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Sim-to-Real Model-Based and Model-Free Deep
Reinforcement Learning for Tactile Pushing

Max Yang, Yijiong Lin, Alex Church, John Lloyd, Dandan Zhang,
David A.W. Barton∗, Nathan F. Lepora∗

Abstract—Object pushing presents a key non-prehensile ma-
nipulation problem that is illustrative of more complex robotic
manipulation tasks. While deep reinforcement learning (RL)
methods have demonstrated impressive learning capabilities us-
ing visual input, a lack of tactile sensing limits their capability for
fine and reliable control during manipulation. Here we propose
a deep RL approach to object pushing using tactile sensing
without visual input, namely tactile pushing. We present a goal-
conditioned formulation that allows both model-free and model-
based RL to obtain accurate policies for pushing an object to a
goal. To achieve real-world performance, we adopt a sim-to-real
approach. Our results demonstrate that it is possible to train on
a single object and a limited sample of goals to produce precise
and reliable policies that can generalize to a variety of unseen
objects and pushing scenarios without domain randomization. We
experiment with the trained agents in harsh pushing conditions,
and show that with significantly more training samples, a model-
free policy can outperform a model-based planner, generating
shorter and more reliable pushing trajectories despite large
disturbances. The simplicity of our training environment and
effective real-world performance highlights the value of rich
tactile information for fine manipulation. Code and videos are
available at https://sites.google.com/view/tactile-rl-pushing/.

Index Terms—Force and Tactile Sensing; Dexterous Manipu-
lation; Reinforcement Learning;

I. INTRODUCTION

DEVELOPING a system for general object pushing re-
mains an unsolved challenge due to the partially ob-

servable system and difficult-to-model physics. Prior studies
have used approximated analytical models [1], data-driven
models [2], or a hybrid approach [3] to obtain controllers
for pushing. Using analytical methods can offer performance
guarantees, but they are often limited by the underlying
assumptions. Data-driven techniques are more effective in
overcoming these limitations but they require large datasets
of real-world pushing [4], [5] and can fail to generalize
to new situations. As the demand for versatile controllers
for robot manipulation increases, reinforcement learning (RL)
has become an attractive option due to its generality and
ability to model complex relationships. However, most RL
studies on pushing have relied on vision-based systems, either
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Figure 1: Real-world object pushing setup, comprising a desktop
robot (Dobot MG400) mounted on a pushing platform with a Tactip
attached to serve as the pusher.

for direct policy training [6] or for providing object-centric
information [7]. These systems can suffer from low accuracy
and occlusions [8].

Tactile sensing captures detailed contact information during
robot-object interaction that enables precise control of con-
tacts. Early work by Lynch et al. [9] showed the prospects of
tactile feedback for translating objects to target orientations.
Recently, Lloyd et al. [10] adopted a state-feedback control
approach to achieve goal-driven pushing using a trajectory
composed of discrete taps. Their works suggest that accurate
pushing of objects with varying physical properties is achiev-
able using only tactile and proprioceptive states as input, and
illustrate the potential generalization benefits of tactile input.
However, traditional feedback control methods can be limited,
especially when the problem becomes highly nonlinear.

In this study, we explore deep RL approaches for tactile
pushing, which can provide more general and versatile meth-
ods that do not require the explicit design of paramterised
controllers. A similar problem was studied in [11], [12]
where a model-free agent learned to push objects through
a predetermined path of goals with short-distance intervals.
Instead, we examine a more difficult problem of pushing an
object to an arbitrarily placed distant goal, which offers a
greater degree of variability in the goals that the agent must
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achieve. This allows the agent to search for the shortest path,
resulting in a more versatile and adaptable pushing solution.

The success of training RL policies relies heavily on using
features that are important for the task. When using optical
tactile sensors, instead of learning directly from tactile images,
as in [11], [12], we use pose-based observations which provide
specific pushing-related contact features that can be more
efficient for learning. These contact features are derived from
tactile images, and we refer to them as tactile pose.

