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Abstract—Control barrier functions (CBFs) have been widely
applied to safety-critical robotic applications. However, the
construction of control barrier functions for robotic systems
remains a challenging task. Recently, collision detection using
differentiable optimization has provided a way to compute the
minimum uniform scaling factor that results in an intersection
between two convex shapes and to also compute the Jacobian
of the scaling factor. In this paper, we propose a framework
that uses this scaling factor, with an offset, to systematically
define a CBF for obstacle avoidance tasks. We provide theoretical
analyses of the continuity and continuous differentiability of
the proposed CBF. We empirically evaluate the proposed CBF’s
behavior and show that the resulting optimal control problem
is computationally efficient, which makes it applicable for real-
time robotic control. We validate our approach, first using a 2D
mobile robot example, then on the Franka-Emika Research 3
(FR3) robot manipulator both in simulation and experiment.

Index Terms—Robot safety, collision avoidance.

I. INTRODUCTION

SAFETY is a key consideration when designing control
algorithms for robotic applications [1]–[3] considering

rapid integration of robotic systems into our daily lives [4].
Model predictive control (MPC) and trajectory optimization
(TO) based methods have been widely used for safety-critical
robot applications, e.g., obstacle avoidance. However, the
computation time of MPC and TO based methods limits
their deployment on systems requiring fast response time.
Additionally, for MPC-based approaches, safety is only guar-
anteed within the preview horizon. A short preview horizon
might lead to abrupt actions to ensure safety, while large
preview horizons increase the computation time. A new control
paradigm, CBF-based control [3], has become popular for safe
robotic control since it provides a simple and computationally
efficient way for safe control synthesis. Another benefit of
CBFs is that CBF constraints take safety into consideration
even far away from the safe set boundary.
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Fig. 1. The structure of safe robotic control using differentiable-optimization-
based CBFs.

One of the main hurdles to applying CBF-based methods to
robotic systems is the construction of a valid CBF. Although
work has been done in synthesizing CBFs for robots, there still
lacks a systematic approach for CBF synthesis [5]. Given this
difficulty, work has been done in learning CBFs from expert
data of safe and unsafe interactions [6]. CBFs for robotics
systems can also be learned online using onboard sensor
data [7]. Additionally, work has been done in learning CBFs
starting from a handcrafted CBF [8]. Although the learning-
based methods for CBF synthesis are appealing, acquiring a
dataset may be costly in many cases, e.g., self-driving cars.
To simplify the CBF construction, work has been done in
modeling the interaction between robots and the environment
using points and objects [8], spheres [9], and points and
higher-order ellipsoids [10]. However, since robotic systems
consist of 3D geometrical entities, these approximations either
completely ignore or over-estimate the robot geometry, which
leads to over-conservative control policies. Recently, work
has been done in constructing CBFs for robots represented
as polytopic shapes [11] and finding the safe control action
using nonlinear model predictive control (NMPC). However,
extending their formulation to other shapes, e.g., spheres and
cylinders, is not straightforward. Another possible choice for
constructing CBFs is to use a proximity measurement like the
shortest distance. However, the shortest distance is not well
defined when two objects overlap. To address this issue, signed
distance functions (SDFs) are used instead in [12] to construct
CBFs. However, algorithms used to compute the SDF, e.g.,
the Gilbert–Johnson–Keerthi (GJK) distance algorithm [13]
and the expanding polytope algorithm (EPA) [14], are not
differentiable [15] and SDFs are also nonsmooth [12]. Thus,
an approximated version of the partial derivative of the SDF
is used along with a looser constraint to generate safe control
actions, which results in a conservative controller.

We construct our CBF in this paper to overcome the above
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limitations based on differentiable optimization methods. Un-
like traditional optimization solvers, differentiable optimiza-
tion solvers, in addition to the optimal solution, also provide
the partial derivatives of the optimal solution with respect
to the problem parameters [16]. Given their differentiability,
differentiable optimization solvers have gained popularity in
the machine learning community by integrating them within
a deep learning pipeline [17]. Recently, differentiable opti-
mization solvers have also been used for collision detection
between two convex shapes [15] by finding the minimum
scaling factor for the two objects that leads to their collision.

This work builds upon the idea of using a differentiable
collision detector and proposes a method to define CBFs for
robotic obstacle avoidance tasks systematically. The proposed
approach is efficient to compute, directly differentiable, han-
dles a wide range of geometries, and is well-defined even
in collision. The main contribution of this paper is twofold:
(1) proposing and theoretically analyzing a differentiable
optimization based approach to synthesize CBFs for robotic
obstacle avoidance tasks that consider both the robot and
scene geometry; (2) performing simulations and experiments
(on FR3) to show the efficacy of our approach. This paper is
structured as follows. In Section II, we briefly review CBFs
and mathematical foundations of differentiable optimization
solvers. In Section III, we formulate the safe robotic control
problem. In Section IV, we present our approach for con-
structing CBFs using differentiable optimization solvers. In
Section V, we show efficacy of our approach using a 2D
mobile robot and on the seven degrees-of-freedom (DOF) FR3
robotic arm in both simulation and real world. Section VI
concludes the paper with a discussion on future directions.

