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Multi-Modal
Multi-Task (3MT) Road Segmentation

Erkan Milli1, Özgür Erkent2, Asım Egemen Yılmaz1

Abstract—Multi-modal systems have the capacity of producing
more reliable results than systems with a single modality in road
detection due to perceiving different aspects of the scene. We
focus on using raw sensor inputs instead of, as it is typically
done in many SOTA works, leveraging architectures that require
high pre-processing costs such as surface normals or dense depth
predictions. By using raw sensor inputs, we aim to utilize a low-
cost model that minimizes both the pre-processing and model
computation costs. This study presents a cost-effective and highly
accurate solution for road segmentation by integrating data
from multiple sensors within a multi-task learning architecture.
A fusion architecture is proposed in which RGB and LiDAR
depth images constitute the inputs of the network. Another
contribution of this study is to use IMU/GNSS (inertial measure-
ment unit/global navigation satellite system) inertial navigation
system whose data is collected synchronously and calibrated
with a LiDAR-camera to compute aggregated dense LiDAR
depth images. It has been demonstrated by experiments on the
KITTI dataset that the proposed method offers fast and high-
performance solutions. We have also shown the performance of
our method on Cityscapes where raw LiDAR data is not available.
The segmentation results obtained for both full and half resolu-
tion images are competitive with existing methods. Therefore, we
conclude that our method is not dependent only on raw LiDAR
data; rather, it can be used with different sensor modalities. The
inference times obtained in all experiments are very promising
for real-time experiments. The source code is publicly available
at https://github.com/ErkanMilli/3MT-RoadSeg.
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I. INTRODUCTION

During autonomous driving, vehicles must first perceive
their environment in order to make reliable decisions. A
combination of some sensors such as camera, LiDAR, Radar,
ultrasonic sensors, etc., can be used for environmental sensing.
Different sensors that are used to perceive the environment
can simultaneously detect different physical properties of the
environment. The information from these multi-modal sensors
is of great advantage for consistent and reliable detection
of the environment during autonomous driving. However, the
data acquired by the different sensors could be dissimilar in
terms of temporal and spatial resolution, data format, and
geometric alignment. When different sensors are desired to
be used together, pre-pocess may be necessary to eliminate
these differences.

Many different methods from past to present for road seg-
mentation have been suggested. [5] proposed to work with the
Fully Convolutional Network (FCN) for the first time to solve
the semantic road segmentation problem, and this study has
been a guide for further researches. Studies after this method
can be classified as methods that use only RGB [6], [7], [14],
[15] or only LiDAR [16], [17] for the road segmentation
task. However, when only camera or only LiDAR is used,
some disadvantages arise. When the camera is used alone,
the system works better in daylight; reflections and shadows
on the road may create problems for segmentation; while,
the usage of the sparse point cloud alone, especially in the
open area or under rainy or snowy weather conditions, reduce
the segmentation performance. In order to eliminate these
disadvantages, studies were carried out in which RGB and
LiDAR are used together [4], [18]–[20] by sensor fusion. Road
segmentation is still not yet fully solved due to difficulties in

Fig. 1: Inputs are RGB images and 3-Channel LiDAR depth images. The shared features coming out of the fully convolutional encoders are
passed through the fusion block and sent to the task-specific heads. Initial task estimations in different scales are performed in task-specific
heads and the information obtained from this is sent to the multi modal distillation (MMD) block. In MMD, it is aimed to improve the final
predictions in the target tasks’ decoders by increasing the interaction between the tasks. L1, L2, L3 represent the losses of auxiliary tasks,
while L4 and L5 represent the losses of the target tasks, and the Multi-task loss is equal to the sum of all these losses.
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different settings as mentioned above.
Since the last decade, multi-task learning (MTL) methods