Specifically, we present a formulation that allows model-
free and model-based RL to solve an object-pushing problem
reliably without visual input. In the real-world setup, we use
the TacTip [13], a soft hemispherical optical tactile sensor
that provides contact information through pin motion under
its sensing surface. Prior work has shown the TacTip’s ability
to accurately predict the surface pose of the contacted object
[14]. We leverage the sensor jointly with the tactile sim-to-
real framework developed by Church et al. [11] to achieve
real-world tactile pushing. Our approach requires training only
in simulation to push a cube but can generalize to unknown
objects with different physical properties and remain robust to
disturbances. To the best of our knowledge, this is the first
successful application of model-based RL within a sim-to-real
framework. We investigate this further by comparing the online
performance of a model-free policy learned offline (model-free
RL) against an online planner that plans with a learned model
(model-based RL) for this task.

The main contributions of this paper are:
1) We formulate the tactile pushing task as a goal-conditioned
RL problem and obtain reliable policies in simulation for
reaching arbitrary distant goals.
2) We present a sim-to-real RL pipeline for pose-based tactile
observations and demonstrate the benefits of using the contact
surface pose as tactile input for pushing.
3) We perform an empirical study on the generalizability and
robustness of the final policies obtained from model-free and
model-based RL by testing on challenging unseen pushing
scenarios in both simulation and the real-world environment.

II. RELATED WORK

Early work on planar pushing focused on developing analyt-
ical models from first principles. Mason et al. [15] introduced
the voting theorem for determining the direction of rotation of
a pushed object. Lynch et al. [9] used the concept of limiting
surface to translate and orientate objects using only tactile
feedback. More recent works have attempted to overcome
the limitations of analytical approaches through data-driven
methods. Both Kloss et al. [3] and Ajay et al. [16] used
hybrid approaches by combining an analytical model with
neural networks learned using MIT Push Dataset [4] to im-
prove the modelling of pushing dynamics. Given a predictive
model, Model Predictive Control (MPC) has become a popular
feedback control method for complex contact dynamics [1].
Bauza et al. [2] and Arruda et al. [17] used similar ideas to
fit a Gaussian Process model from real-world pushing data,
whilst Cong et al. [18] fitted an LSTM-based dynamics model
using pushing data collected by an expert policy in simulation

with domain randomization. Manuelli et al. [7] developed a
visual-based dynamics model for planning using object key
points and a small dataset of random interactions.

In contrast to model-based methods, model-free control
offers an alternative perspective on the planar pushing task.
Krivic et al. [8] developed an adaptive feedforward/feedback
controller for mobile robot pushing. However, the success of
the proposed method relied on the accuracy of the vision-based
measurements. Lloyd et al. [10] developed a state feedback
controller with tactile input that achieved accurate and stable
object pushing. However, the proposed controller was shown
to be limited when dealing with complex dynamics very
near the goal. With deep RL, pushing has become a popular
benchmark task for robot manipulation [19]. Researchers have
demonstrated impressive results from using deep RL applied
to vision-based systems [20]–[22]. However, they commonly
neglect valuable contact information available from tactile
sensing. Incorporating tactile into deep RL has been shown
to be advantageous for generalizing to novel objects [23],
which is important for robot manipulation. Learning from
tactile observations has been made more accessible through
simulations such as [24]–[28] which can accelerate tactile RL
training without relying solely on real-world interactions. For
this reason, we leverage Tactile Gym [11] and a sim-to-real
framework to achieve our task.

III. METHOD

A. Reinforcement Learning

We formulate the task as a finite horizon Markov Decision
Process (MDP) defined by a continuous state s ∈ S, a continu-
ous action space a ∈ A, a probabilistic state transition function
p(st+1|st, at), and a reward function r ∈ R : S×A×G −→ R.
To investigate the two paradigms of deep RL, we use a model-
free algorithm that learns a policy directly and a model-based
algorithm that plans using a learned model, to solve this MDP.