II. PRELIMINARIES

This section presents a brief introduction to CBF and
differentiable optimization.

A. Control Barrier Functions

Consider a control affine system

ẋ = F (x) +G(x)u (1)

where the state is x ∈ Rn and the control input is u ∈ Rm,
with U being the admissible set of controls. The locally
Lipschitz continuous functions F : Rn → Rn and G : Rn →
Rn×m represent the drift and the control influence matrix,
respectively. Additionally, we assume access to a controller
u = π(x), with π : Rn → Rm being locally Lipschitz
continuous. We say the controller π can keep the system in (1)
safe with respect to a set C ⊂ Rn if the controller π renders the
set C forward control invariant. In other words, the controller π
keeps (1) safe with respect to C, if for any initial state x0 ∈ C,
the solution to (1), defined as x(t), remains within the safe set
C ∀t ∈ I(x0). The time interval of existence I(x0) = [t0, tmax)
is where x(t) is a unique solution to (1); the system defined
in (1) is considered forward complete when tmax = ∞. Let
the set C, with C ⊂ D ⊂ Rn, be the 0-superlevel set of a

continuously differentiable function h : D → R that has the
property ∂h/∂x ̸= 0 for all x ∈ ∂C. Then, for (1), if

sup
u∈U

[∂h(x)
∂x

(
F (x) +G(x)u

)]
≥ −Λ(h(x)) (2)

holds for all x ∈ D, with Λ : R → R being an extended class
K∞ function1, we say that h is a CBF on C.

B. Differentiable Optimization

Consider a convex optimization problem in the form of

min
y∈Rn

f(y | ψ) (3)

subject to ℓ(y | ψ) = 0

h(y | ψ) ≤ 0

with f : Rn → R being the convex objective function,
ℓ : Rn → Rne the affine equality constraints, h : Rn → Rni
the convex inequality constraints, and ψ ∈ Rnψ the problem
configuration parameters. ne, ni, and nψ represent the num-
ber of equality constraints, inequality constraints, and prob-
lem configuration parameters, respectively. The Karush-Kuhn-
Tucker (KKT) conditions for stationarity, primal feasibility,
and complementary slackness are

0 = ∂y

(
f(y⋆) + (λ⋆)⊤ℓ(y⋆) + (ν⋆)⊤h(y⋆)

)
(4a)

0 = ℓ(y⋆) ∈ Rne (4b)
0 = diag(ν⋆)h(y⋆) ∈ Rni (4c)

with λ ∈ Rne and ν ∈ Rni being the dual variables, the
superscript ⋆ representing the optimal values, and the ψ’s omit-
ted for brevity. Define z⋆(ψ) =

[
y⋆(ψ) λ⋆(ψ) ν⋆(ψ)

]⊤ ∈
Rnz , with nz = n+ ne + ni. Eq. (4) can be written as

g(z⋆(ψ), ψ) = 0 (5)

with g : Rnz ×Rnψ → Rnz . To compute the partial derivative
of z⋆ w.r.t ψ, we utilize the implicit function theorem.

Theorem 1 (Implicit Function Theorem [18]). Let g :
Rnz+nψ → Rnψ be a continuously differentiable function,
z⋆0 ∈ Rnz , and ψ0 ∈ Rnψ . Let (z∗0 , ψ0) satisfy g(z⋆0 , ψ0) = 0,
and assume ∂z⋆g(z⋆, ψ0)|z⋆=z⋆0 is invertible. Then there exist
open sets Sz⋆ ⊂ Rnz and Sψ ⊂ Rnψ containing z⋆0 and ψ0,
respectively, and a unique continuously differentiable function
z⋆ : Rnψ → Rnz such that z⋆(ψ0) = z⋆0 , g(z⋆(ψ0), ψ0) = 0.

Assume the implicit function Theorem holds for g, z⋆0 , and
ψ0. Taking the derivative on both sides of Eq. (5) yields

dg(z⋆, ψ)

dψ

∣∣∣∣∣z⋆=z⋆0
ψ=ψ0

= 0. (6)

Then, using the chain rule, we have

∂z⋆g(z
⋆, ψ0)

∣∣∣
z⋆=z⋆0

∂ψz
⋆(ψ)

∣∣∣
ψ=ψ0

+ ∂ψg(z
⋆
0 , ψ)

∣∣∣
ψ=ψ0

= 0.

(7)

1Extended class K∞ functions are strictly increasing with Λ(0) = 0.
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Finally, applying the implicit function Theorem yields

∂ψz
⋆(ψ)

∣∣∣
ψ=ψ0

= −∂−1
z⋆ g(z

⋆, ψ0)
∣∣∣
z⋆=z⋆0

∂ψg(z
⋆
0 , ψ)

∣∣∣
ψ=ψ0

.

(8)
This provides a way to efficiently and exactly compute the
gradient of the optimal solution of a convex optimization
problem with respect to its problem configuration.

