous
for M2-Tracker which directly predicts relative motion. To
verify this assumption, we further compare our method and
M2-Tracker [11] in a modified KITTI dataset. To have the
same annotation frequency as NuScenes dataset, i.e. 2Hz,
we only select the tracklets which have more than 5 frames
for training and testing, and sample one frame as a valid
frame every 5 frames. We train our model and M2-Tracker
on the new dataset. The training settings of M2-Tracker is
following their public setting2. Shown in Table. III, our method
shows better performance than M2-Tracker on the modified
KITTI dataset, verifying our assumption that our method could
have a better performance in large motion tracking scenes.
Meanwhile, for the previous similarity-based methods [7]–
[10], [12], [37], [40], although they had good performances

2https://github.com/Ghostish/Open3DSOT/tree/main/cfgs

https://github.com/Ghostish/Open3DSOT/tree/main/cfgs

CUI et al.: STTRACKER: SPATIO-TEMPORAL TRACKER FOR 3D SINGLE OBJECT TRACKING 7

TABLE V
ABLATION OF OUR COMPONENTS. MF AND FG STANDS FOR MULTI

FRAMES AND FOREGROUND ASSIGNMENT RESPECTIVELY.

MF STLM FG 3D BEV
Success Precision Success Precision

A1 59.6 70.0 66.0 71.2
A2 ✓ 51.5 ↓8.1% 61.4 ↓8.6% 57.4 ↓8.6% 62.7 ↓8.5%
A3 ✓ ✓ 63.3 ↑3.7% 74.4 ↑4.4% 70.7 ↑4.7% 76.0 ↑4.8%
A4 ✓ ✓ ✓ 66.5 ↑6.9% 79.9 ↑9.9% 74.6 ↑8.6% 82.1 ↑10.9%

TABLE VI
ABLATION OF DIFFERENT INPUT FRAMES.

Input Time ID Success Precision FPS

I1 (t, t-1) 64.0 75.8 36.8
I2 (t, t-2) 64.2 75.9 36.8
I3 (t, t-1, t-2) 65.8 78.8 28.6
I4 (t, t-1, t-2, t-3) 66.5 79.9 23.6
I5 (t, t-1, t-3, t-5) 59.8 72.1 23.6
I6 (t, t-2, t-3, t-4) 61.4 73.1 23.6
I7 (t, t-2, t-4, t-6) 63.1 77.3 23.6
I8 (t, t-1, t-2, t-3, t-4) 64.8 75.7 20.0
I9 (t, t-1, t-2, t-3, t-4, t-5) 62.8 76.2 17.4

in the Mean, they usually performed worse in Pedestrian
category. We believe that the size of Pedestrian is small thus
limiting the similarity-based methods. However, our method
outperforms PCET, which had the best performance among
similarity-based methods in Pedestrian, by 3.5% and 4.3% in
Success and Precision respectively. The results show that by
learning the spatio-temporal information, our STTracker could
achieve better performance. Moreover, our method also out-
performs STDA which also use spatio-temporal information
Additionally, our STTracker achieves 23.6 FPS running speed
shown in Table. IV, and we also visualize the tracking results
in Fig 5.

Robust to Sparsity. To explore the robustness to the
sparse point cloud, we classify the car tracking sequences
in KITTI into different levels according to the number of
point clouds in the first frame. The proposed STTracker is
then evaluated on these sequences. As shown in Fig 6 (a),
STTracker outperforms the other methods in tracking sparse
targets with fewer than 30 points in the first frame. Meanwhile,
our method achieves similar tracking performance at different
sparse levels, verifying the robustness of sparsity.

Robust to distractors. To further explore our robustness
to distractors, we compare our method with M2-Tracker [11]
under different numbers of distractors. We randomly add K car
instances to the testing scenes of KITTI, and then evaluate
their pretrained model3 and our trained models using these
synthesis sequences. As shown in Fig. 6 (b), although our
method and M2-Tracker [11] both have a large performance
decline, our method still achieves better performance than M2-
Tracker, verifying our robustness to distractors.

