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Geometry-Aware Coverage Path Planning for
Depowdering on Complex 3D Surfaces

Van-Thach Do and Quang-Cuong Pham

Abstract—This paper presents a new approach to obtaining
nearly complete coverage paths (CP) with low overlapping on
3D general surfaces using mesh models. The CP is obtained by
segmenting the mesh model into a given number of clusters using
constrained centroidal Voronoi tessellation (CCVT) and finding
the shortest path from cluster centroids using the geodesic metric
efficiently. We introduce a new cost function to harmoniously
achieve uniform areas of the obtained clusters and a restriction
on the variation of triangle normals during the construction of
CCVTs. The obtained clusters can be used to construct high-
quality viewpoints (VP) for visual coverage tasks. Here, we utilize
the planned VPs as cleaning configurations to perform residual
powder removal in additive manufacturing using manipulator
robots. The self-occlusion of VPs and ensuring collision-free
robot configurations are addressed by integrating a proposed
optimization-based strategy to find a set of candidate rays for
each VP into the motion planning phase. CP planning bench-
marks and physical experiments are conducted to demonstrate
the effectiveness of the proposed approach. We show that our
approach can compute the CPs and VPs of various mesh models
with a massive number of triangles within a reasonable time.

Index Terms—Industrial robots, motion and path planning,
additive manufacturing, robotics in hazardous fields.

I. INTRODUCTION

COVERAGE path planning (CPP) is the problem of
computing a path that traverses all points in a given

domain. Several criteria for a CPP include complete coverage,
no overlap, and satisfying task-based additional requirements
[1]. Designing a CPP algorithm to satisfy all those criteria
is challenging and may not be achieved in practice. Thus,
there will be a tradeoff in selecting the priorities among those
criteria to meet the quality of a specific task.

Numerous previous CPP approaches aim to generate poly-
lines with a nearly constant swath width on the target surface
to ensure complete and consistent coverage. The coverage
paths can be utilized for various tasks, such as indoor cleaning,
surveillance, agriculture services, etc. Additionally, CPP plays
a pivotal role in perception-based surface treatments using
robotic end-effectors, including inspections and 3D recon-
structions, where the quality of the selected viewpoints (VP)
significantly affects the performance. Most existing methods
for selecting VPs either randomly generate a set of candidate
VPs around the object or choose them based on the normal

This study is supported under the RIE2020 Industry Alignment Fund
–Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as
cash and in-kind contribution from the industry partner, HP Inc., through
the HP-NTU Digital Manufacturing Corporate Lab. (Corresponding author:
Van-Thach Do)

The authors are with the HP-NTU Digital Manufacturing Corporate Lab and
School of Mechanical and Aerospace Engineering, Nanyang Technological
University, Singapore. {thach.do,cuong}@ntu.edu.sg.

Fig. 1. Experimental setup of a depowdering system for 3D-printed objects.

direction of each triangle face of the mesh [2]. While these
methods may perform well for simple meshes, they can lead to
inadequate coverage of complex geometries and high overlap
and may increase computation time if the number of sample
VPs is high. Furthermore, because these methods do not
account for self-collision or collisions between the robot and
the surrounding objects, they cannot ensure that visual sensors
reach the object surface.

In contrast to prior approaches, this study presents a new
CPP algorithm that can attain nearly complete coverage and
low overlapping on the object surface while producing high-
quality VPs for cleaning, model-based inspection, or 3D recon-
struction tasks. We also address the self-occlusion (occlusion
between VPs and other triangle faces in the mesh) and the
collision between the robot body and the surrounding envi-
ronment. Then, we leverage the obtained VPs for an industrial
cleaning application using manipulator robots. Our approach
consists of three main contributions as follows:

(i) We present a new energy function for the constrained
centroidal Voronoi tessellation (CCVT) method [3] to seg-
ment the mesh model M into m clusters with low standard
deviations (SD) in both area and triangle normal. VPs are
constructed based on the mass centroids and proxy normals
[4] (average triangle normals) of the resulting clusters.

(ii) We propose an efficient approach, namely geodesic
decomposition calculation, that has low time complexity to
calculate the exact geodesic distances (GD) between centroids.
Then, the coverage path on the surface is computed based on
the obtained distance costs between centroids.

(iii) Compared to prior works, we address both issues that
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may be encountered when positioning the robot tool at the
obtained VPs: (1) self-occlusion between rays at VPs and
other triangles in M; and (2) infeasible robot configurations
at computed poses due to joint limits or collisions with sur-
rounding objects (rays at VPs in these cases are referred to as
invalid rays). An efficient correction algorithm is proposed to
obtain valid robot configurations with the closest direction (if
possible) to the invalid rays by utilizing a set of candidate rays
formed by an optimization strategy. We apply the proposed
method to automate the removal of residual powder from 3D-
printed (3DP) parts with complex geometries, which, to the
best of our knowledge, has not been done before.