C. Berge’s Maximum Theorem

A key theoretical result we use later in the paper is Berge’s
Maximum Theorem.

Theorem 2 (Berge’s Maximum Theorem [19]). Let X and Ψ
be topological spaces, and J : X ×Ψ → R be a continuous
function on X × Ψ and Γ : Ψ ⇒ X be a compact-valued
correspondence2 such that Γ(ψ) ̸= ∅ for all ψ ∈ Ψ. Define
the value function J ⋆ : Ψ → R as

J ⋆(ψ) = sup{J (x, ψ) | x ∈ Γ(ψ)} (9)

and the solution function Γ⋆ : Ψ → X as

Γ⋆(ψ) = {x | x ∈ Γ(ψ),J (x, ψ) = J ⋆(ψ)}. (10)

If Γ is an upper and lower hemicontinuous (UHC/LHC)
correspondence [19] at ψ, then J ⋆ is continuous and Γ⋆ is
UHC with nonempty and compact values.

III. PROBLEM FORMULATION

We consider the problem of CBF-based obstacle avoidance
for robotic systems in the form of (1). For each obstacle, we
can represent the obstacle avoidance task as ci(x) ≥ 0, where
ci : Rn → R represents the i-th obstacle avoidance constraint.
For each constraint function ci, we can define its 0-superlevel
set as Ci. The safe set C for the robot is then the intersection
of Ci’s, i.e.,

C =

ni⋂
i=0

Ci =
ni⋂
i=0

{
x | x ∈ Rn, ci(x) ≥ 0

}
. (11)

This paper aims to find a systematic way of constructing a
CBF such that the robot can stay within C.

IV. DIFFERENTIABLE OPTIMIZATION BASED CBFS

In this section, we present our proposed method of using
differentiable optimization to compute CBFs for safe robotic
control. First, we motivate our work by showing the lim-
itations of SDF-based CBFs. Second, the CBF formulation
is presented. Then, we show how to construct the CBF for
robotic applications. Finally, we show how to construct the
optimization problem for finding the safe control action.

2Correspondences are set-valued functions.

A. Motivation

For maintaining safety in obstacle avoidance tasks, the most
straightforward approach is to use a proximity measurement,
i.e., SDF, for constructing the CBF, which for two convex
objects A and B is defined as SDF(A,B) = distance(A,B)−
penetration(A,B). Currently, the most efficient method to
compute the SDF is using GJK to compute the distance and
EPA to compute the penetration. Using GJK and EPA, we get
the witness points p̂A, p̂B ∈ R4 and the vector of minimal
translation n̂ ∈ R4 in homogeneous form. Then, the CBF can
be written as [20]

hSDF(xA) = n̂(xA)
⊤(FWA (xA)p̂A(xA)− FWB p̂B(xA)) (12)

with FWA , FWB ∈ R4×4 denoting the poses of A and B and
xA ∈ Rn representing the state of A. In (12), we assume B is
static. However, due to their logical control flows and pivoting,
the output of GJK and EPA, i.e., (p̂A, p̂B , n̂), is inherently
non-differentiable [15]. The work in [12] bypasses this issue
by only taking the partial derivative with respect to FWA and
treating the remainder terms as disturbance:

∂hSDF

∂xA
= n̂(xA)

⊤ ∂FWA
∂xA

p̂A(xA)︸ ︷︷ ︸
JA(xA)

+δ(xA) (13)

with δ : Rn → Rn representing the remainder terms associated
with the derivatives of n̂, p̂A, and p̂B . Then, the safety
constraint is written as

n̂(xA)
⊤JA(xA)ẋA ≥ −γhSDF + 2JmaxẋA,max (14)

with ∥δ(x)∥∞ ≤ 2maxxA ∥JA(xA)∥ = 2Jmax and ∥ẋA∥∞ =
ẋA,max. For derivation details, please refer to [12]. This is not
a tight bound and therefore generates a conservative controller
that only recovers a portion of the safe set. In the remainder of
this section, we formulate a CBF that is directly differentiable
and can recover the entire safe set.

B. CBF Formulation

Inspired by [15], we construct a CBF using the minimum
scaling of two convex objects under which they collide. The
scaling α ∈ R+ can be computed using a conic program

min
p,α

α (15)

subject to p ∈ PA(α)
p ∈ PB(α)
α > 0.

where p ∈ R3 represents a point and PA(α) a set that contains
the interior and surface of A after scaling it uniformly using a
scaling factor α. PB(α) is defined in the same manner. Denote
the optimal value for α as α⋆. If α⋆ > 1, then the two convex
objects are not in collision. The two convex objects collide
if α⋆ ≤ 1. The optimal p for (15), denoted as p⋆, represents
the point of intersection after scaling the two convex objects.
A visual illustration of the solution to (15) can be found in
Fig. 2. Then, we formulate the CBF as

h(x) = α⋆(x)− β. (16)
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Fig. 2. This figure illustrates the outcome of the differentiable conic program
in (15). The first convex object is the polygon and the second is the cylinder.
The transparent regions surrounding the solid objects represent the scaled
version of the objects after scaling them with a ratio of α. The red dot
represents the point of intersection p of the two scaled objects.

with β ∈ R and β ≥ 1. Using Theorem 1 and Eq. (6)-(8), we
can obtain the Jacobian of α⋆ as

∂α⋆

∂(r1, q1, r2, q1)
=

∂h

∂(r1, q1, r2, q1)
∈ R1×14 (17)

where r1, r2 ∈ R3 represents the positions of A and B,
q1, q2 ∈ R4 represents the orientations in quaternions, and
ψ = (r1, q1, r2, q2) ∈ Ψ ⊂ SE(3) × SE(3) represents joint
pose of the two objects.