have been used frequently in detection and classification, de-
tection and segmentation, segmentation and depth estimation
task pairs [13]. Although, the use of MTL in road segmenta-
tion studies is still limited, some studies have shown that it
can improve the performance under challenging conditions.
For example, [23] use bird’s-eye-view (BEV) scene layout
estimation, depth estimation and pose estimation with visual
odometry as tasks in their MTL model. MultiNet [31] includes
classification, detection and semantic segmentation tasks. Qian
et al. [33] simultaneously detects drivable areas, lane lines, and
traffic objects in the proposed MTL architecture. In another
framework [21], the tasks of road segmentation, lane line
segmentation, and scene classification are addressed simulta-
neously. [22] uses a MTL model that includes three different
perception tasks: traffic object detection, drivable road area
segmentation, and lane detection. In recent road segmentation
architectures [8]–[10], which do not have MTL structure,
in addition to RGB inputs, disparity/depth data densified by
preprocessing is also used as input. Thus, it is aimed to
increase the semantic segmentation performance by supporting
the visual features with additional features. However, while
this increases accuracy, model size, inference time and pre-
processing time also increase. It is seen that these disadvan-
tages are eliminated by using models with MTL architecture.
The combination of all these observations has led to the
development of the proposed architecture for addressing the
road segmentation problem. When segmentation is performed
using only a single modal RGB input, it is evident that the
performance is highly dependent on the lighting conditions
in the scene. This situation prompts us to introduce a second
input to the system: LiDAR data. The system performs better
with these two inputs; however, it is observed that when
there are obstacles such as walls and houses adjacent to the
road, these obstacles cannot be distinguished from the road,
resulting in false negatives. Therefore, it could be beneficial to
develop an architecture that can predict both depth and surface
normals (SNs) while segmenting the road: MTL architecture.
In the final stage, our architecture utilizes multi-sensor data
to improve resilience to poor lighting conditions in the scene
and enhances the performance by estimating depth and SNs.
Through the method we have developed, all these operations
can be accomplished with minimal computational costs. Our
approach is simple, and our configuration is set to improve
semantic segmentation performance.

In this paper, our objective is to enhance the performance
of road segmentation by employing a fusion of RGB and
LiDAR data, leveraging multiple sensor types, and exploring
the interaction between visual tasks within the MTL frame-
work. Fig. 1 shows the overview of our proposed method
for road segmentation. The model consists of three parts:
i) Two backbones have two separate inputs, RGB images
and 3-channel LiDAR depth images. ii) Features from the
two backbones are combined and passed through the fusion
function and become input to MTI-Net [13], which is used as
an MTL model. iii) MTI-Net [13] consists of three levels in
itself. Initial predictions are made for different scales in task-

specific heads with features extracted from the backbone in the
first stage. The middle-level features that come out of here
are passed through the multi-modal distillation block before
final predictions are made, so that information between tasks
is shared. In the last part, the final predictions are performed.

Our contributions can be listed as follows:
• Usage of 3-channel depth images that correspond to

current point cloud and the two transformed point clouds
from the previous time steps t − 1 and t − 2. They
are obtained by using transformations computed from
IMU/GNSS inertial navigation system measurements via
Bayesian filters. This transformation is expected to high-
light the differences between the dynamic regions and
the static ones. Using a two-stage MTL network for road
segmentation with raw sensory data result in a faster run-
time. We also show that it can be used for different kinds
of sensory data in the experiments part.

• As a minor contribution, we also show a new approach
for sensory fusion for an MTL network.

II. RELATED WORK

A. Road Segmentation

Road segmentation is an active research problem. SOTA
(state-of-the-art) results [4], [8]–[10] have been provided by
recent methods. PLARD [4] proposes a non-multi-task but
multi-modal architecture to improve road segmentation perfor-
mance. It is powerful method in terms of segmentation results
and offers a robust solution by combining visual features
with LiDAR features but has a large model-size and for
this reason it requries powerful hardware. This is due to the
nature of the network architecture used in this method. The
multi-layered fusion architecture of PLARD [4] intertwined
with the backbone network and the use of the feature space
adaptation module, which adapts LiDAR features to visual
features, increases the computational cost of the network. In
this work, despite utilizing a denser point cloud compared to
PLARD [4], we introduce a single-layer fusion structure after
the backbone network and a network architecture that entails
lower computational expenses in contrast to PLARD [4].

SNE-RoadSeg [9] focuses on improving road segmenta-
tion accuracy by incorporating SN information into semantic
segmentation. Although it achieves high accuracy, its model
inference time is slightly high. SNE-RoadSeg+ [10] is a refined
version of SNE-RoadSeg [9] that reduces the model inference
time. USNet [8] utilizes a network architecture with a sym-
metric structure and leverages uncertainty information with
high accuracy and low model inference time. SNE-RoadSeg
[9], SNE-RoadSeg+ [10], and USNet [8] all take RGB and
pre-processed depth as inputs. These three methods share
a common disadvantage, which is the need for depth input
pre-processing and the resulting high-cost preparation time.
Therefore, the applicability of these methods for real-time
operations is not straightforward. This is because, in real-time
scenarios, they would need to predict depth during execution,
which would significantly increase the total runtime. In our
proposed method, we utilize images obtained from LiDAR
point clouds as inputs. The preparation time for each image is
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significantly low, resulting in a real-time execution. Detailed
information is provided in the experiments.
B. Multi Task Learning

