
High-speed Autonomous Racing using Trajectory-aided
Deep Reinforcement Learning

Benjamin Evans1, Herman A. Engelbrecht1 and Hendrik W. Jordaan1

Abstract— The classical method of autonomous racing uses
real-time localisation to follow a precalculated optimal trajec-
tory. In contrast, end-to-end deep reinforcement learning (DRL)
can train agents to race using only raw LiDAR scans. While
classical methods prioritise optimization for high-performance
racing, DRL approaches have focused on low-performance
contexts with little consideration of the speed profile. This work
addresses the problem of using end-to-end DRL agents for high-
speed autonomous racing. We present trajectory-aided learning
(TAL) that trains DRL agents for high-performance racing
by incorporating the optimal trajectory (racing line) into the
learning formulation. Our method is evaluated using the TD3
algorithm on four maps in the open-source F1Tenth simulator.
The results demonstrate that our method achieves a significantly
higher lap completion rate at high speeds compared to the
baseline. This is due to TAL training the agent to select a
feasible speed profile of slowing down in the corners and
roughly tracking the optimal trajectory.

I. INTRODUCTION

Autonomous racing is a useful testbed for high-
performance autonomous algorithms due to the nature of
competition and the easy-to-measure performance metric
of lap time [1]. The aim of autonomous racing is to use
onboard sensors to calculate control references that move
the vehicle around the track as quickly as possible. Good
racing performance operates the vehicle on the edge of its
physical limits between going too slowly, which is poor
racing behaviour, and going too fast, which results in the
vehicle crashing.

The classical robotics approach uses control systems that
depend on explicit state estimation to calculate references
for the robot’s actuators [2]. Classical racing systems use
a localisation algorithm to determine the vehicle’s pose on
a map, which a path follower uses to track an optimal
trajectory [3]. Methods requiring explicit state representation
(localisation) are limited by requiring a map of the track and
being inflexible to environmental changes [4].

In contrast to classical methods, deep learning agents use
a neural network to map raw sensor data (LiDAR scans)
directly to control commands without requiring explicit
state estimation [5]. Deep reinforcement learning (DRL)
trains neural networks from experience to select actions that
maximise a reward signal [6]. Previous DRL approaches
have presented end-to-end solutions for F1Tenth racing but
have been limited to low speeds [7], [8], and have lacked
consideration of the speed profile [9].

1Electrical and Electronic Engineering Department, Stellenbosch Uni-
versity, Stellenbosch, 7600, South Africa. bdevans@sun.ac.za;
hebrect@sun.ac.za; wjordaan@sun.ac.za

4 5 6 7 8
Maximum speed (m/s)

0

25

50

75

100

A
ve

ra
ge

 T
ra

ck

P
ro

gr
es

s
(%

)

Baseline Trajectory-aided Learning (TAL)

Fig. 1. Our method achieves significantly higher average progress around
the track at high speeds than the baseline.

This paper approaches the problem of how to train DRL
agents for high-speed racing using only a LiDAR scan
as input. We provide insights on learning formulations for
training DRL agents for high-performance control through
the following contributions:

1) Present trajectory-aided learning (TAL), which uses an
optimal trajectory to train DRL agents for high-speed
racing using raw LiDAR scans as input.

2) Demonstrate that TAL improves the completion rate of
DRL agents at high speeds compared to the baseline
learning formulation, as shown in Fig. 1.

3) Demonstrate that TAL agents select speed profiles
similar to the optimal trajectory and outperform related
approaches in the literature.

II. LITERATURE STUDY

We study methods of autonomous racing in the categories
of classical methods and end-to-end learning. Fig. 2 shows
how the classical racing pipeline uses a localisation module
to enable a planner to track a precomputed optimal trajectory,
and end-to-end learning replaces the entire pipeline with a
neural network-based agent.

Sensors Vehicle

Vehicle

Localisation Planning

Classic

End-to-end
Sensors

Track Map Trajectory

Neural
Network

Fig. 2. Classical racing stack using localisation and planning modules, and
end-to-end racing using a neural network without state estimation.

ar
X

iv
:2

30
6.

07
00

3v
1

 [
cs

.R
O

]
 1

2
Ju

n
20

23

A. Classical Racing

The classical racing method calculates an optimal tra-
jectory and then uses a path-following algorithm to track
it [1]. Trajectory optimisation techniques calculate a set of
waypoints (positions with a speed reference) on a track that,
when followed, lead the vehicle to complete a lap in the
shortest time possible [3]. A path-following algorithm tracks
the trajectory using the vehicle’s pose as calculated by a
localisation algorithm.