To show (16) is a valid CBF, we need to show continuous
differentiability of α⋆. In this paper, we prove continuity of α⋆

in the general case and then prove continuous differentiability
for the case of strongly convex scaling function when the
gradients and Hessians exist and are continuous. We conjecture
that continuous differentiability can be generalized to one
object being strongly convex and the second being only convex
although a formal proof is still elusive.

Theorem 3. The optimal value of (15), denoted as α⋆,
is a continuous function with respect to the positions and
orientations of A and B.

To prove Theorem 3, we need Lemma 1 with the constraint
correspondence Γ(ψ) defined as

Γ(ψ) = {(p, α) | p ∈ PAB(α | ψ), α ∈ S} (18)

with S ⊂ R being a compact set and PAB(α | ψ) =
PA(α | ψ) ∩ PB(α | ψ). The term PA(α | ψ) denotes
that PA depends on both α and ψ, where ψ is seen as
the configuration parameter. PAB(α | ψ) and PB(α | ψ)
are defined in a similar manner as PA(α | ψ). Also we
define Γi(ψ) = {(p, α) | p ∈ Pi(α | ψ), α ∈ S} with
i ∈ {A,B}. We can then show that Γ(ψ) is a compact-valued
correspondence on R4.

Lemma 1. The constraint correspondence Γ(ψ) defined
in (18) is a compact-valued correspondence.

Proof. First, we show that ΓA(ψ) is a compact-valued cor-
respondence. Define KA(ψ) = PA(1 | ψ) ⊂ R3, and the

function ϕ : KA(ψ)×S → R4 as ϕ(p, α) = (α(p−r1)+r1, α),
which is a continuous function on KA(ψ)× S. Because both
KA(ψ) and S are compact sets, we have KA(ψ) × S as a
compact set on R4. Since the image of ψ under ΓA is the same
as the image of KA(ψ)× S under ϕ, using the property that
continuous functions map compact sets to compact sets, and
KA(ψ) is a compact set for any value of ψ, we have ΓA(ψ)
being a compact-valued correspondence. Using the same logic,
for all ψ, ΓB(ψ) is also a compact-valued correspondence.
Since Γ(ψ) = ΓA(ψ) ∩ ΓB(ψ), and intersections of compact
sets are compact sets, we can conclude that Γ(ψ) is a compact-
valued correspondence.

We can directly apply Theorem 2 to prove Theorem 3 if we
show that Γ(ψ) is both UHC and LHC.

Proof. (Theorem 3) To show UHC, we consider an arbitrary
open set V such that Γ(ψ) ⊂ V , i.e.,

V =
{
(p, α) | PAB(α | ψ) ⊂ Vp(α), S ⊂ Vα

}
(19)

with Vp being an open set on R3, p ∈ PAB(α | ψ), Vα being
an open set on R, and α ∈ S. In our case, UHC is equivalent
to: for any ψ and α, if the intersection of the two convex
shapes PA and PB is contained within an open set Vp(α),
then after applying an infinitesimally small translation and
rotation, the intersection is still contained within Vp(α). Since
Vp(α) is an open set, ∀p ∈ PAB(α | ψ) there exists an open
neighborhood around p that is a subset of Vp(α). Additionally,
the compactness of PAB(α | ψ) implies that a finite subset
of the union of those neighborhoods covers PAB(α | ψ).
After applying an infinitesimally small transformation to p, it
should stay in that finite cover because the change in distance
between the origin and the point p is Lipschitz continuous [21].
For LHC, we consider an arbitrary open set V̄ such that
Γ(ψ) ∩ V̄ ̸= ∅, i.e., with p ∈ PAB(α | ψ), V̄p(α) being
an open set on R3, V̄α an open set on R, and α ∈ S, we have

V̄ =
{
(p, α) | V̄α ∩ S ̸= ∅,PAB(α | ψ) ∩ V̄p(α) ̸= ∅

}
. (20)

In our case, LHC is equivalent to: for α ∈ V̄α, if PAB(α |
ψ) ∩ V̄p(α) ̸= ∅, then after applying an infinitesimally small
translation and rotation, the intersection set is not empty. Since
there exists p ∈ PAB(α | ψ) with an open neighborhood that
belongs to V̄p(α), following the logic for showing UHC, Γ is
also LHC. Thus, since Γ(ψ) is a compact-valued correspon-
dence, using Theorem 2, we know J⋆ = α⋆ is a continuous
function with respect to ψ.