The basic idea in MTL is that different learning tasks with
shared representations could be related. MTL proposes that
using these representations can improve learning efficiency
and prediction accuracy over single-task learning [12]. MTL
can be considered as a form of inductive transfer, and inductive
transfer can also help develop a model by choosing among
multiple hypotheses with the help of an inductive bias to
be defined [26]. During MTL, inductive bias is provided by
auxiliary tasks, causing the model to favor hypotheses that
explain more than one task [26]. The next important thing is
how to associate and select the auxiliary tasks with the main
task. We can associate visual tasks in the same scene with
each other. These tasks can be complementary and regulatory
for each other. SNs and depth estimation are good examples
of complementary tasks because the information we want to
infer can be derived directly from each other [13]. In this study,
while trying to find drivable areas with semantic segmentation,
depth is used as another task in the MTL model. SNs, help
to increase semantic segmentation performance as an auxiliary
task. The loss for any MTL model can be calculated by taking
the arithmetic average of the losses calculated separately for
different tasks.

III. METHODOLOGY

A. Problem Definition
We can consider the road segmentation task as assigning

a road/non-road label to each pixel in a perspective camera
image. When LiDAR data L and RGB images I data are used
as inputs, the road detection problem is solved by optimizing
the following objective [4]:

arg min
W

∑
i

L(f(Ii, Li;W ), Y ) (1)

where i represents training samples, Y is the ground-truth
label, f is road segmentation function, W is the model
parameters and L defines loss function. The latter, which will
now be used for the multi-task learning model, is a combined
loss containing all single-task losses instead of being defined
for a single task. For T different single tasks, where X is input
and YT is task-specific labels, the combined loss function can
be defined as:

Ltotal(X,YT ;WT ) =

T∑
i=1

λiLi(X,Yi;Wi) (2)

where Li is different single-task losses, and λi is task-
specific weightings. Three different tasks are performed by
the MTL model: semantic segmentation, depth estimation and
SN estimation. It is been reported that it is more difficult
to minimize the multi-task loss, which includes the losses
of different tasks, than to converge a single task loss [34].
For a limited number of tasks, the weighting of task losses
can be optimized by trial-and-error [35]. The loss weights
are regularized to bring them approximately to the same
scale. The task weights are tuned on the training set, to

maximize the MaxF (maximum F1-measure) score calculated
for road segmentation. In multi-task learning architecture, it is
desirable to have a common representation in the early parts
of the network, while in later parts of the network, tasks are
solved in heads specific to each task. This is most commonly
accomplished as an encoder-decoder construct where each task
represents a decoder specific to the representation provided by
the common encoder [27].
B. Fusion Model

In this paper, an architecture consisting of a single data
fusion layer is proposed. First, 3-channel LiDAR depth images
are computed using IMU/GNSS navigation system poses, and
RGB images are fed into the backbone network. Then the
features calculated for both inputs are passed through the
fusion block:

Ffuse = Frgb + αFlidar (3)

Flidar is LiDAR features and Frgb is RGB features, Ffuse

is fusion features, and α is LiDAR weighting coefficient in
fusion function and is used as design parameter.
C. LiDAR Registration-Aggregation

Before the fusion process performed in the feature space,
we align the LiDAR and RGB images in the data space by
projecting the 3D LiDAR points onto the 2D image plane. All
of the operations carried out at this stage can be expressed as
LiDAR data registration. The transformation matrix used to
project the LiDAR point cloud onto the 2D image plane by:

T cam
lidar =

[
Rcam

lidar tcamlidar

03 1

]
(4)

where T cam
lidar represents the transformation from LiDAR to

camera, Rcam
lidar is the rotation between LiDAR and camera

and tcamlidar is the translation between LiDAR and camera. By
projecting a point x from the 3D LiDAR point cloud onto the
2D image plane, the y-point is calculated as:

y = PRectRRectT
cam
lidarx (5)

where PRect denotes projection matrix after rectification,
RRect is the camera rectification matrix.

The ADI (altitude difference image) method in PLARD [4]
is used to generate the network inputs, which are referred to as
LiDAR depth images. During the calculation of the ADI, the
Z channel of the LiDAR is considered the altitude. Altitude
changes based on offsets between two different positions are
included in the process. Thus, ADIs are obtained using altitude
differences, and road features are preserved in LiDAR data,
making it easier to find drivable areas [4]. Altitude difference-
based transformation calculates the Vxy pixel value of a point
(x,y):

Vx,y =
1

M

∑
Nx,Ny

|Zx,y − ZNx,Ny
|√

(Nx − x)2 + (Ny − y)2
(6)

where Z(x, y) represents the elevation of the LiDAR data
point projected onto (x, y), (Nx, Ny) indicate locations in the
neighbourhood of (x, y), and M denotes the overall count of
neighboring positions. This can be considered as calculating
the average absolute values of the altitude gradients of the
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points projected onto the 2D image plane. Calculations are
made in a certain neighborhood window and a neighboring
pixel can be easily eliminated if it is uncorrelated in 3D [4].