Localisation: Localisation approaches for autonomous
racing depend on the sensors and computation available.
Full-sized racing cars are often equipped with GPS (GNSS),
LiDAR, radar, cameras, IMUs, and powerful computers that
can fuse these measurements in real-time [10]. Classical
F1Tenth racing approaches have used a particle filter that
takes a LiDAR scan and a map of the track to estimate
the vehicle’s pose [4], [11], [2]. Localisation methods are
inherently limited by requiring a race track map and, thus,
are inflexible to unmapped tracks.

Classical Path-Following: Model-predictive controllers
(MPC) and pure pursuit path-followers have been used
for trajectory tracking [1]. MPC planners calculate optimal
control commands in a receding horizon manner [12] and
have demonstrated high-performance results racing F1Tenth
vehicles at speeds of up to 7 m/s [2]. The pure pursuit
algorithm uses a geometric model to calculate a steering
angle to follow the optimal trajectory [13], and has been
used to race at speeds of 7 m/s [11] and over 8 m/s [14].

Learning-based Path-following: Classical path-following
algorithms have been replaced by neural networks, aiming to
improve computational efficiency (compared to MPC) [12],
[15] and performance in difficult-to-model conditions such
as drifting [16]. Including upcoming trajectory points in the
state vector (as opposed to only centerline points [15]) has
shown to improve racing performance [17], [18]. This shows
demonstrates that using the optimal trajectory results in high-
performance racing.

While classical and learning-based path-following meth-
ods have produced high-performance results, they are inher-
ently limited by requiring the vehicle’s location on the map.

B. End-to-end Learning

In contrast to classical methods that use a perception,
planning and control pipeline, end-to-end methods use a
neural network to map raw sensory data to control references
[9]. While some approaches have used camera images [19],
the dominant input has been LiDAR scans [7], [9], [20].

Autonomous Driving: End-to-end learning agents can use
a subset of beams from a LiDAR scan to output steering
references that control a vehicle travelling at constant speed
[7]. While imitation learning (IL) has been used to train
agents to copy an expert policy [21], deep reinforcement
learning, has shown better results, with higher lap completion
rates [7]. DRL algorithms train agents in an environment
(simulation [7] or real-world system [20]), where at each
timestep, the agent receives a state, selects an action and
then receives a reward. DRL approaches to driving F1Tenth

vehicles have considered low, constant speeds of 1.5 m/s
[7], [22], 2 m/s [20], and 2.4 m/s [8]. While indicating that
DRL agents can control a vehicle, these methods neglect the
central racing challenge of speed selection.

Autonomous Racing: Using model-free end-to-end DRL
agents to select speed and steering commands for au-
tonomous racing is a difficult problem [23], [24]. In response,
Brunnbauer et al. [23] turned to model-based learning and
Zhang et al. [24] incorporated an artificial potential field
planner in the learning to simplify the learning problem. Both
[23] and [24] show that their agents regularly crash while
using top speeds of only 5 m/s, demonstrating the difficulty
of learning for high-speed autonomous racing. Bosello et
al. [9] use a model-free DRL algorithm (DQN) for F1Tenth
racing at speeds of up to 5 m/s, but provide no detail on the
speed profile, trajectory or crash rate.

Summary: Classical racing methods have produced high-
performance racing behaviour using high maximum speeds
but are limited by requiring localisation. In contrast, end-
to-end DRL agents are successful in controlling vehicles at
low speeds using only the LiDAR scan as input. While some
methods have approached speed selection using DRL agents,
there has been little study on the speed profiles selected, and
the highest speed used is 5 m/s, which is significantly less
than classical methods of 8 m/s. This paper targets the gap
in developing high-performance racing solutions for steering
and speed control in autonomous race cars.

III. METHODOLOGY

A. Reinforcement Learning Preliminary

Deep reinforcement learning (DRL) trains autonomous
agents, consisting of deep neural networks, to maximise
a reward signal from experience [6]. Reinforcement learn-
ing problems are modelled as Markov Decision Processes
(MDPs), where the agent receives a state s from the envi-
ronment and selects an action a. After each action has been
executed, the environment returns a reward r indicating how
good or bad the action was and a new state s′.