A. Related Work

The CPP problem has been widely studied and applied to
various robotic applications [5]–[9], where most of the target
surfaces are flat or have low curvature geometries. In [10],
a global surface parameterization-based CPP is proposed to
ensure non-intersecting paths with great coverage for general
surfaces with complex topology. By considering minimizing
energy consumption caused by gravity, a CPP algorithm is
proposed to plan the Fermat spiral paths for mobile robots
on general terrain surfaces [11]. In those approaches, the CPP
results in nearly complete coverage paths on the target surface.

CPP-based surface cleaning solutions using robot manip-
ulators have been widely developed. In [12] [13], surfaces
cleaning applications are proposed, where the coverage paths
are generated by projecting from 2D to 3D and obtaining from
intersecting with equally spaced parallel planes, respectively.
However, the quality of the generated coverage paths may
degrade on high-curvature surfaces due to distortion. In [14],
the problem of minimizing the cost function in the joint space
for surface cleaning tasks is addressed. Here, the object surface
is modeled as a set of planar patches. However, the obtained
robot configurations may yield high overlapping rates due to
randomly picking points from the acquired point cloud during
the construction of surface patches. Also, the issues of self-
occlusion and infeasible configurations due to joint limits are
not addressed. In [15], a new method is introduced to generate
a uv grid on three types of 3D freeform surfaces formed by non
self-intersecting freeform curves. The method aims to create
even coverage paths while considering task constraints on the
end-effector pose. However, this approach necessitates human
operators to provide transformed axes, and the resulting task
constraints may not be suitable for high curvature surfaces,
where the self-occlusion phenomenon exists.

In 3D inspection and reconstruction tasks, VP planning
plays a crucial role in determining the optimal sets of sensor
poses. The optimal set refers to the minimum number of
VPs required to capture the target objects or scenes at a
high coverage rate. In model-based methods, the VPs can
be obtained in different ways. VPs are randomly generated
[16], [17]. For high-curvature meshes, a large number of VP
samples is required to ensure complete coverage. In [18], [19],
VPs are sampled from mesh vertices. This approach suffers
from VP redundancy. Another VP generation method is patch
sampling [20], which involves segmenting the mesh model

into sub-regions under specified constraints. The most relevant
to our work is [21], where the mesh model is segmented
using B-splines and guided by a set of feature functionals.
Due to its independence from mesh resolution, this approach
can lead to a reduction in the number of VPs compared to
random sampling methods. However, the computed VPs in
the subdivided segments step heavily rely on processing B-
spline surfaces. This may result in a large number of redundant
VPs at intersections of high-curvature B-spline surfaces. Also,
the self-occlusion of VPs is not handled in that study. In
[22], a targeted VP sampling strategy is proposed to find the
optimal next VP. This is done by iteratively reformulating and
solving the search problem, aiming to minimize the number
of VPs and the travel cost while ensuring robot kinematics
and avoiding collisions. However, the iterative search and
sampling of every triangle face can result in a long computa-
tion time for high-resolution meshes. Our proposed method,
which segments the mesh globally and derives VPs from the
obtained clusters, benefits from the efficient computation of
patch sampling while achieving nearly uniform areas of the
obtained clusters for low curvature meshes. Additionally, we
address the self-occlusion of VPs and compute an optimal set
of collision-free robot configurations for performing the task.

Additive manufacturing is popular due to its ability to
fabricate complex objects rapidly from CAD models. How-
ever, post-processing 3DP parts, such as support and powder
removal and surface finishing, is time-consuming and expen-
sive and poses potential hazards to workers. To assist and
automate these processes, vision systems have been proposed
to identify 6D poses of the 3DP parts under partly occluded
by powder [23]–[25]. In [24], a full pipeline is proposed
to perform residual powder removal. However, the designed
mechanism aims to clean flat or low-curvature objects. In [25],
a vision-based approach is proposed to perform depowdering
for 3DP parts located in a powder bed. However, replacing
actual powder materials, which are highly adhesive, with
children’s play sand simplifies this work compared to real-
world scenarios. In their work, the roll and pitch motions of
the robot tool are maintained during the operation, limiting
the ability to handle complex objects. Their future work, i.e.,
investigating an advanced path planning algorithm to improve
the depowdering automation, is addressed in our study.