Point cloud’s sparsity degrades the performance of tasks
such as semantic segmentation and surface reconstruction. We
overcome this problem by using a point cloud accumulation
strategy [30]. With the method we developed, improvements
to the ADI method that will increase the density of LiDAR
data are suggested. In order to use this method, data collected
from an IMU/GNSS whose data were collected synchronously
with the camera and LiDAR and calibrated according to these
sensors is needed. Since the KITTI dataset contains IMU data
but the Cityscapes dataset does not [3], we had the chance
to apply this innovation only to experiments for KITTI and
compare the differences in between these two datasets.

Fig. 2 denotes the calculation of the densified depth images.
The performed operations are as follows: A single depth image
is obtained for each of these two time steps by applying
transformations that will transform the point clouds at (t− 2)
and (t−1) into point clouds at (t). For the point cloud at time
(t), the depth image of that moment is computed without any
transformation. Thus, these depth images computed for three
time steps are combined to obtain a single 3-channel image
for training moment t and fed to the network.

Fig. 2: Computation of 3-Channel ADI

R expressed in Fig. 2 is the rotation matrix and T is the
translation matrix. It is seen that the accuracy of R and T found
with the IMU/GNSS navigation system pose shared in KITTI
is not sufficient for the developed method. Therefore, R and T
are found by applying Kalman integration and a more precise
navigation algorithm to IMU/GNSS data shared in KITTI. R
matrix is found from estimated euler attitudes, T matrix is
found from estimated 3D positions. Details about the proposed
method and the equations used during implementation can be
found in the Appendix.

Fig. 3: 3-channel ADI time stream (moments t− 2, t− 1 and t)

Fig. 3 shows the RGB images in three consecutive time
steps and their corresponding depth images. These consecu-
tive depth images combine to form the 3-channel ADIs we
proposed. While the depth images at (t− 2) and (t− 1) mo-
ments are obtained from the transformations of the respective
moments at time (t), no transformation is applied to the image
at time (t).

Fig. 4: Top to buttom: RGB images, ADIs in PLARD [4] and
3-channel ADIs proposed by us

Fig. 4 shows a comparison of the ADIs in PLARD [4] with
the 3-channel ADIs we propose. It is evident that the point
cloud densities of 3-channel ADIs are increased compared
to standard ADIs. Thus, it provides performance increase for
road segmentation by densifying the point cloud. In addition,
while 3-channel ADIs have colorations, standard ADIs do not.
Colorations represent the differences in the transformations of
the point clouds of the moving regions from the previous two
timesteps into time (t). They are much greater when INS data
is used directly instead of using our proposed method. See
Appendix for details.

D. Model Architecture

An architecture is proposed in which multi-sensor data is
fused and passed through the MTL network. Accordingly,
RGB images and 3-channel ADIs densified with IMU/GNSS
poses are separately passed through the backbone network
HRNet [25]. Specifically, HRNet [25] has SOTA accuracy,
it can process attributes of different scales simultaneously,
and is computationally efficient despite its high accuracy.
The features obtained at the backbone output are fed into
the MTL network by passing through a feature-based fusion
function. Primitive features passed through the feature-based
fusion function are sent to task-specific heads for initial task
estimations.

In this study, a customized version of MTI-Net proposed
by Vandenhende et al. [13] is used by us to apply to the
road detection problem at KITTI. While feature aggregation
and distillation blocks are used as in MTI-Net [13], 3-channel
ADIs and RGBs before these blocks are passed through a
fusion process implemented in the feature space and a multi-
modal and temporal structure is obtained. Thus, the proposed
multi-modal and multi-task road segmentation (3MT-RoadSeg)
structure emerges. Since there is no LiDAR data in the
Cityscapes dataset, MTI-Net [13] is used without modifica-
tions in some experiments for this dataset. Fig. 5 denotes the
MTI-Net [13] architecture. MTI-Net [13] is basically based
on the prediction-and-distillation network PAD-Net [24]. PAD-
Net [24] is an MTL model developed to perform depth estima-
tion and scene parsing from a single RGB image with the help
of monocular depth prediction and SN estimation auxiliary
tasks. The main difference between MTI-Net [13] and PAD-
Net [24] is the distillation modules they use. The PAD-Net [24]
architecture effectively uses supplementary information from
the intermediate estimates of tasks associated with a MMD.
In MTI-Net [13], task features are distilled separately at each
scale, with the idea that tasks may affect each other differently
for different sizes of receptive fields. After distillation, features
from all scales are collected to make final estimates. Fea-
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ture propagation module (FPM) uses task-specific and scale-
specific attention mechanisms to selectively propagate features
across different tasks and scales. FPM is used to transmit dis-
tilled information from lower resolution task features to higher
ones. This allows the network to learn and solve multiple
tasks simultaneously by leveraging shared information across
different tasks and scales. Feature aggregation (FA) combines
and integrates features from different scales which enhances
the network’s representation learning capabilities. This results
in learning more robust and discriminative representations
which improves the performance of the network.