This work considers deep-deterministic-policy-gradient
(DDPG) algorithms since we work with a continuous action
space [25]. DDPG algorithms maintain two neural networks,
an actor µ that maps a state to an action and a critic Q that
evaluates the action-value function. A pair of networks are
maintained for the actor and the critic; the model networks
are used to select actions, and target networks calculate the
targets µ′ and Q′. A replay memory collects the agent’s
experience of acting and receiving rewards. After each step,
a batch of N transitions is randomly sampled from memory
and used to update the networks.

The critic is trained to learn the Q-value for each state-
action pair Q(s, a). For each transition, j in the batch,
the bootstrapped target yj is calculated using the Bellman
equation by adding the reward earned and the discounted Q-
value for the next state if the agent follows its target policy.
The actor, parameterised by θ, is trained to maximise the
objective J(θ) of selecting actions with high Q-values. The

gradient that maximises the objective J(θ) is calculated as,

∇θJ(θ) =
1

N

∑
j

∇θQ(sj , µ(sj)). (1)

After each network update, a soft update is applied to adjust
the target networks towards the model networks.

The twin-delayed-DDPG (TD3) algorithm improves the
original DDPG algorithm by using a pair of Q-networks and
smoothing the policy by adding noise to the actions selected
by target policy [26]. The TD3 Q-targets are calculated using
the minimum of the pair of Q-networks,

yj =rj + γ min
i=1,2

Q′
i(s

′
j , µ

′(s′j) + ϵ)

ϵ ∼ clip(N (0, σ),−c, c).
(2)

In the equation, γ is the discount factor, i is the number of
the Q-network (i.e. Q′

1, Q
′
2), µ′ is the target actor network,

ϵ is the clipped noise sampled from the normal distribution
N , and c is the noise clipping constant. The TD3 algorithm
introduces delayed policy updates by only updating the
policy network after every second Q-network update.

B. End-to-end Learning Problem Formulation
End-to-end learning replaces the entire processing pipeline

with a learning agent. The input to the agent is a state vector
representing the environment, and the output is an action
vector used to control the vehicle. Fig. 3 shows the flow of
information with the agent receiving a state consisting of the
LiDAR scan and selecting an action of a speed and steering
angle. A reward is calculated based on the agent’s action and
the vehicle’s pose in the environment.

Calculate
Reward

Action

Reward

Pose
State

Agent

Racing
Environment

Fig. 3. The DRL agent receives a state, selects an action that is
implemented, and a reward based on the agent’s action and vehicle’s position
is calculated and given to the agent.

State Vector: The agent uses a state vector of 20 evenly
spaced beams from the LiDAR scan with a field of view of
π radians. The LiDAR scans from the previous and current
planning steps are stacked together so that the agent can
infer the vehicle’s speed. Each beam is scaled according to
the maximum of 10 m, resulting in values between 0 and 1
used as input into the neural network.

Action Vector: The agent outputs two continuous actions
in the range [−1, 1], which are used for the two control
variables of steering angle and speed. The steering action
is scaled according to the maximum steering angle, and the
speed is scaled to the range [1, vmax] m/s, where vmax is the
maximum speed. The minimum speed of 1 m/s is prevents
the vehicle from not moving.

C. Trajectory-aided Learning

We present trajectory-aided learning (TAL), a reward
signal that trains an agent to follow the optimal trajectory.
Our approach is motivated by the literature showing that
classical solutions using trajectory optimisation and path-
following approaches achieve high-performance racing [10],
[14]. While imitation learning from expert data (including
from a pure pursuit expert [21]) has demonstrated poor
lap completion results [7], deep reinforcement learning has
successfully trained agents to race [9]. Therefore, we propose
incorporating a classical solution in the DRL reward signal
to train end-to-end agents for high-performance racing.

TAL Reward: The reward signal should train the agent
to drive as fast as possible while maintaining safety and not
crashing. A base reward of giving a punishment of -1 for
crashing and a reward of 1 for lap completion is combined
with a shaped reward that encourages high-performance
racing. Fig. 4 shows how the shaped trajectory-aided learning
reward is calculated using the difference between the agent
action and the action that a classic planner would have
selected. We write the reward as,

rTAL = 1− |vagent − vclassic| − |δagent − δclassic|, (3)

where v represents the speed and δ the steering angle. In
this equation, the subscript “classic” refers to the actions
the classical planner would select, and the subscript “agent”
refers to the action selected by the agent. The shaped reward
is scaled by 0.2 and clipped to be above 0.