Next, under sufficient conditions, we show that α⋆ is
continuously differentiable with respect to ψ.

Definition 1 (Scaling Function). We say that FA : R3 → R, is
a scaling function for an object A ⊂ R3, if it is a continuously
differentiable convex function, FA(p) ≥ 0, A = {p | FA(p) ≤
1}, ∂A = {p | FA(p) = 1}, and minp FA(p) = 0.

For example, the scaling function for an ellipsoid A has form
FA = (p− r)⊤P(p− r) where P ∈ R3 is a diagonal matrix
with inverses of squared semi-axes lengths on its diagonal.
This particular example is used in [15] to implement the
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scaling constraint for the ellipsoid, and similar functions can
be derived for other shapes discussed in [15].

Lemma 2. For two objects A,B ⊂ R3, denote their scal-
ing functions as FA and FB , respectively. If FA and FB
are differentiable functions, and no point p exists such that
∂FA/∂p = ∂FB/∂p = 0, then for the optimal solution
(p⋆, α⋆) of (15), we have FA(p⋆) = FB(p⋆) = α⋆ and
ν⋆A, ν

⋆
B ̸= 0.

Proof. First, we rewrite the problem in (15) as

min
p,α

α (21)

subject to FA(p) ≤ α

FB(p) ≤ α

We can write the Lagrangian for (21) as

L(α, p, νA, νB) = α+νA(FA(p)−α)+νB(FB(p)−α) (22)

From the stationarity condition of the KKT conditions we have

∂L
∂α

= 1− ν⋆A − ν⋆B = 0 (23a)

∂L
∂p

= ν⋆A
∂FA
∂p

(p⋆) + ν⋆B
∂FB
∂p

= 0 (23b)

From the complementary slackness condition we have

ν⋆A(FA(p⋆)− α⋆) = 0 (24a)
ν⋆B(FB(p⋆)− α⋆) = 0. (24b)

It can be shown that neither ν⋆A nor ν⋆B can be 0. To show
this, without loss of generality, assume ν⋆A = 0. From (23a),
we have ν⋆B = 1 and from (23b) we have ∇pFB(p⋆) = 0.
From definition 1, we know that FB is a convex differentiable
function, therefore, p⋆ is the global minimum of FB . Hence,
also from definition 1, FB(p⋆) = 0. Then, from (24b),
α⋆ = FB(p⋆) = 0. Using the constraint FA(p) ≤ α from (21)
and the condition FA(p) ≥ 0 from definition (1), we have
FA(p⋆) = 0, which means p⋆ is also a global minimizer
for FA, i.e., ∂FA(p⋆)/∂p = 0. Since, by the assumption of
Lemma 2, no point p exists such that ∂FA/∂p = ∂FB/∂p =
0, thus, ν⋆A ̸= 0. Given the symmetry between ν⋆A and
ν⋆B , ν⋆B ̸= 0. Therefore, from (24a) and (24b), we have
FA(p⋆) = FB(p⋆) = α.

Theorem 4. Consider two parameterized scaling functions
GA(p, ψ) = FA(ψ)(p) and GB(p, ψ) = FB(ψ)(p) such that,
for any ψ ∈ Ψ, these are scaling functions for varying sets
A(ψ), B(ψ) ⊂ R3. Furthermore, for all p and ψ, assume
that the conditions of Lemma 2 holds, GA and GB are
strongly convex on p, the gradients ∂GA/∂ψ and ∂GB/∂ψ
and the Hessians ∂2GA/∂p2, ∂2GA/∂p∂ψ, ∂2GB/∂p2, and
∂2GB/∂p∂ψ are continuous in ψ, then, α⋆(ψ) is continuously
differentiable w.r.t. ψ.

Proof. From (23a), we have ∂ν⋆A/∂ψ + ∂ν⋆B/∂ψ = 0. Then,
using Lemma 2, and taking the partial derivative with respect
to ψ on both sides of (23a) and (23b), we obtain[

M c
c⊤ 0

]
︸ ︷︷ ︸

N

[(∂p⋆
∂ψ

)⊤ (∂ν⋆A
∂ψ

)⊤
]⊤

=

[
Ω1

Ω2

]
(25)

with

M =
∂2GA
∂p2

(p⋆, ψ)ν⋆A +
∂2GB
∂p2

(p⋆, ψ)ν⋆B (26a)

c =
∂GA
∂p

(p⋆, ψ)− ∂GB
∂p

(p⋆, ψ) (26b)

Ω1 = − ∂2GA
∂p∂ψ

(p⋆, ψ)ν⋆A − ∂2GB
∂p∂ψ

(p⋆, ψ)ν⋆B (26c)

Ω2 =
∂GB
∂ψ

(p⋆, ψ)− ∂GA
∂ψ

(p⋆, ψ). (26d)