Fig. 5: Overview of modules used in MTL architecture

IV. EXPERIMENTS
KITTI and Cityscapes datasets were used in the experi-

ments. 289 training and 290 test images exist in the KITTI
road-data. These images are categorized as UM (urban marked
roads), UMM (urban multiple marked roads), and UU (urban
unmarked roads). Since only labels corresponding to the
training set in the KITTI is available, we use %70 of the
training set as training; and the remaining %30 as a validation
set. In the experiments performed with the whole training
set, the road masks found to measure the test results were
converted to BEV and sent to the submission page of KITTI
[2]. Cityscapes has labels for 19 different classes and contains
dynamic objects, changing scene layouts and backgrounds.
2975 images in the data belong to the training set, 500 images
to the validation set [3].

A. Evaluation Metrics

We utilize the commonly employed pixel-level segmenta-
tion metrics for road segmentation to conduct quantitative
assessment. These are MaxF, AP (average precision), PRE

(precision rate), REC (recall rate), FPR (false positive rate)
and FNR (false negative rate). These metrics are shared in
detail with [1]. When evaluating depth prediction results, we
employ the widely used quantitative evaluation metric SILog
(scale invariant logarithmic error) [38].

TABLE II: Depth Results for the KITTI Road Set

Methods Task Aux. Task SILog
MTI-Net [13] S+D S+D+N 15.34

3MT-RoadSeg (rgb + lidar) S+D S+D 10.42

B. Implementation Details

During the training, a single NVIDIA Tesla V100 GPU with
16 GB memory is used and the network is implemented with
the PyTorch framework. In our experiments with the MTI-
Net [13] model, the HRNet-32 [25] backbone is used for both
KITTI and Cityscapes datasets. The loss function is optimized
using the Adam optimizer with a learning rate of 1e-4.

C. Evaluation Results

1) KITTI Ablation Studies
In this section, the test results obtained for different input,

task and auxiliary task configurations are compared, and the
image resolution is 384×1280. KITTI validation set is used
in the experiments and the test results are shown in Table I.
The highest MaxF score is achieved for rgb+lidar input, S
(semantic segmentation) + D (depth) multi-tasks and S + D +
N (surface normal) auxiliary-tasks configuration. This shows
that road semantic segmentation performance is improved with
the use of different tasks and auxiliary tasks that use similar
features. It is clearly seen that the performance of the multi-
task model are better than the single-task model by increasing
the interaction between the tasks for the shared features for
different tasks. In addition, it is observed that the MaxF scores
obtained for experiments with rgb+lidar inputs are higher
than those that are only rgb or lidar as input. This reveals
to us the contributions of the multi-modality created by fusion
operation. However, rgb+lidar input configuration has the
longer inference time. In the rgb+lidar* configuration unlike
the rgb+lidar configuration, standard ADIs are used instead
of the 3-channel ADIs developed by us. The results show that
the use of 3-channel ADIs increases MaxF. This comparison
shows the contribution of the developed 3-channel ADIs to
the road segmentation results.

The results of the depth estimation conducted simultane-
ously with the road segmentation for KITTI are presented

TABLE I: Road Segmentation Results for KITTI Validation Set
”*”: result with standard ADIs

Input Task Aux. Task MaxF(%) AP(%) PRE(%) REC(%) FPR(%) FNR(%) Runtime(s)
rgb S S 96.92 92.38 96.54 97.30 0.77 2.70 0.044

lidar S S 95.99 91.93 95.59 96.40 0.98 3.60 0.044
rgb + lidar S S 97.24 92.30 97.12 97.37 0.64 2.63 0.072

rgb S+D S+D 96.99 92.40 96.70 97.27 0.73 2.73 0.054
lidar S+D S+D 96.21 92.37 96.07 96.36 0.87 3.64 0.054

rgb + lidar S+D S+D 97.31 92.44 97.15 97.48 0.63 2.52 0.084
rgb S+D S+D+N 97.09 92.51 97.11 97.06 0.64 2.94 0.059

lidar S+D S+D+N 96.40 92.32 96.16 96.64 0.85 3.36 0.059
rgb + lidar S+D S+D+N 97.39 92.45 97.27 97.51 0.61 2.49 0.089
rgb + lidar* S+D S+D+N 97.28 92.47 97.28 97.27 0.60 2.73 0.074
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TABLE III: Comparison of Different Methods in KITTI Benchmark
”*”: result with standard ADIs, ”+”: denotes Multi-Scale version