Trajectory

Classic Planner

Vehicle Pose

Classic
Action

Agent Action

Reward

Calculate
Reward

Fig. 4. The trajectory-aided learning reward is calculated using the
difference between the agent action uagent and classic planner action uclassic.

Classical Planner: The high-performance behaviour of
the classic planner is a guide for the learning agent. Fig.
4 shows how the classic planner action is calculated using
the vehicle pose, optimal trajectory and a path-following
algorithm. The classical planner uses the trajectory optimisa-
tion method presented by Heilmeier et al. [3] to calculate a
minimum curvature path with a minimum time speed profile.
The pure pursuit path-following algorithm [13] is used to
track the optimal trajectory. The classical planner selects the
speed of the upcoming way-point as its speed action.

D. Baseline Learning Formulation

We compare our approach to a baseline reward encourag-
ing the vehicle to track the centre line. The baseline retains
the standard reward of 1 for completing a lap and -1 for
crashing. At each step, a cross-track and heading reward is

given to the agent to reward velocity in the track direction
and punish lateral deviation [19]. The reward is written as,

rbaseline =
vt

vmax
cosψ − dc, (4)

where vt is the vehicle’s speed, vmax is the maximum speed, ψ
is the heading error angle, and dc is the cross-track distance.

IV. EVALUATION

A. Experiment Design

We evaluate our approach using the open-source F1Tenth
simulator in [27]. The simulator is modelled on the Gym
style environments with a step method that takes an action
and returns a state. The LiDAR scan is simulated using a
ray-casting algorithm, and noise with a standard deviation
of 0.01 is added to each beam. Planning in the simulator
takes place at 10 Hz, while the internal dynamics updates at
100 Hz. Fig. 5 shows the shapes of the four training maps,
AUT, ESP, GBR and MCO, that are used in the evaluation.

Fig. 5. Map shapes of the AUT, ESP, GBR and MCO (left to right) tracks.

Vehicle Model: The simulator represents the vehicle using
the kinematic bicycle model [28]. Fig. 6 shows the model
representing the vehicle with the state variables of position
x, y, speed v, orientation (yaw) θ, yaw rate θ̇ steering angle
δ and slip angle β. The 7-dimensional state is updated using
the single-track bicycle model equations presented in [28].
The model takes the parameters of vehicle mass, wheelbase
length, height, cornering stiffness, coefficient of friction and
moment of inertia. The single-track model assumes a linear
relationship between the slip angle and the lateral force,
resulting in the model being accurate for small slip angles
(≈< 8◦) but inaccurate for higher slip angles.

θ
δ

β

v

x

y

Fig. 6. Single-track bicycle model used by the F1Tenth simulator.

Learning Implementation: The experiments use neural
networks with two hidden layers of 100 neurons each. The
ReLU activation function is used after each hidden layer, and
the tanh function for the output layer to scale the output
to the range [-1, 1]. The TD3 algorithm uses the Adam
optimiser with a learning rate of 0.001, a batch size of 100,
a discount factor of 0.99, exploration noise of 0.1, action
smoothing noise of 0.2 and noise clipping at 0.5.

Experiments: The evaluation compares the ability of the
baseline (§III-D) and TAL learning formulations to train
DRL agents to race at high speeds through four experiments,

1) Investigating the effect of maximum speeds ranging
from 4 m/s to 8 m/s on performance.

2) Comparing the lap times and completion rates of
agents with a maximum speed of 6 m/s on training
maps and tracks unseen during training.

3) Comparing the trajectories, speed profiles and slip
angles of agents with a maximum speed of 6 m/s.

4) Comparing the TAL agent performance with a max-
imum speed of 8 m/s, to the classical method and
competitive methods in the literature.

The agents are trained for 100,000 steps in the simulator
and tested by taking an average of 20 test laps. All learning
experiments are repeated five times with unique random
seeds. All the code from the experiments is seeded and
available in the associated repository: https://github.
com/BDEvan5/TrajectoryAidedLearning.