1) Model-free RL: To achieve multiple goals with a unified
policy, we augment the original MDP with a goal-conditioned
one [29]. The aim is to obtain a policy π∗

θ(at|st, g) parameter-
ized by θ that maximizes the expected return over an episode
τ and goals g given by:

π∗
θ = argmax

π
Eτ∼pπ(τ), g∼q(g)

[
T∑

t=0

γtr(st, at, g)

]
, (1)

where γ ∈ [0, 1) is the discount factor, pπ(τ) is a distribution
over episodes conditioned on π, q(g) is a distribution over the
goal space G with g ∈ G. A goal is randomly sampled at the
start of the episode and remains fixed until the episode ends.
At each time step, the policy receives goal-aware observations
(st, g) and obtains a reward r(st, at, g) given an action at
provided by policy π : S × G → A. For our task, we train
using an off-policy algorithm, Soft Actor-Critic (SAC) [30]
implemented using stable-baselines3 [31].

2) Model-Based RL with Online Planning: The objective
of the RL agent is to learn a reliable dynamics model to
be used for forward predictions. We use probabilistic en-
semble neural networks fθ parameterized by θ to represent
the dynamics model which approximates the probabilistic
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Figure 2: Overview of modelling and sim-to-real transfer. (a) The three tactile RL pipelines: i) a model-free agent trained on tactile-image-
based observations, ii) a model-free agent trained on pose-based observations, and iii) a model-based agent trained on pose-based observations.
(b) Workflow for sim-to-real tactile RL: the RL policy is trained with simulated tactile observations; tactile data is then collected to train an
observation model to bridge the sim-to-real gap; then the RL policy and observation model are combined for real-world implementation.

state transition function p(st+1|st, at). The predictive model
returns a Gaussian distribution with diagonal covariances
fθ(st, at) ≡ N (µθ(st, at),Σθ(st, at)), modelling the change
in states ∆st = st+1 − st where ∆st ∼ fθ(st, at). Given a
set of state transitions D = {(st, at, st+1)1,...N}, we train the
model on a 1-step negative log-likelihood loss (NLL):

LNLL =

N∑
n=1

[sn+1−µθ]
TΣ−1

θ [sn+1−µθ]+ log(det(Σθ)). (2)

We use the learned model for planning in an MPC framework.
At each time step t, planning solves a trajectory optimization
problem: argmaxak:t+H

Ef

[∑t+H
k=t r(sk, ak, g)

]
to find the

optimal action sequence ak:t+H for a prediction horizon H
at the current state st. The first action of this action sequence
is then applied before re-planning again in the next time step.

During RL training, the model training and data collection
are interleaved whereby trajectories produced by the planner
are stored to train the model periodically. This way, the model
and planning improve simultaneously until convergence (see
Ref. [32] for more details). We use Probabilistic Ensemble
Trajectory Sampling (PETS) implemented on MBRL-LIB
[33]. We experimented with cross-entropy method (CEM) and
model-predictive path integral (MPPI) as the MPC optimizer
and found that CEM performed best for our application.

B. Task Formulation

We consider the task of pushing an unknown object to any
randomly sampled goal position inside a predefined workspace
from an initial contact. By relying solely on tactile sensing to
gather object-centric information, this task is challenging due
to the lack of explicit information about the object properties,
e.g. its centre. To circumvent this issue, we formulate the
objective into one where we control the object contact pose
relative to the pusher instead. We ensure controllability by
maintaining continuous contact with the object and we encour-
age stable pushing motions by keeping the object’s contact
surface normal to the pusher. In this section, we formulate
these conditions into an RL objective that can achieve stable
pushing towards an arbitrarily placed goal.

1) Tactile Observations: Whilst various tactile observations
can be used to accomplish the same task, the learned policies
can have varying performances. On one hand, tactile images
provide a general way to encode detailed contact features; on
the other hand, tactile-derived contact surface pose (referred to
as tactile pose) can be more effective at representing pushing-
related features. We construct two goal-aware observations (S1

and S2) for model-free RL using these two types of tactile
input and compare their effectiveness. We also use the contact
surface pose to construct a pose-based state space (S3) for the
model-based agent to learn a dynamics model.