Methods Input Multi-tasks MaxF(%) PRE(%) REC(%) FPR(%) FNR(%) Runtime(s)
s-FCN-loc [7] rgb - 93.26 94.16 92.39 3.16 7.61 0.40
MultiNet [31] rgb C+OD+S 94.88 94.84 94.91 2.85 5.09 0.17

RBNet [6] rgb - 94.97 94.94 95.01 2.79 4.99 0.18
RBANet [15] rgb - 96.30 95.14 97.50 2.75 2.50 0.16

LidCamNet [18] rgb + lidar - 96.03 96.23 95.83 2.07 4.17 0.15
CLCFNet [20] rgb + lidar - 96.38 96.38 96.39 1.99 3.61 0.02

PLARD [4] rgb + lidar - 96.83 96.79 96.86 1.77 3.14 0.16
PLARD+ [4] rgb + lidar - 97.03 97.19 96.88 1.54 3.12 1.50

SNE-RoadSeg [9] rgb + depth - 96.75 96.90 96.61 1.70 3.39 0.18
DFM-RTFNet [32] rgb + depth - 96.78 96.62 96.93 1.87 3.07 0.08

USNet [8] rgb + depth - 96.89 96.51 97.27 1.94 2.73 0.02
SNE-RoadSeg+ [10] rgb + depth - 97.50 97.41 97.58 1.43 2.42 0.08

3MT-RoadSeg* rgb + lidar S+D 96.60 96.46 96.73 1.95 3.27 0.07

TABLE IV: Road Segmentation Results for Cityscapes Validation Set

Input Task Aux. Task MaxF(%) AP(%) PRE(%) REC(%) FPR(%) FNR(%) Runtime(s)
rgb (half-res) S S 97.24 91.04 96.85 97.63 1.56 2.37 0.04
rgb (half-res) S+D S+D+N 97.46 91.51 97.37 97.56 1.30 2.44 0.06

rgb + depth (half-res) S+N S+D+N 97.49 91.65 97.52 97.45 1.22 2.55 0.09
rgb (full-res) S S 97.44 92.07 97.98 96.90 0.98 3.10 0.15
rgb (full-res) S+D S+D+N 97.60 91.24 97.07 98.12 1.45 1.88 0.23

rgb + depth (full-res) S+N S+D+N 97.84 91.68 97.55 98.13 1.21 1.87 0.36

TABLE V: Comparative results for the Cityscapes Validation Set

Methods MaxF(%) PRE(%) REC(%)
FCN [5] 94.68 93.69 95.70

s-FCN-loc [7] 95.36 94.63 96.11
SegNet [11] 95.81 94.55 97.11

RBANet [15] 98.00 97.87 98.13
USNet [8] 98.27 98.26 98.28

3MT-RoadSeg (rgb) 97.60 97.07 98.12
3MT-RoadSeg (rgb + depth) 97.84 97.55 98.13

in Table II. It is evident that fusing 3-channel ADIs with
RGB information enhances the depth prediction performance
by supporting the depth features as expected. The achievement
of such a result solely using RGB is not feasible. It is important
to keep in mind that although the network was mainly trained
for road segmentation, depth estimation can also be improved
with respect to MTI-Net.

2) KITTI Benchmark Results

This section focuses on the KITTI benchmark results ob-
tained against the BEV forms of the road semantic segmenta-
tion results of the test set submitted to the KITTI submission
page. Since road mapping tags are not shared for the samples
in KITTI’s test set, the 3-channel ADI method we developed
could not be used in the results submitted to the benchmark.
Instead, the standard ADI method in PLARD [4] is used when
generating LiDAR inputs. Table III contains a comprehensive
comparison of our proposed method and other methods on
KITTI benchmark. SNE-RoadSeg+ [10] has the highest MaxF
score and uses rgb+depth inputs. PLARD [4] has the highest
MaxF score among studies using rgb+lidar inputs. 3MT-
RoadSeg has a higher MaxF than all rgb input methods
and all rgb+lidar except PLARD [4]. 3MT-RoadSeg (0.07
s) has the shortest model inference time among all studies
except CLCFNet [20] (0.02 s) and USNet [8] (0.02 s). When
considering the total runtimes, which are calculated by adding
the model inference times to the input pre-processing times,
the time efficiency solution offered by 3MT-RoadSeg emerges