B. Maximum Speed Investigation

The first experiment investigates the effect of maximum
speed on agent performance by training agents with increas-
ing maximum speeds on the ESP map. Fig. 7 shows the
average progress during training of the baseline and TAL
agents. The lines represent the average, and the shaded
regions indicate the minimums and maximums of the middle
three repeats. The baseline graph shows that for a maximum
speed of 4 m/s, the agent quickly learns to achieve average
progress near 100%. As the maximum speed increases, the
average progress decreases. At 8 m/s, the average progress
remains below 25% for the entirety of the training.

0 25 50 75 100
Training Steps (x1000)

0

25

50

75

100

T
ra

ck
 P

ro
gr

es
s

%

Baseline

0 25 50 75 100
Training Steps (x1000)

TAL

4 m/s 5 m/s 6 m/s 7 m/s 8 m/s

Fig. 7. The average progress during training of the baseline and TAL
agents on the ESP map.

In Fig. 7, the TAL agent’s graph (right) shows that for all
the maximum speeds considered, the agent learns to achieve
over 75% average progress. The 6 m/s, 7 m/s and 8 m/s runs
achieved averages of 80%, 75%, 70% respectively. The TAL
agent’s higher average progress shows an advantage over the
baseline of travelling further without crashing.

The lap times and completion rates of the trained baseline
and TAL agents are plotted in Fig. 8. The TAL agent
has faster laps times for lower maximum speeds than the
baseline. As the maximum speed increases, the times even
out and then the baseline achieves faster lap times than the
TAL agent.

https://github.com/BDEvan5/TrajectoryAidedLearning
https://github.com/BDEvan5/TrajectoryAidedLearning

4 5 6 7 8
Maximum speed (m/s)

0

15

30

45

60
T

im
e

(s
)

4 5 6 7 8
Maximum speed (m/s)

0

25

50

75

100

C
om

pl
et

io
n

(%
)

Baseline TAL

Fig. 8. Lap times and completion rate of trained baseline and TAL agents
on the ESP map.

In Fig. 8, the completion graph (right) shows that the
baseline agent completion rate starts at 100% for the 4 m/s
and drops off to 50% for the 6 m/s and the 8 m/s agents do
not complete any laps. In contrast, the TAL agents all achieve
higher completion rates, with the 6 m/s agent achieving a
60% completion rate and the 8 m/s 40%. This is a similar
result to the average progress shown in Fig. 1 While the TAL
agents also have lower completion rates at higher speeds, the
results indicate a significant improvement over the baseline.

C. Quantitative Performance Evaluation - 6 m/s

The performance of the baseline and TAL agents is com-
pared using a maximum speed of 6 m/s, since the baseline
performs poorly at higher speeds.

0 25 50 75 100
Training Steps (x1000)

0

40

80

120

160

E
p.

 R
ew

ar
d

Baseline

0 25 50 75 100
Training Steps (x1000)

0

20

40

60

TAL

AUT ESP GBR MCO

Fig. 9. Episode rewards earned by training the baseline and TAL agents
with a maximum speed of 6 m/s on the AUT, ESP, GBR and MCO maps.

Fig. 9 shows the episode rewards earned by the agents
training them on the AUT, ESP, GBR and MCO maps. The
agents initially earn close to zero reward since the crash
quickly. The rewards across maps in both graphs show a
similar trend of the agents achieving higher rewards on the
longer ESP track (236.8 m), intermediate rewards for the
GBR and MCO tracks (202.2 m and 178.3 m) and lower
rewards for the shorter AUT track (93.7 m). The baseline
reward signal provides larger rewards per episode than the
TAL agent due to the scaling used in the calculation.

Fig. 10 shows the average lap times and completion rates
for the classical, baseline and TAL planners with a maximum
speed of 6 m/s. While the baseline agent achieves slightly
lower lap times than the TAL agent, the baseline agent has
a significantly lower completion rate. On the ESP, GBR
and MCO maps, the baseline agent completes less than
25% of the laps. In contrast, the TAL agent completes over
75% of the laps on all the tracks. This result demonstrates

AUT ESP GBR MCO
0

15

30

45

T
im

e
(s

)

AUT ESP GBR MCO
0

25

50

75

100

C
om

pl
et

io
n

(%
)

Baseline TAL

Fig. 10. Average lap times and completion rates for the baseline, TAL and
classical planners with a maximum speed of 6 m/s.

that the TAL formulation results in agents achieving higher
completion rates when using a maximum speed of 6 m/s.