3https://github.com/Ghostish/Open3DSOT/blob/main/pretrained_models/
mmtrack_kitti_car.ckpt

TABLE VII
ABLATION OF SPATIAL LEARNING BLOCK.

Method 3D BEV
Success Precision Success Precision

S1 dot 65.0 76.2 71.9 77.7
S2 w/o Mask 62.7 75.1 71.3 77.2
S3 w/o BoxConv 64.9 77.8 72.3 79.6
S4 Conv-Patch 65.3 78.9 72.1 80.5

TABLE VIII
ABLATION OF TEMPORAL LEARNING BLOCK.

Method 3D BEV
Success Precision Success Precision

T1 w/o Pt 65.8 77.8 73.3 79.7
T2 w/o Ft 56.8 69.4 64.7 71.4
T3 dense attention 61.4 76.3 68.8 78.1
T4 w/. PE 65.2 77.5 72.5 79.3

C. Ablation Study

In this section, we conduct comprehensive experiments
to validate the design of STTracker. All experiments are
conducted on the Car category of the KITTI dataset.

Multi-frames Input. We first input different number and
different timestamps to STTracker, as shown in Table. VI.
Compared to the other settings, I4 achieves the best perfor-
mance. Specially, I1 and I2 only input a single frame thus
could not learn enough temporal information. Meanwhile,
compared to I4, I8 and I9 have more frames but achieve
worse performance. We believe that too many input frames
would introduce too much cumulative error during tracking.
Meanwhile, I5, I6 and I7 have the same input length as I4, but
still perform worse than I4. We believe they also suffer from
the cumulative error due to their longer input range. Notice
that different input settings need to be retrained separately.

Spatial Learning Block. The study of spatial learning block
includes the MaskFusion, the patch transformation and the
patch size, as shown in Table. VII. S1 represents replacing the
MaskConv and “add” operation in MaskFusion with dot multi-
plication, the performance is lower than our method by 1.5%
and 3.7% in Success and Precision respectively. We believe
that the simple dot multiplication eliminates the context of
surrounding information, thus breaking the spatial information
of the target. Not surprisingly, without the mask to distinguish
the target and background (S2), the method has a large decline,
3.8%↓ and 4.8%↓ in Success and Precision respectively. S3
also shows the importance of BoxConv in mask fusion. In
S4, we change the order of patch transformation and the
following Conv2D layer, resulting in 1.2%↓ and 1.0%↓ in
Success and Precision respectively. We believe that compared
to the "Conv-Patch" order, our "Patch-Conv" order could better
aggregate the features within the patch, thus benefiting the
subsequent temporal learning block. Moreover, we also show
the performances of different patch sizes, as shown in Fig. 6
(c). We believe that a small patch size has not enough receptive
field for comparison, while a large patch size covers too many
areas thus only getting a coarse comparison.

Temporal Learning Block. We further try different com-

https://github.com/Ghostish/Open3DSOT/blob/main/pretrained_models/mmtrack_kitti_car.ckpt
https://github.com/Ghostish/Open3DSOT/blob/main/pretrained_models/mmtrack_kitti_car.ckpt

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

ponents in temporal learning block, as shown in Table. VIII.
The results of T1 and T2 verify the importance of current
feature in fusion. Meanwhile, instead of using sparse attention,
T3 uses dense attention and the performance drops 5.1% and
3.6% in 3D Success and Precision respectively. The results
show that there is no need to compare all location features in
fusion for different frame features. Lastly, because the point
feature already includes the 3D information and extra time
feature, adding positional embedding (T4) does not improve
the performance.

Ablation Experiments. Finally, we conduct ablation exper-
iments on the components of our method. Table. V shows the
results. A1 is the baseline model which only inputs two frames.
A2 shows that directly concatenating the multi-frame features
could not bring improvement but a huge decrease, as analyzed
in Sec. III-B. Compared to A2, A3 shows great improvement,
11.8%↑ and 13.0%↑ in 3D Success and Precision, which
verifies the effeteness of our proposed STLM. Finally, by
using the foreground heatmap assignment, A4 achieves the
best performance.