even more prominently. The high MaxF-score methods SNE-
RoadSeg [9], SNE-RoadSeg+ [10] and USNet [8] utilize the
same depth inputs. However, depth computation time is not
provided. If a coarse monocular depth estimation method
[39] is utilized, the inference time can be approximately
0.01 seconds. However, by employing a fine monocular depth
estimation method like VA-DepthNet [36], which ranks among
the top in the KITTI benchmark, the inference time can
reach approximately 0.34 seconds. Nevertheless, considering
the expectation of accurate depth estimations used as model
inputs, the fine depth estimation method VA-DepthNet [36]
is employed to obtain the provided results. When the exper-
imental pre-processing time of 0.34 s is added to the model
inference times of SNE-RoadSeg [9], SNE-RoadSeg+ [10],
and USNet [8], the total runtimes for these methods become
0.52 s, 0.42 s, and 0.36 s, respectively. In DFM-RTFNet [32],
one of the inputs is the disparity; hence, the value of 0.13 s is
used, which is reported in SOTA disparity estimation method
FADNet++ [37]. The total runtime for DFM-RTFNet [32] is
calculated as 0.21 seconds. CLCFNet [20] uses LiDAR image
as input, whose preparation is similar to our ADI computation
method. Therefore, the preparation time of the LiDAR imagery
is expected to be approximately 0.01 s. The total runtime for
CLCFNet [20] can be calculated as approximately 0.03 s. The
total runtime of the 3MT-RoadSeg becomes 0.08 s after adding
the ADI preparation time. The shortest total runtime after
CLCFNet [20] is 3MT-RoadSeg. The method we propose is
very useful for real-time scenarios in terms of total runtime and
high accuracy. For the KITTI benchmark, there are no results
for any MTL architecture method other than our method 3MT-
RoadSeg and MultiNet [31]. 3MT-RoadSeg uses S + D, and
MultiNet [31] uses C (classification) + OD (object detection)
+ S tasks. From the results in Table III, it appears that the
road segmentation performance of 3MT-RoadSeg is better than
MultiNet [31] and has shorter inference time.
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3) Cityscapes Ablation Studies
The results of the experiments for half (512×1024) and full

resolution (1024 × 2048) inputs in the Cityscapes validation
set are shown in Table IV. The MaxF score of the multi-task
model, in which more than one task is used together, is higher
than the single task model. In the experiments, it is observed
that there is a slight improvement in the multi-mode structure
with rgb+depth input compared to the single-mode structure
with only rgb input. The reason for this is that depth inputs
fed to the network as inputs are obtained from disparities that
are shared in the dataset and are quite noisy, although dense.
As expected, it is seen that the test results performed at full
resolution are better than those performed at half resolution.
In addition, the runtimes of half-resolution experiments are
lower than those of full-resolution. Table V shows the results
obtained for the different methods for the Cityscapes validation
set. From the results, it is seen that the scores obtained for our
proposed method are in the third place after USNet [8] and
RBANet [15].

V. CONCLUSION
In this work, a multi-modal and multi-task road segmenta-

tion approach is proposed. This method leverages densified
LiDAR point cloud to enhance segmentation performance.
Through the conducted experiments, it becomes evident that
incorporating LiDAR-camera fusion and a multi-task archi-
tecture, which capitalizes on the interactions between differ-
ent tasks, significantly improves the segmentation accuracy.
Moreover, our developed method demonstrates lower com-
putational costs compared to most SOTA techniques. When
considering the computational expenses of pre-processing, the
runtime efficiency of our 3MT-RoadSeg model becomes even
more remarkable. These advantages make our method highly
suitable for real-time applications, making it a favorable choice
over other existing methods.

APPENDIX

This section will focus on how Kalman integration is applied to
INS pose data shared in KITTI in the proposed method to densify the
LiDAR point cloud. Normally, INS outputs are obtained as a result
of integrating IMU and GNSS data with the help of Kalman filter.
In the method we developed, it is proposed to apply a Kalman filter
to the integrated solution data shared in KITTI once again.

Fig. 6: Kalman Filter ADI - OXTS (INS) ADI

The inertial navigation sensor used when creating the KITTI
dataset is the OXTS RT3003. OXTS is a sensor that can provide
INS (IMU/GNSS) integrated solution. In the dataset, both IMU
outputs from OXTS data and INS outputs integrated with GNSS
are shared. When the proposed 3-channel ADIs are generated with
OXTS INS position (translation) and INS attitude (rotation) data
shared in KITTI, the results are not as desired. The reason for this
is thought to be residual errors, especially in position errors. It can
now be shown that the source of the errors is using a simple earth
model and inertial navigation algorithm during the OXTS IMU/GNSS

integration (where the velocity vector V n
eb is a 2D vector instead of

a 3D vector, etc.). To eliminate these residual errors, INS data is
considered as aiding data and integrated with IMU data. It is seen
that this integration process from the results now eliminates the errors
and gives the expected results. Fig. 6 shows the ADIs generated from
the OXTS data and the ADIs generated using the integration results
proposed by us. Significant color differences are seen in the ADIs
calculated from the OXTS data compared to the ADIs calculated in
the developed method. This means that there is error in point cloud
transformation between consecutive samples. Moires occur in ADIs
found directly from OXTS data, especially around moving objects,
due to translation errors at moments (t-2) and (t-1). Therefore, the
clarity and distinguishability of OXTS ADIs are less than the ADIs
found by the developed method. More importantly, the roadside lines
in OXTS ADIs are less distinct than in ADIs found by the proposed
method. All these advantages show the effectiveness of our proposed
method.