In the following observation definitions, the notation sab
denotes the relative value of the state variable of b w.r.t. a,
and sb is the value of the state variable of b. The letter p
represents the robot pusher, o is the object contact surface,
and g is the goal:

S1 = [Itactile, xp
g, ypg , θpg ],

S2 = [xp
o, ypo , θpo , xo

g, yog , θog], (3)

S3 = [xp
o, ypo , θpo , xo, yo, θo],

where the state variables x, y represent the position, θ the
orientation, and Itactile the tactile image. S1 is the tactile-
image-based goal-aware observation, S2 is the tactile-pose-
based goal-aware observation, S3 is the pose-based state space.
Figure 2a) demonstrates the construction of different input
observations and their integration with different RL methods.
Accordingly, we train three corresponding RL agents with
tactile input for the pushing task.

2) Action Space: To control the robot pusher, we use posi-
tion control and define the action space as ∆y ∈ [-1mm, 1mm]
and ∆θ ∈ [−1◦, 1◦], representing the change in position
and orientation at each time step in the pusher’s frame of
reference. To reduce the dimensionality of the problem, we fix
the forward position control of the pusher to have a constant
∆x = 1mm action. This is a reasonable assumption since
we want the robot to push the object without losing contact.
With this simplification, some goals may be unreachable,
particularly when the goals are very close to the object.
However, our experimental results will show that this issue
affects a limited number of cases and is an acceptable trade-
off for greater robustness gains.
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3) Reward Shaping: Long-horizon goal-conditioned prob-
lems are known to be challenging for RL. Standard reward
formulations can result in overly greedy policies that can
fail to complete the task. Sparse reward presents a difficult
exploration problem that is not effective for planning. A simple
dense reward composed of the distance between the achieved
and desired goals can lead to local optima where the agent may
first need to increase the distance to the goal (e.g. turning the
object around) before reaching it [34].

For this problem, we take a reward-shaping approach. To
do so, we additionally define a desired contact orientation as
the object-goal bearing angle, gθ = atan2(oxy, gxy), to guide
the pushing direction towards the goal. We use the distance
functions f(a, b) and g(a, b) to represent the Euclidean and
cosine distances between a and b, respectively. Our reward
function contains components f(oxy, gxy), the Euclidean dis-
tance between the object contact position and goal position,
g(oθ, gθ), the cosine distance between the contact surface
orientation and the desired orientation, and g(pθ, oθ), the
cosine distance between the pusher orientation and the contact
surface orientation:

r =

{
−(g(oθ, gθ) + g(pθ, oθ)) if ||oxy − gxy|| > d,

−(f(oxy, gxy) + g(pθ, oθ)) if ||oxy − gxy|| ≤ d.
(4)

The first part of this reward function underlies the goal-
driven pushing objective: given a constant forward velocity, the
optimal pushing path can be achieved by orientating the object
towards the goal, represented by the reward signal g(oθ, gθ).

In theory, this should be sufficient to complete the task,
but in practice, we found that it caused undesirable behaviors
near the goal: a phenomenon that arises because the goal-
bearing angle reward signal gθ is not effective near the goal
location [10]. To alleviate this issue, in the second part of the
reward function, we use a Euclidean-distance-based reward
signal f(oxy, gxy) when the object is inside an approaching
zone of distance d from the goal (here using d = 100mm).

To ensure the goal can be reached reliably, we augment
both parts of the reward with an additional signal g(pθ, oθ)
that encourages the agent to maintain a normal contact pose.
This guides the pushing direction to be normal to the object
contact surface. We found that this component was critical for
successful training, as it encourages the pusher to push through
the center of friction (COF) [9], with multiple benefits; first,
it encourages the pusher to maintain contact with the object,
especially when the goal bearing angle is large and the agent
likely to lose contact; second, if normality of pushing holds
true, then as the contact location moves towards the goal, the
COF also moves towards the goal; and third, stable pushing
also improves model learning to better predict the dynamics
and avoid compounded errors becoming problematic for action
selection. This reward function provides a dense reward for
efficient learning whilst also avoiding problems with local
optima. We found that any missing components from this
reward design caused pushing instabilities and failure to learn.