V. CONCLUSIONS

In this paper, we present STTracker, a multi-frame
similarity-based tracking framework to track 3D object with
point cloud. We propose a spatio-temporal learning module to
fuse multi-frame features and fully exploit the spatio-temporal
information of 3D target. The comprehensive experiments
show the effectiveness of our method. Meanwhile, We notice
that our method does not have obvious advantages in large-size
objects or high-frequency scenes, and too much input frames
also leads to the performance decline. Therefore, we would
like to solve these problems in future works.

REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, 2012, pp. 3354–
3361.

[2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” in CVPR, 2020, pp. 11 621–11 631.

[3] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for
3d object detection in point clouds,” in ICCV, 2019, pp. 9277–9286.

[4] S. Giancola, J. Zarzar, and B. Ghanem, “Leveraging shape completion
for 3d siamese tracking,” in CVPR, 2019, pp. 1359–1368.

[5] J. Zarzar, S. Giancola, and B. Ghanem, “Efficient bird eye view
proposals for 3d siamese tracking,” ArXiv, vol. abs/1903.10168, 2019.

[6] H. Qi, C. Feng, Z. Cao, F. Zhao, and Y. Xiao, “P2b: Point-to-box
network for 3d object tracking in point clouds,” in CVPR, 2020, pp.
6329–6338.

[7] C. Zheng, X. Yan, J. Gao, W. Zhao, W. Zhang, Z. Li, and S. Cui, “Box-
aware feature enhancement for single object tracking on point clouds,”
in ICCV, 2021, pp. 13 199–13 208.

[8] J. Shan, S. Zhou, Z. Fang, and Y. Cui, “Ptt: Point-track-transformer
module for 3d single object tracking in point clouds,” in IROS, 2021,
pp. 1310–1316.

[9] Y. Cui, Z. Fang, J. Shan, Z. Gu, and S. Zhou, “3d object tracking with
transformer,” in 32nd BMVC, 2021, p. 317.

[10] L. Hui, L. Wang, M. Cheng, J. Xie, and J. Yang, “3d siamese voxel-
to-bev tracker for sparse point clouds,” in NeurIPS, vol. 34, 2021, pp.
28 714–28 727.

[11] C. Zheng, X. Yan, H. Zhang, B. Wang, S. Cheng, S. Cui, and Z. Li,
“Beyond 3d siamese tracking: A motion-centric paradigm for 3d single
object tracking in point clouds,” in CVPR, 2022, pp. 8111–8120.

[12] C. Zhou, Z. Luo, Y. Luo, T. Liu, L. Pan, Z. Cai, H. Zhao, and S. Lu,
“Pttr: Relational 3d point cloud object tracking with transformer,” in
CVPR, 2022, pp. 8531–8540.

[13] L. Hui, L. Wang, L. Tang, K. Lan, J. Xie, and J. Yang, “3d siamese
transformer network for single object tracking on point clouds,” vol.
abs/2207.11995, 2022.

[14] J. Koh, J. Lee, Y. Lee, J. Kim, and J. W. Choi, “Mgtanet: Encoding
sequential lidar points using long short-term motion-guided temporal
attention for 3d object detection,” 2022.

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in 9th ICLR, 2021.

[16] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, “Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions,” in ICCV, 2021, pp. 568–578.

[17] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer in
transformer,” in NeurIPS, vol. 34, 2021, pp. 15 908–15 919.

[18] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in ICCV, 2021, pp. 10 012–10 022.

[19] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in 7th ICLR, 2019.

[20] W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-
to-end 3d detection, tracking and motion forecasting with a single
convolutional net,” in CVPR, 2018.

[21] J. Ngiam, B. Caine, W. Han, B. Yang, Y. Chai, P. Sun, Y. Zhou, X. Yi,
O. Alsharif, P. Nguyen, Z. Chen, J. Shlens, and V. Vasudevan, “Starnet:
Targeted computation for object detection in point clouds,” 2019.

[22] Z. Zhang, J. Gao, J. Mao, Y. Liu, D. Anguelov, and C. Li, “Stinet: Spatio-
temporal-interactive network for pedestrian detection and trajectory
prediction,” in CVPR, 2020.