Since GA and GB are strongly convex and ν⋆A and ν⋆B are dual
feasible and thus strictly positive from Lemma 2, M ≻ 0.
Note that c = 0 would imply from (23a) and (23b) that
∂GA(p⋆, ψ)/∂p = ∂GB(p⋆, ψ)/∂p = 0, violating the condi-
tion of Lemma 2. Hence, c ̸= 0. From Schur’s formula, we
know that

det(N) = det(M) det(−c⊤M−1c). (27)

Since M ≻ 0 and c ̸= 0, we can conclude that det(N) ̸= 0,
i.e., N is invertible. Since, M, c, Ω1, and Ω2 are continuous in
ψ, N−1 is continuous on ψ, thus, ∂p⋆/∂ψ is also continuous
in ψ. Then, from Lemma 2, we have

α⋆ = GA(p⋆, ψ). (28)

Taking the derivative w.r.t. ψ on both sides of the equation
yields

∂α⋆

∂ψ
(ψ) =

∂GA
∂p

(p⋆, ψ)
∂p⋆

∂ψ
(ψ) +

∂GA
∂ψ

(p⋆, ψ) (29)

which, following the above derivation, is continuous.

Remark 1. For ellipsoids/spheres, we can write a scaling
function (as noted after Definition 1) that satisfies Theorem 4.

From empirical studies, we believe that continuous differ-
entiability holds under more general conditions motivating
Conjecture 1.

Conjecture 1. Assume we have two convex objects A and B.
If A is a strongly convex object (e.g., ellipsoid, sphere) and B
is a convex object that can either have a non-smooth surface
(e.g., cylinder, polygon, cone) or a smooth surface, then the
CBF defined in (16) is continuously differentiable.

C. CBF Constraint

We consider the CBF formulation in Section IV-B using
velocity control. For robotic systems with dynamics (1), it
was shown in [22] that a derivative controller with gravity
compensation could realize input-to-state safety (ISSf) when
tracking a planned safe velocity command. Similar to [22],
by tuning the value of β in (16), we can achieve safety with
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respect to the actual safe set, even when the velocity command
is not perfectly tracked. For velocity control, the system
dynamics have the form of ẋ = G(x)u, with nj denoting
the number of generalized coordinates and n = m = nj . The
above equation is the same as (1) when F (x) = 0. For the
CBF constraint, we need to compute the value of ḣ(x). For a
single rigid body, the chain rule yields

ḣ(x) =
∂h

∂µ

∂µ

∂x
ẋ. (30)

where µ = [r⊤, q⊤]⊤ ∈ R7 represents the rigid body’s position
and orientation. The first term is obtained from (17). The
second term can be separated into two parts: the positional part
and the orientational part. For the positional part, ∂r/∂x =
Jv(x), where Jv : Rnj → R3×nj is the positional Jacobian
matrix. The orientational Jacobian Jω has the relationship
ω = Jω(x)ẋ, where ω ∈ R3 represents the frame angular
velocity and Jω : Rnj → R3×nj . Define the (vectorized)
quaternion as q =

[
qw qx qy qz

]⊤ ∈ R4, which satisfies

q̇ =
1

2
Qω =

1

2
QJω(x)ẋ (31)

Q =


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

 ∈ R4×3. (32)

Then, we have

∂µ

∂x
=


∂r

∂x
∂q

∂x

 =

 Jv(x)

1

2
QJω(x)

 ∈ R7×nj . (33)

Finally, we have the CBF constraint as

∂h

∂x
G(x)u =

∂h

∂µ

∂µ

∂x
G(x)u ≥ −γh(x). (34)

with γ ∈ R+. In the CBF constraint, we use Λ(a) = γa.

Remark 2. Since the Jacobians are continuous functions, the
partial derivative of α w.r.t. the general coordinates of the
robot is a continuous function on D if the partial derivative
of α w.r.t. (r, q) is a continuous function on D.

In the remainder of this section, we show conditions that
guarantee ∂h/∂x ̸= 0 for x ∈ ∂C, which guarantees the
validity of the CBF.

Lemma 3. For x ∈ ∂C, if the Jacobian matrix J(x) =[
J⊤
v (x) J⊤

ω (x)
]⊤

has full row rank, then ∂h/∂x ̸= 0.

Proof. We can write ∂h/∂x as

∂h

∂x
=
∂h

∂µ

[
I 0

0
1

2
Q

]
J(x) =

∂h

∂µ
AQJ(x). (35)

It can be seen that if (∂h/∂µ)AQ = 0, then no infinitesimally
small change in pose (including translations and rotations)
exists that changes h. It is evident that this is not the case
since the distance between two convex objects can always be
modified by some combination of translations and rotations.

Thus, we know that (∂h/∂µ)AQ ̸= 0. Since J(x) has full
row rank, we have ∂h/∂x ̸= 0.

Remark 3. In addition to Lemma 3, for a fully actuated system
with no input constraint, there always exists a u that satisfies
the CBF constraint when J(x) is non-singular.