4) Goal space, resets and termination: The workspace is a
rectangle of extent x ∈ [0, 400]mm and y ∈ [−300, 300]mm.
The goal space is uniformly distributed near the edge of this
workspace (see Fig. 3a) and the agent is initialized in contact

b) Simulation c) Real Worlda) Training workspace

Figure 3: Diagrams of training and testing environments. The training
goal space is set near the edges of the robot workspace, then we test
for goals across the entire workspace.

with the object at the origin in a stable push configuration. This
training regime avoids sampling goals that are unreachable and
ensures sufficient exploration of the workspace. As we will
show later, the limited goal sampling does not impede the
performance of the final policy and reaching goals outside of
this goal space can still be achieved. The agents have access
to the contact location and goal location. Each episode is
terminated when the contact is within 25 mm of the goal. We
found this tolerance was sufficient for the object sizes that are
considered in our problem.

C. Sim-to-Real Transfer

For real-world deep RL with tactile information, we adopt
the sim-to-real framework of [11], comprising 3 main steps:
1) training the agent in simulation, 2) collecting tactile data
and training observation models to bridge the sim-to-real gap,
and 3) performing zero-shot sim-to-real policy transfer. As
the framework was designed for tactile image observations,
we achieve sim-to-real for pose-based tactile observations by
adapting it with a PoseNet [14] where step 2) is replaced with
pose training (workflow of sim-to-real procedure in Fig. 2b).

1) Simulation with Tactile Information: The Tactile Gym
[11], [12] used here relies on PyBullet to simulate rigid-body
physics. To obtain the tactile observations specified in Eq. 3,
the rendered depth image of the simulated tactile sensor is used
for the tactile image and the contact information between the
approximated tactile sensor and object is used to infer contact
surface pose. The training objective is to push a cube (edge
length 75 mm) towards randomly sampled goals in the goal
space (see Fig. 3b). Both model-free and model-based RL are
trained from scratch without domain randomisation and we use
default physics parameters set by the original Tactile Gym.

2) Tactile Observation Models: For tactile-image-based ob-
servations, we use a Generative Adversarial Network (GAN)
to train an image translation model; for tactile-pose-based
observations, we train a Convolutional Neural Network (CNN)
to predict pose.

Real-to-Sim GAN: The model is used for domain adap-
tation, translating real tactile images into simulated tactile
images. We use pix2pix for the generator, which has a U-
net architecture, with a standard CNN for the discriminator.
For training, the same data collection procedure is performed
in simulation and reality to generate a dataset of real and
simulated image pairs; then the image-to-image translation is
achieved via supervised learning (see Ref. [11] for details).
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PoseNet: Here we use a CNN model as a tactile sim-to-
real transfer method via feature extraction. Given a real tactile
image, the model estimates the relative contact pose between
the object surface and sensor. For 2D surfaces, these pose
variables are contact depth and angle (polar coordinates). This
is then converted into Cartesian coordinates to provide the
tactile pose information used in Eq. 3. During data collection,
robot poses relative to a fixed contact surface are stored as
labels for training (see refs [14], [35] for more details).

Data Collection: For both models, we collected tactile-
image data using the same sampling ranges to encode equiv-
alent contact features (see Table I). Specifically, we collected
surface data by moving the sensor to randomly sampled poses
on a flat surface of a fixed 3D-printed stimulus and stored
those tactile images with their corresponding labels.

Table I. Sensor pose sampling ranges used during tactile data
collection, relative to a fixed sensor coordinate frame.