The generality of the learned policies is evaluated by
testing the agents trained on the GBR track on all the test
tracks. Fig. 11 shows the lap times achieved by the baseline
and TAL agents are close together, with the baseline agent
having a larger deviation on the ESP and MCO tracks.

AUT ESP GBR MCO
0

15

30

45

60

T
im

e
(s

)

AUT ESP GBR MCO
0

25

50

75

100

C
om

pl
et

io
n

(%
)

Baseline TAL

Fig. 11. Lap times and completion rates for agents trained on the GBR
map and tested on the AUT, ESP, GBR and MCO maps.

Fig. 11 shows that the TAL agent achieves significantly
higher completion rates than the baseline on all the tracks.
The completion rates are all lower than when the agents
were tested on the training track (Fig. 10), indicating that
while the policies learned do generalise to other tracks, there
is a performance drop in the completion rate. The TAL
agent achieving significantly higher completion rates than the
baseline agent, when tested on other maps, indicates that the
TAL performance improvement is robust to different tracks.

D. Qualitative Trajectory Analysis - 6 m/s

We investigate the performance difference by comparing
the trajectories of the baseline and TAL agents.

Baseline

0

2

4

6

8

Classic

0

2

4

6

8

TAL

0

2

4

6

8

Fig. 12. Trajectories taken by the baseline (left), classic (middle) and TAL
(right) planners on a portion of the ESP track.

Fig. 12 shows trajectories taken by the baseline, classic
and TAL agents for a portion of the ESP track with a
maximum speed of 6 m/s. The baseline trajectory is mainly

orange in both the straights and corners, indicating a near-
constant speed of around 6 m/s for most of the trajectory. In
contrast, the classic trajectory has green, yellow and orange
components indicating that the vehicle slows down in the
corners and speeds up in the straights. The TAL agent learns
to select a similar speed profile to the classic planner of
speeding up and slowing down.

0

2

4

6

S
pe

ed
 (

m
/s

)

0 10 20 30 40 50 60
Track progress (%)

0

10

20

30

S
lip

 a
ng

le
 (

de
g)

Baseline TAL Classic

Fig. 13. Speed and absolute slip angle for the baseline, TAL and classical
planners on a portion of the ESP map.

Fig. 13 plots the speed and slip profiles of the baseline,
TAL and classical planners for a portion of the ESP track.
The speed graph confirms that the baseline planner selects
high speeds near the maximum for most of the trajectory. The
classical planner smoothly slows down and speeds up, and
the TAL agent approximately tracks the classical planner.

The bottom graph in Fig. 13 shows the corresponding
absolute slip angles for the speed profiles. The slip angle is
the angle between the vehicle orientation and the direction
of the velocity. The classical planner has the smallest slip
angle, followed by the TAL agent which reaches 10◦. The
baseline agent has a significantly larger slip angle, regularly
exceeding 15 ◦and reaching over 30◦. This shows that the
baseline agent relies on the vehicle drifting for much of the
track, thus exploiting the simulation model. This behaviour
has been seen in other learning approaches [29], [30] and
is responsible for causing the low completion rates. Policies
relying on high-slip angles in the simulator are not feasible
for physical implementation since in reality tyre dynamics
are non-linear and thus the policy learned in simulation
differs from how the real-world vehicles perform.

E. Performance Comparison - 8 m/s:

We compare the TAL agent with a classical planner using
the vehicle’s maximum speed of 8 m/s.

Baseline

0

2

4

6

8

Classic

0

2

4

6

8

TAL

0

2

4

6

8

Fig. 14. Trajectories taken by the baseline (left), classical (middle) and
TAL (right) agents on a portion of the ESP track.

Fig. 14 shows the trajectories selected by the baseline,
classic and TAL planners. The baseline agent selects near the
maximum speed, resulting in the vehicle sliding and crashing
early in the lap. Following the racing line, the classic planner
smoothly speeds up and slows down. The TAL agent shows
a similar pattern to the classic planner of speeding up in the
straight sections and slowing down around the corners.

30 40 50 60 70 80
Track progress (%)

0

2

4

6

8

S
pe

ed
 (

m
/s

)

Classic Trajectory-aided learning (TAL)

Fig. 15. The speed profile of the classic planner and TAL agent using a
maximum speed of 8 m/s on a portion of the ESP track.