INERTIAL NAVIGATION EQUATIONS

The inertial navigation equations used in the proposed method are
defined in the local navigation frame. The local navigation axes are a
Cartesian reference defined with respect to the local horizontal plane
that moves with the platform. It is defined according to the ellipsoid,
as in the geodetic reference. The X-axis points to the North, the Y-axis
to the East, and the Z-axis to the ground. Attitude update equations
defined in local navigation frame as [29]:

Cn
b (+) ≈ Cn

b (−)(I3 +Ωb
ibτi)− (Ωn

ie(−) +Ωn
en(−))Cn

b (−)τi (7)

where Cn
b is body-to-navigation-frame coordinate transformation

matrix, Ωb
ib is skew-symmetric form of IMU angular-rate vector, and

τi is time interval. Skew-symmetric matrix of Earth-rotation vector
defined as Ωn

ie = ωie

[
cosLb 0 − sinLb

]
∧. The WGS-84 value

of the Earth’s angular rate is wie = 7.292115× 10– 5 rad s− 1 and
′∧′ denotes skew-symmetric transform.

Ωn
en denoted by Eq. 7 is the skew-symmetric matrix of ωn

en angular
rate, ωn

en calculated as:

ωn
en =

 V n
eb,E/(RE(Lb) + hb)

−V n
eb,N/(RN (Lb) + hb)

−V n
eb,E tanL/(RE(Lb) + hb)

 (8)

where V n
eb is the velocity defined on Earth-referenced in local

navigation frame axes. RN (Lb) is the meridian radius of curvature
and RE(Lb) is the normal radius of curvature. They are given by:

RN (Lb) =
R0(1− e2)

(1− e2 sin2 Lb)3/2
, RE(Lb) =

R0

(1− e2 sin2 Lb)
(9)

The velocity update equation defined on the local navigation frame
is as follows [29]:

vneb(+) ≈ vneb(−) + [fn
ib + gnb (Lb(−), hb(−))

− (Ωn
en(−) + 2Ωn

ie(−))vneb(−)]τi
(10)

where fn
ib is the specific force measured by IMU (fb

ib) converted
to local navigation frame, gnb is acceleration due to the gravity and
calculated using the WGS-84 Earth Ellipsoid model.

Assuming the velocity changes as a linear function of time over
the sample time, the position updates are:

Lb(+) = Lb(−) +
τi
2
(

vneb,N (−)

RN (Lb(−)) + hb(−)

+
vneb,N (+)

RN (Lb(−)) + hb(+))
)

(11)

λb(+) = λb(−) +
τi
2
(

vneb,E(−)

(RE(Lb(−) + hb(−)) cosLb(−)

+
vneb,E(+)

(RE(Lb(+) + hb(+)) cosLb(+))
)

(12)
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hb(+) = hb(−)− τi
2
(vneb,D(−) + vneb,D(+)) (13)

where, Lb is geodetic latitude, λb is longitude, and hb is geodetic
height [29].

Fig. 7: Navigation updates and open-loop Kalman integration model

INS/GNSS INTEGRATION MODEL

Open loop Loosely Coupled integration model and INS/GNSS
Kalman filter algorithm with error state are used during the cal-
culation of the proposed 3-channel ADIs. In the Kalman Filter
implementation, the attitude and velocity are Earth-referenced and
resolved in the local navigation frame. Position terms are expressed
as latitude, longitude and height. Fig. 7 shows the block diagram of
the GNSS integrated navigation algorithm. The navigation equations
(updates) are shown on the left, while the inputs and outputs of the
Kalman filter with open loop architecture are shown on the right. The
states of the 15-state kalman filter are δp̂b, δv̂neb, δΨ̂n

nb respectively,
position, velocity and attitude error states, and b̂a, b̂g are acceleration
and gyroscope bias. The state-space equation in continuous time of
the system model implemented in the local navigation frame is:

δ̂̇pb
δ̂̇vneb
δ ̂̇Ψn

nb̂̇
bâ̇
bg

 = Fn
INS


δp̂b
δv̂neb
δΨ̂n

nb

b̂a
b̂g

 (14)

where Fn
INS is the system matrix and its contents are shared in detail

in [29]. In the studies, this continuous time state space model is
implemented by transforming it into a discrete time state space model.
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