Tactile GAN PoseNet
Depth range (mm) [-1, -5] [-1, -5]
Angle range (deg) [-30, 30] [-30, 30]

Train samples 5000 1476
Val samples 2000 524
Val accuracy SSIM: 0.99 [±0.05mm, ±0.6deg]

3) Zero-shot Policy Transfer: With the trained observation
models, the policies trained using different simulated tactile
observations in step 1) can now be used for real-world robotic
tasks. For model-free RL, this involves transferring the learned
policy to reality. For the model-based case, the dynamics
model is transferred to reality, where the optimizer will solve
the task in an online manner.

D. Hardware System Overview

For the real-world experiment, we use the robot sys-
tem setup presented in [12], [35]. This comprises a Dobot
MG400 4-axis desktop robot arm, with maximum payload of
750 g, maximum reach of 440 mm and maximum repeatability
±0.05mm. The robot has 4 degrees of freedom with end
effector rotation just around the z-axis. For planar pushing,
these degrees-of-freedom are ideally suited to the task. The
end effector is equipped with a horizontally-mounted tactile
sensor/pusher, for which we use a 331-pin TacTip. To validate
pushing trajectories, we placed ArUco markers on top of the
test objects and used a tracking method described in [10].

IV. EXPERIMENTS AND RESULTS

A. Training in Simulation

The learning curves are shown in Fig. 4. The agents are
evaluated and the asymptotic performance is recorded in Ta-
ble II. As expected, the model-free agent needed significantly
more samples (100×) as compared to the model-based case.
However, with significantly more training samples, both of the
model-free agents achieved higher (less negative) best rewards.
We also note that in the model-free case, using tactile pose
was more sample efficient and achieved a better reward than
tactile images, which suggests contact surface pose is a more
effective feature for learning.

Log(sample number)

Av
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Figure 4: Learning curves during training for model-based (left) and
model-free RL (right) on the same log axis.

Table II. Training samples for within 10% of best reward and final
best rewards.

RL Agent Samples Best Reward
Model Free + Tactile Image 3.2m -124.86
Model Free + Tactile Pose 2.8m -122.85
Model Based + Tactile Pose 25k -144.70

B. Simulation Performance

To evaluate the generalizability of each RL agent, we
examined the goal-reaching success rate in simulation for 10
objects (9 of which are unseen objects shown in Fig. 5), over
54 evenly distributed goals in a testing goal space shown in
Fig. 3a. We only considered goals that are at least 0.1 m away
from the starting location. The results are shown in Table III.
All agents were able to generalize to the tested objects and
goals. We found the most difficult objects to push were the
gelatin box, which rotated much more easily than the cube due
to its thin and long body, and the master chef can, which was
large and therefore less easy to manipulate. Comparing each
RL agent, the model-based agent performed the best for 9 out
of 10 objects, demonstrating the strength of online planning
when it comes to novel objects.

C. Real-world Performance

In the physical experiments, we evaluate the RL agents
against three performance criteria: 1) the ability to generalize
to random goals within the workspace; 2) the ability to
generalize to different objects with varying physical properties;
and 3) the ability to be robust against disturbances.

491g
80 x 80 x 80mm

200g
80 x 100mm

80g
86.5 x 100mm

97g
28 x 85 x 90mm

431g
102 x 139mm

118g
80 x 82mm

370g
50 x 97 x 82mm

205g
75 x 250mm

290g
60 x 60 x 60mm

349g
66 x 101mm

Train Test

Test

Figure 5: Objects used for training and testing in simulation.
(Everyday objects are from the YCB Object Set [36].)
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Figure 6: Pushing trajectories for 5 goal locations (denoted by green circular marker) in simulation and the real world. Each agent is
intialized at the origin (red arrow) and terminates when the contact location is within 25 mm of the goal.

Table III. The success rate for each RL agent pushing 10 test objects
over 54 evenly distributed goal locations across the workspace,
averaged over 5 trials.