Fig. 15 shows the speeds selected by the classical planner
and TAL agent when both use the maximum speed of
8 m/s. The TAL agent roughly tracks the classical plan-
ner through the whole segment, occasionally deviating by
selecting higher speeds or changing speed quickly. The
similar speed profiles show that the trajectory-aided learning
formulation successfully trains the DRL agent to select a
speed profile similar to the optimal trajectory. A persisting
limitation is that the DRL agent’s actions are less smooth
than the classical planner.

AUT ESP GBR MCO
0

15

30

45

60

75

La
p

T
im

e
(s

)

Brunnbauer Bosello TAL Classic

Fig. 16. The lap times comparing the TAL agent to the results presented
by Brunnbauer et al. [23] and Bosello et al. [9] for the four test tracks.

Using the vehicle’s maximum speed of 8 m/s, we compare
the lap times from TAL agents to the classical planner and
similar methods from the literature. Fig. 16 shows the lap
times achieved by the TAL agent compared to a classical
planner and the results presented by Brunnbauer et al. [23]
and Bosello et al. [9]. The classical and TAL planners use a
maximum speed of 8 m/s, showing that a higher maximum
speed allows them to complete laps faster than previous
methods. We, therefore, conclude that our approach trains
agents to select better speed profiles, using higher maximum
speeds and, therefore, better suited to autonomous racing
than previous approaches.

V. CONCLUSION

This paper addressed the problem of training end-to-end
DRL agents for high-speed racing. We presented trajectory-
aided learning, which rewards the agent according to the

difference between the agent’s actions and those selected
by a classical planner following the optimal trajectory. The
evaluation showed that our proposed approach trains agents
to race at high speeds with significantly higher completion
rates than the baseline formulation. Further investigation
into the speed profile showed that this is due to the TAL
agents selecting a better speed profile of slowing down in
the corners and speeding up in the straights. The improved
speed profile causes the TAL agents to achieve a significantly
higher completion rate on four test tracks. Due to our
approach using a higher maximum speed, the TAL agents
achieve faster lap times than comparable methods in the
literature.

The results in this paper demonstrate that incorporating
classical components in the learning formulation improves
the performance of DRL agents. Using domain knowl-
edge enables DRL agents to achieve good results in high-
performance control. Future work should study how these
improvements to racing performance transfer to actual vehi-
cles. TAL agents are expected to transfer better to physical
vehicles because they select appropriate speed profiles, thus
having smaller slip angles. Another extension of this work is
using optimal trajectories in learning formulations for other
applications such as drone control.

REFERENCES

[1] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi,
and R. Mangharam, “Autonomous vehicles on the edge: A survey
on autonomous vehicle racing,” IEEE Open Journal of Intelligent
Transportation Systems, 2022.

[2] R. Wang, “Data-driven system identification and optimal control
framework for grand-prix style autonomous racing,” Ph.D. dissertation,
Clemson University, 2021.

[3] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz,
M. Lienkamp, and B. Lohmann, “Minimum curvature trajectory
planning and control for an autonomous race car,” Vehicle System
Dynamics, vol. 58, no. 10, pp. 1497–1527, 10 2020.

[4] C. H. Walsh and S. Karaman, “Cddt: Fast approximate 2d ray casting
for accelerated localization,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 3677–3684.

[5] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep con-
trol policies for autonomous aerial vehicles with mpc-guided policy
search,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 528–535.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] N. Hamilton, P. Musau, D. M. Lopez, and T. T. Johnson, “Zero-
shot policy transfer in autonomous racing: Reinforcement learning vs
imitation learning,” in 2022 IEEE International Conference on Assured
Autonomy (ICAA). IEEE, 2022, pp. 11–20.

[8] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee,
“Case study: verifying the safety of an autonomous racing car with a
neural network controller,” in Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control, 2020, pp.
1–7.

[9] M. Bosello, R. Tse, and G. Pau, “Train in austria, race in montecarlo:
Generalized rl for cross-track f1 tenth lidar-based races,” in 2022 IEEE
19th Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 2022, pp. 290–298.

[10] A. Wischnewski, M. Geisslinger, J. Betz, T. Betz, F. Fent,
A. Heilmeier, L. Hermansdorfer, T. Herrmann, S. Huch, P. Karle
et al., “Indy autonomous challenge-autonomous race cars at the
handling limits,” in 12th International Munich Chassis Symposium
2021. Springer, 2022, pp. 163–182.