[23] B. Mersch, X. Chen, J. Behley, and C. Stachniss, “Self-supervised point
cloud prediction using 3d spatio-temporal convolutional networks,” in
5th ICRL, 2021.

[24] A. Laddha, S. Gautam, S. Palombo, S. Pandey, and C. Vallespi-Gonzalez,
“Mvfusenet: Improving end-to-end object detection and motion forecast-
ing through multi-view fusion of lidar data,” CVPRW, 2021.

[25] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in CVPR, 2017, pp.
652–660.

[26] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in NeurIPS, 2017, p.
5105–5114.

[27] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” in Sensors, vol. 18, no. 10, 2018, p. 3337.

[28] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
CVPR, 2019, pp. 12 697–12 705.

[29] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo,
J. Ngiam, and V. Vasudevan, “End-to-end multi-view fusion for 3d
object detection in lidar point clouds,” in Conference on Robot Learning.
PMLR, 2020, pp. 923–932.

[30] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in CVPR, 2018, pp. 4490–4499.

[31] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection,” in CVPR,
2020, pp. 10 529–10 538.

[32] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,”
in CVPR, 2013, pp. 2411–2418.

[33] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection
and tracking,” 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11 784–11 793, 2021.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 2017.

[35] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
detr: Deformable transformers for end-to-end object detection,” in ICLR,
2021.

[36] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in ICCV, Oct 2017.

[37] Y. Cui, J. Shan, Z. Gu, Z. Li, and Z. Fang, “Exploiting more information
in sparse point cloud for 3d single object tracking,” in IEEE Robotics
and Automation Letters, vol. 7, no. 4, 2022, pp. 11 926–11 933.

CUI et al.: STTRACKER: SPATIO-TEMPORAL TRACKER FOR 3D SINGLE OBJECT TRACKING 9

[38] Q. Wu, C. Sun, and J. Wang, “Multi-level structure-enhanced network
for 3d single object tracking in sparse point clouds,” IEEE Robotics and
Automation Letters, vol. 8, no. 1, pp. 9–16, 2023.

[39] B. Fan, K. Wang, H. Zhang, and J. Tian, “Accurate 3d single object
tracker with local-to-global feature refinement,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 12 211–12 218, 2022.

[40] P. Wang, L. Ren, S. Wu, J. Yang, E. Yu, H. Yu, and X. Li, “Implicit
and efficient point cloud completion for 3d single object tracking,” IEEE
Robotics and Automation Letters, vol. 8, no. 4, pp. 1935–1942, 2023.

[41] Z. Pang, J. Li, P. Tokmakov, D. Chen, S. Zagoruyko, and Y.-X. Wang,
“Standing between past and future: Spatio-temporal modeling for multi-
camera 3d multi-object tracking,” in CVPR, 2023.

[42] C. Stearns, D. Rempe, J. Li, R. Ambrus, S. Zakharov, V. Guizilini,

Y. Yang, and L. J. Guibas, “Spot: Spatiotemporal modeling for 3d object
tracking,” in ECCV, 2022.

[43] Y. Zhang, H. Niu, Y. Guo, and W. He, “3d single-object tracking
with spatial-temporal data association,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022, pp. 264–
269.

[44] L. Fan, F. Wang, N. Wang, and Z. Zhang, “Fully Sparse 3D Object
Detection,” in NeurIPS, 2022.

[45] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,”
ECCV, p. 213–229, 2020. [Online]. Available: http://dx.doi.org/10.
1007/978-3-030-58452-8_13

http://dx.doi.org/10.1007/978-3-030-58452-8_13
http://dx.doi.org/10.1007/978-3-030-58452-8_13

	INTRODUCTION
	RELATED WORK
	3D Single Object Tracking
	Spatio-Temporal Learning

	METHODOLOGY
	Overall Architecture
	Spatio-Temporal Learning
	Prediction

	EXPERIMENTS
	Experimental Setting
	Comparison with State-of-the-arts
	Ablation Study

	CONCLUSIONS
	References