Objects\RL Agent Model-Free
Tactile Image

Model-Free
Tactile Pose

Model-Based
Tactile Pose

Cube 0.91 0.89 0.96
Cylinder 0.85 0.91 0.91
Hexagonal Prism 0.93 0.89 0.94
Gelatin Box 0.71 0.74 0.75
Master Chef Can 0.57 0.76 0.66
Mug 0.81 0.83 0.95
Potted Meat Can 0.80 0.89 0.90
Chip Can 0.94 0.91 0.98
Rubiks Cube 0.96 0.94 0.99
Tomato Soup Can 0.89 0.89 0.94

1) Random Goals: We used the cube environment (see
Fig. 3) to test the RL agents on 40 goals scattered evenly
across the workspace. Pushing trajectories of the simulation
and the real world are shown in Fig. 6.

For all considered RL agents, we achieved 100% success
rate for goals further than 110 mm, demonstrating the reliabil-
ity of the learned policies and validating our goal-conditioned
tactile pushing formulation. There was a reduction in reliability
for goals that were closer to the agent and positioned at large
goal-bearing angles (Figs 6a,b) because the agent was required
to orientate the object sharply towards the goal, which can be
challenging or even impossible given the action constraints
described Sec III-A.

For each RL agent with goals placed at high bearing angles,
the model-free agents outperformed the model-based RL agent
(Figs 6c), taking a shorter path to the goal that corresponds
to the higher rewards seen in Table II. However, for more
difficult goals closer to the agent, model-based RL produced
more stable and interpretable pushing trajectories, whereas
the model-free agents moved the object into uncontrollable
regions. When comparing the results of the RL agents for
different tactile observations, the similar final performance
observed in both simulation and reality suggests that PoseNet
also offers an accurate tactile sim-to-real observation model

for contact surface pose. The minor discrepancy between the
simulation and reality seen across all agents could originate
from a mismatch of physical parameters such as friction.

2) Irregular Objects: The ability to generalize to unseen
objects is considered by pushing irregular objects with varying
contact surfaces and physical properties. All objects are pushed
from a stable configuration at the origin to a goal at x =
100mm, y = 180mm. Four objects were chosen such that:
1) a cylinder challenged the agent to maintain stable contact
during large changes in pushing direction; 2) a soft deformable
toy increased the uncertainties of the tactile signals, due to
the compliant contact surface and the interaction can vary
depending on the friction build up between the object and
the pusher; 3) pushing a rubber duck on the beak produced
an unstable pushing point and a contact deformation unseen
during the sim-to-real training; and 4) finally a wooden hand
had non-uniform contacts with the supporting surface which
can make it quite sensitive to control (results in Fig. 7a-d).

When using tactile-pose-based observations, both model-
free and model-based methods could generalize to all of the
tested objects and successfully complete the task. The model-
free agent took shorter paths than model-based RL, which is
consistent with the results in the previous sections. The tactile-
image-based model-free agent generally performed worse than
the tactile-pose-based alternative: here it failed to push the
duck to the goal, losing contact. Evidently, the RL agent was
then unable to generalize to the unseen contact deformation.

3) Disturbances: The robustness of the final policies is
considered by applying various disturbances during pushing.
First, we applied an initial contact angular offset of ±20◦

(see Fig. 7e,f). Next, a hollow box was pushed with 2×100g
weights on one side, corresponding to a center of mass
offset (see Fig. 7g,h). Lastly, we placed an obstacle (cylinder
weighing the same as the pushed object) in the path of the
pushed object (see Fig. 7i,j).