D. Safe Controller

For robotic applications, robots and obstacles are often rigid
multibody systems. We represent each rigid body using convex
primitive shapes. Then, using the proposed CBF construction
method, we write a CBF for each robot-obstacle-rigid-body
pair within the robot’s workspace. Let the robot and obstacles
be segmented into nR and nO convex shapes, respectively.
Then, we can construct nR×nO CBFs, and the same number
of CBF constraints, one for each robot-obstacle-rigid-body
pair. Then, we combine all the CBF constraints and write it
as an element-wise inequality

∂H

∂x
G(x)u ≥ −γH(x), H =

[
hi×j(x)

]
∈ RnR×nO (36)

where i = 1, · · · , nR, j = 1, · · · , nO, and hi×j(x) repre-
senting the CBF between the i-th robot segment and the j-th
obstacle segment. CBF-based quadratic programs (CBFQPs)
are commonly used in CBF-based methods to obtain safe
control actions. CBFQP utilizes a performance controller πperf
to generate a reference control uref . Then, the CBFQP acts as
a safety filter that alters the possibly unsafe uref in a minimally
invasive fashion to find its safe counterpart, i.e.,

min
u

∥u− uref∥22 (37)

subject to
∂H

∂x
G(x)u ≥ −γH(x).

This method works well when the performance controller
is non-optimization-based, e.g., PID or control Lyapunov
function (CLF) based controllers. For optimization-based con-
trollers, we add the CBF constraints and solve it as a single
optimization problem

min
u

J (u) (38)

subject to
∂H

∂x
G(x)u ≥ −γH(x)

where J : Rm → R is the objective function. We will
demonstrate the use of these two control methods in Section V.
The controller computation flow is shown in Fig. 1. Note that
for two obstacles at similar distances with different scales, the
CBF values would be smaller for the larger obstacle. However,
the CBFQP controller would not favor one obstacle over the
other since a feasible solution of the CBFQP would need to
satisfy the CBF constraint of each individual obstacle.

V. EXPERIMENTS

This section shows the efficacy of our proposed approach.
First, we show the performance of our method on a simulated
mobile robot example. Then, we show the application of our
method to a 7-degree-of-freedom (DOF) robot manipulator
both in simulation and real life. In all our experiments, we
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Fig. 3. Generated motion for the mobile robot (purple capsule) in presence of
obstacles (blue boxes). The orange dashed curve is the motion generated by the
performance controller uref . The light purple curve represents the generated
trajectory of the proposed CBFQP and the green dashed curve represents
the generated trajectory of the SDF-CBFQP controller [9] which prematurely
terminates (i.e., without reaching the target state).

set β = 1.03 and γ = 5.0, though a larger β value would also
work. All experiments are performed on a PC with 32GB of
RAM and an Intel Core i7 11700 processor.

A. Mobile Robot Example

We demonstrate the efficacy of our approach on a mobile
robot example having a capsule shape and the obstacles are
represented as polygons. We assume that we can directly
control the robot’s linear and angular velocity, i.e.,

[
ṗx ṗy ϕ̇

]⊤
=

v cosϕv sinϕ
ω

 . (39)

The area the robot occupies after scaling it with α can be
described using the constraints [15]:[

0
0

]
−
[
01×3 −l/2 1
01×3 −l/2 −1

]pα
δ

 ∈ R2
+ (40a)

[
0
−r

]
−
[
01×3 −R 0

−I3×3 01×3 b̂x

]pα
δ

 ∈ Q4 (40b)

with r ∈ R3 being the position of the capsule, Q4 ⊂ R4 the
second-order cone, R ∈ R+ the radius of the capsule, L ∈ R+

the length of the capsule, l ∈ R+ the line segment distance,
δ ∈ [−αL/2, αL/2] a slack variable, b̂x = R[1, 0, 0]⊤, and
R being the rotation matrix representing the orientation of
the robot. For any point p that satisfies (40), it will belong
to the scaled version of the robot body. The area occupied

by the scaled version of the obstacles is represented using the
constraint [15]:

AoRoro −
[
AoR

⊤
o −bo

] [p
α

]
∈ R+, (41)

with Ao ∈ Rno×2 and bo ∈ Rno being the halfspace con-
straints, ro ∈ R2 being the position of the obstacle, Ro ∈ R2×2

being the rotation matrix of the obstacle, and no representing
the number of edges for the obstacle. Then, if we use (40)
and (41) as the constraints in (15), we can solve for the
CBF defined in (16). We use a proportional controller as the
performance controller

v = Kv

√
(pt,x − px)2 + (pt,y − py)2 (42a)

ω = Kω

[
atan2(pt,y − py, pt,x − px)− ϕ

]
(42b)

with Kv = 0.5, Kω = 2.0, and the target position
(pt,x, pt,y) = (5.0, 3.0). The control is obtained by solv-
ing (37). The generated motion is shown in Fig. 3. Using
our proposed CBF with a simple performance controller, the
controller in (37) can generate fairly complex maneuvers to
ensure safety. When testing the SDF-based CBF proposed
in [9], the mobile robot gets stuck when getting close to
the obstacle, and the CBFQP often fails to find a feasible
solution. This is due to a reduced feasible set caused by
the conservativeness of the approximated partial derivative of
the SDF in the CBF constraint. On average, the SDF-CBF
takes 9µs to compute, while our proposed CBF takes 34µs.
However, SDF-based CBFs failed to solve the task.