[11] M. O’Kelly, H. Zheng, A. Jain, J. Auckley, K. Luong, and R. Mang-
haram, “Tunercar: A superoptimization toolchain for autonomous
racing,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 5356–5362.

[12] A. Tătulea-Codrean, T. Mariani, and S. Engell, “Design and simulation
of a machine-learning and model predictive control approach to
autonomous race driving for the f1/10 platform,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 6031–6036, 2020.

[13] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
Tech. Rep., 1992.

[14] J. Becker, N. Imholz, L. Schwarzenbach, E. Ghignone, N. Bau-
mann, and M. Magno, “Model-and acceleration-based pursuit con-
troller for high-performance autonomous racing,” arXiv preprint
arXiv:2209.04346, 2022.

[15] E. Chisari, A. Liniger, A. Rupenyan, L. Van Gool, and J. Lygeros,
“Learning from simulation, racing in reality,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 8046–8052.

[16] P. Cai, X. Mei, L. Tai, Y. Sun, and M. Liu, “High-Speed Autonomous
Drifting with Deep Reinforcement Learning,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 1247–1254, 4 2020.

[17] E. Ghignone, N. Baumann, M. Boss, and M. Magno, “Tc-driver:
Trajectory conditioned driving for robust autonomous racing–a rein-
forcement learning approach,” arXiv preprint arXiv:2205.09370, 2022.

[18] T. Dwivedi, T. Betz, F. Sauerbeck, P. Manivannan, and M. Lienkamp,
“Continuous control of autonomous vehicles using plan-assisted deep
reinforcement learning,” in 2022 22nd International Conference on
Control, Automation and Systems (ICCAS). IEEE, 2022, pp. 244–
250.

[19] M. Jaritz, R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 2070–2075.

[20] B. Evans, J. Betz, H. Zheng, H. A. Engelbrecht, R. Mangharam,
and H. W. Jordaan, “Accelerating online reinforcement learning via
supervisory safety systems,” arXiv preprint arXiv:2209.11082, 2022.

[21] X. Sun, M. Zhou, Z. Zhuang, S. Yang, J. Betz, and R. Mangharam,
“A benchmark comparison of imitation learning-based control policies
for autonomous racing,” arXiv preprint arXiv:2209.15073, 2022.

[22] P. Musau, N. Hamilton, D. M. Lopez, P. Robinette, and T. T. Johnson,
“On using real-time reachability for the safety assurance of machine
learning controllers,” in 2022 IEEE International Conference on
Assured Autonomy (ICAA). IEEE, 2022, pp. 1–10.

[23] A. Brunnbauer, L. Berducci, A. Brandstatter, M. Lechner, R. Hasani,
D. Rus, and R. Grosu, “Latent Imagination Facilitates Zero-Shot
Transfer in Autonomous Racing,” 2022 International Conference on
Robotics and Automation (ICRA), pp. 7513–7520, 5 2022.

[24] R. Zhang, J. Hou, G. Chen, Z. Li, J. Chen, and A. Knoll, “Residual
policy learning facilitates efficient model-free autonomous racing,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 625–
11 632, 2022.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, 2016.

[26] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[27] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” Proceedings of Machine Learning Research,
vol. 123, 2020.

[28] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Com-
posable benchmarks for motion planning on roads,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, Jun. 2017.

[29] H. Zheng, J. Betz, and R. Mangharam, “Gradient-free multi-
domain optimization for autonomous systems,” arXiv preprint
arXiv:2202.13525, 2022.

[30] R. Trumpp, D. Hoornaert, and M. Caccamo, “Residual policy learn-
ing for vehicle control of autonomous racing cars,” arXiv preprint
arXiv:2302.07035, 2023.

http://arxiv.org/abs/2209.04346
http://arxiv.org/abs/2205.09370
http://arxiv.org/abs/2209.11082
http://arxiv.org/abs/2209.15073
http://arxiv.org/abs/2202.13525
http://arxiv.org/abs/2302.07035

	Introduction
	Literature Study
	Classical Racing
	End-to-end Learning

	Methodology
	Reinforcement Learning Preliminary
	End-to-end Learning Problem Formulation
	Trajectory-aided Learning
	Baseline Learning Formulation

	Evaluation
	Experiment Design
	Maximum Speed Investigation
	Quantitative Performance Evaluation - 6 m/s
	Qualitative Trajectory Analysis - 6 m/s
	Performance Comparison - 8 m/s:

	Conclusion
	References