Once again, the tactile-pose-based RL agents were more
reliable in all pushing scenarios, while the tactile-image-based
agent failed with an initial contact angle offset of −20◦.
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a)   Cylinder b)   Soft toy

c)   Rubber duck d)   Wooden hand

e)   Rotation offset 1

g)   Center of mass offset 1

i)   Obstacle 1

Model-free 
Tactile Image

Model-free
Tactile Pose

Model-based
Tactile Pose

Model-free
Tactile Image

Model-free
Tactile Pose

Model-based
Tactile Pose

f)   Rotation offset 2  

h)   Center of mass offset 2

j)   Obstacle 2

r = -80.2 r = -60.7 r = -159.0 r = -79.3 r = -60.1 r = -121.9

r = None r = -98.3 r = -168.3 r = -122.5 r = -102.7 r = -126.4

r = -23.8 r = -24.7 r = -34.1 r = None r = -57.5 r = -68.2

r = -16.7 r = -17.4 r = None r = None r = Noner = -19.2

r = -25.7 r = -19.9 r = -42.8 r = -46.1 r = -21.8 r = -37.9

Figure 7: Sensor and object trajectories for various pushing scenarios. Red arrows represent the tactile sensor; blue dots represent the tracked
object centers using ArUco markers; and green circles represent the goal regions. The episode reward (Eq. 4) is shown in each plot.

This demonstrates limited generalizability when learning from
tactile image observations. In the cases shown in Fig. 7g-j, the
presence of persistent disturbances made reaching the goal
difficult for all agents, where a sticking contact restricted the
movement of the pushing location along the contact surface
to counteract a COF offset. However, the RL agents were still
able to overcome these scenarios. Despite testing against large
disturbances never seen during training, a policy learned using
model-free RL still outperformed the online planner of model-
based RL, consistently achieving shorter pushing paths.

V. DISCUSSION AND FUTURE WORK
In this paper, we presented several successful deep RL

approaches for solving the tactile pushing problem. These
relied on a problem formulation that allowed us to obtain
accurate and reliable policies for goal-conditioned pushing
applicable to both model-free RL and model-based RL with
online planning. These tactile-based agents were trained en-
tirely in simulation and then transferred to reality using their
respective observation models without additional training.

Our experimental results showed that training with tactile-
pose-based observations showed greater generalizability to
unseen objects and increased robustness to disturbances. These
results suggest that contact surface pose serves as a highly ef-
fective tactile feature for learning this task. In our comparison
of different deep RL methods, we observed that model-based

RL was more reliable for pushing a range of objects and goals,
while requiring 100× fewer training data than other methods.
However, with substantially more training data, model-free RL
trained with tactile pose consistently obtained higher rewards
across various pushing tests. This resulted in more stable and
shorter pushing paths even in settings with large deviations
from the training environment. In our view, this is due to our
shaped reward, which rewards the agent for stable pushing,
and a better final policy also resulted in greater robustness.
Thus we expect that keeping the pusher normal to the contact
surface is a strong stability criterion for object pushing, which
then enables the generalization to a large variety of objects.

Compared to the trajectory following problem explored in
[11], [12], our policies can offer more general and versatile
tactile pushing solutions for reaching an arbitrarily placed
goal. Our problem formulation allows easy extension of the
policies to reach a series of goals, which includes the trajec-
tory following problem as a specific case. One limitation of
our formulation is the action constraint, which restricts the
reachability of goals close to the initial pushing location and
limits exploration around the contact surface. However, our
results show that by sacrificing a small amount of control
flexibility, there are significant benefits in the reliability of the
learned policy. In the future, it would be interesting to remove
the action constraint and further explore the trade-off between
reliability and performance. Although here we leverage a sim-
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to-real RL approach, learning in the real world is feasible
given the sample efficiency of model-based RL, which could
offer additional performance gains. However, resetting the
environment without human intervention and without visual
information are practical challenges yet to be addressed.

A key finding from this study was that RL policies trained
without domain randomization or a diverse training curriculum
that involved multiple objects were able to perform a wide
range of pushing tasks, displaying strong generalization skills.
This suggests that tactile information when used appropriately,
can facilitate the efficient learning of general manipulation
skills, and so make previously intractable robot manipulation
problems tractable. Despite its widely-acknowledged value,
tactile sensing remains an underutilized tool for robot learning.
We hope that our work will inspire further research on using
RL with tactile information and encourage its application to
more challenging dexterous manipulation tasks.
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