B. 7-DOF Robotic Arm

For the FR3 experiments, we constructed two settings: two
walls with a gap on each of them (referred as the two-walls
task) and three blocks scattered in the workspace (referred
as the three-blocks task). We encapsulate the links with
ellipsoid-shaped bounding boxes for the three-blocks
task and capsule-shaped bounding boxes for the two-walls
task. In both settings, the end-effector is encapsulated with a
sphere. Since the CoM of the two base links does not have
relative translation with respect to the base, we do not need to
encapsulate them. This gives us, in total, seven bounding boxes
(two bounding boxes encapsulate the fifth link) and 7nO CBFs
for each of the experiments. We use a resolved rate controller
with joint centering to obtain the desired joint velocity subject
to the CBF constraint. The resolved rate controller cost Jr and
the joint-centering cost Jc are

Jr =
∥∥J(θ)θ̇des − [

Kp(pdes − p) + ṗdes

]∥∥2
2

(43a)

Jc =
∥∥N (θ)[θ̇des −K ′

p(θnominal − θ)]
∥∥2
2

(43b)

with θ ∈ R7 representing the joint angles, N ∈ Rnj×nj being
the nullspace projection matrix N (θ) = I − J†(θ)J(θ) and
J† ∈ Rnj×6 representing the pseudo-inverse of J . Then, we
solve for u = θ̇des using

min
u

Jr + ϵJc (44)

subject to
∂H

∂x
u ≥ −γH(x)
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Fig. 4. This figure shows the proposed CBF-based obstacle avoidance controller can ensure safety on an FR3 robot, both in simulation and on the real robot.
The simulation is performed using PyBullet with a time step of 1 ms. The walls are numbered in the front upper, front lower, back upper, and back lower
order. The blocks are numbered in the top, middle, and bottom order. For each experiment, we record the CBF values of each link-obstacle pair, and for each
obstacle, we show the minimum CBF value among all the links. For the real robot experiments, we synthetically show the bounding boxes as blue overlays.

Fig. 5. The computed partial derivatives of the CBF in the real-world
robot experiment on the three-blocks and two-walls task. The partial
derivatives for link 4, link 5, and link 6 are similar to link 7, thus, in interest
of space, they are not shown in the figure above.

with ϵ ∈ R+ being a weighting parameter and G(x) = Inj×nj .
The torque command to track θ̇des is generated using a
derivative controller with gravity compensation

τ = Kd(θ̇des − θ̇) +Gg(x) ∈ Rnj (45)

with Kd ∈ Rnj×nj being a diagonal matrix and Gg : Rn →
Rnj the generalized gravitational vector. For the two-walls
task, the goal is to reach a target point within the gap of the
wall in the back. For the three-blocks task, the robot to
reach a point within the lowest block. In both cases, the desired
end-effector position is set to be the target point pdes = ptarget,
and the desired end-effector velocity to be zero ṗdes = 03×1.

The results of our proposed method on these two tasks are
shown in Fig. 4. For two-walls, the end-effector reaches
the target position while ensuring safety. The end-effector
reaches the closest point to the target that avoids collision for
three-blocks. At each time step, our method computes
7nO CBFs, seven for each obstacle, and we show the change
in the minimum value among the seven CBFs for each obstacle
in Fig. 4. For two-walls and three-blocks, the average
CBF computation time is 0.24ms and 0.20ms, respectively. For
both tasks, in simulations and on the real robot, the velocity
control is updated at 100Hz.

We empirically show that the proposed CBF is continuously
differentiable. The individual elements of ∂α/µ for the real-
world experiment on the three-blocks task are plotted
in Fig. 5. We see that all partial derivatives are continuous,
echoing our claim in Conjecture 1. For the two-walls task,
we see that when continuous differentiability does not hold
globally, the approach is still viable in practice and safety
can be achieved using our proposed CBF. This is because
even when the CBF is not globally continuously differentiable,
such discontinuities would intuitively be expected to be over
a sparse set (e.g., a set of measure zero). Hence, in practice,
the likelihood of encountering the exact poses for which the
CBF is not continuously differentiable will be minimal. This
is corroborated by the empirical observation that we did not
observe any undesired behaviors, e.g., no unsafe behavior
or large control commands. The simulation and experimental
results can be found at https://youtu.be/WhfFZT1oyJE.

VI. CONCLUSION

This paper presents a systematic and computationally simple
approach to construct CBFs using differentiable optimization

https://youtu.be/WhfFZT1oyJE
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based collision detectors. We showed continuous differentia-
bility for strongly convex scaling functions when the gradients
and Hessians exist and are continuous. We conjecture that the
continuous differentiability can be generalized to one object
being strongly convex and the second being only convex. We
experimentally demonstrated the efficacy of our approach on a
mobile robot in simulation and a 7-DOF robot manipulator in
both simulations and on the real robot. In the future, we plan
to extend our approach to consider input and state constraints
and apply them to multi-robot collaboration tasks.
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