B. Automated Depowdering Platform for 3DP Parts
Fig. 1 shows the experimental cleaning system for 3DP

parts, which consists of a 6-axis robotic manipulator, a blast
nozzle tool, a part holder, and a 3DP part. The blast nozzle is
attached to the robot end-effector, and a high-pressure com-
pressed air stream containing tiny glass beads flows through
the nozzle head to remove residual powder. Our goal is to
propose an efficient CPP algorithm with collision-free robot
trajectories to automate the removal of residual powder from
3DP parts after unpacking from 3D printing stations.

II. METHOD

A. Computation of low curvature clusters using CCVT method
Let M = {F,N} be the input mesh, where F and N are the

set of triangle faces and their corresponding normal vectors,
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respectively. Our objective is to divide M into m connected,
low curvature clusters of faces {Vi}mi=1 by computing discrete
CCVT on M with triangle normal constraints.

Definition 1: Discrete Voronoi tessellation. Given a dis-
crete set of points W = {yi}nt

i=1 ⊂ ℜN , where yi are centroids
of nt faces in F. A set {Vi}mi=1 is a tessellation of W if
Vi ∩ Vj = ∅,∀i ̸= j and ∪ki=1Vi = W. Voronoi sets are
defined as

Vi = {y ∈W|∥y − zi∥< ∥y − zj∥, j = 1, ...,m, j ̸= i, (1)

where {zi}mi=1 ⊂ ℜN are referred to as generators. Vi is
referred to as a Voronoi tessellation or Voronoi diagram.

Definition 2: Discrete centroidal Voronoi tessellation. A
centroidal Voronoi tessellation (CVT) is a Voronoi tessellation
where {zi} is also the mass centroid of its Voronoi region. By
choosing a uniform density function, we can obtain {zi} for
the discrete form of CVT [26] [27] as

zi =

∑
τ∈Vi

ζc(τ)ζa(τ)∑
τ∈Vi

ζa(τ)
, (2)

where ζc(τ) and ζa(τ) are the functions to obtain the centroid
and the area of the face τ , respectively. Centroidal Voronoi
diagrams minimize the following energy function

El2 =

m∑
i=1

∑
τ∈Vi

(ζa(τ)∥ζc(τ)− zi∥2) (3)

Definition 3: Discrete constrained centroidal Voronoi dia-
gram. {Vi}mi=1 is the CCVT of W if and only if {zi}mi=1 is the
constrained mass centroid of those regions. The constrained
centroid zci of Vi on a continuous compact set S ⊂ ℜN is
determined as the projection of zi onto faces in S along the
proxy normal of Vi. For a a discrete set of face centroids of
M, this projection is approximately determined as

minzc
i∈Vi

(∥zi − zci∥2) (4)

Various energy functions have been proposed for differ-
ent applications. A L2,1 metric is proposed for capturing
anisotropy and segmentation [28]. By combining metrics
from spherical and hyperbolic spaces, a unified framework
in universal covering space [29] is proposed to get uniform
partitions and high-quality remeshing results. However, these
approaches do not align with our scope, leading us to introduce
a new energy function that combines distance and normal
costs. In the CVT formulation for 3D surfaces, the GD is a
natural choice [30], but its calculation can be computationally
expensive, leading to the use of the Euclidean metric as an
approximation. This approximation, however, may result in
significant errors on high-curvature surfaces [26]. Compared
to the l2 norm, the l1 norm is preferable in high dimensional
spaces and has been efficiently utilized to approximate the
GD in various fields [31] [32]. Motivated by this, we select
the l1 metric for evaluating the distances on 3D surfaces in
the distance cost. The normal cost is used to restrict the
variation of triangle normals. The proposed energy function
is formulated as follows:

E =

m∑
i=1

∑
τ∈Vi

ξ(zi, τ) (5)

where the cost function ξ is defined as

ξ(zi, τ) = (α−1
1 α2ζa(τ)∥ζc(τ)− zi∥1+α2ζa(τ)Υn), (6)

where α1 is a positive constant used to normalize the first term.
It is determined based on the length of the diagonal bounding
box of the mesh. α2 is selected within the range of ∈ [0, 1],
α2 = 1− α2. Υn is the normal cost and is determined as

Υn = β(ζn(τ), ζn(zi))(1− ζn(τ) · ζn(zi))/2 (7)

where ζn(τ) and ζn(zi) are the normal vector of face τ and the
proxy normal of Vi, respectively. The function β is selected
as β = 1 if the dot product ζn(τ) · ζn(zi) > α3, and β = α4

otherwise. α3 ∈ (−1, 1) and α4 > 1 are tuning constants. α3

is the threshold at which a higher weight (α4) is applied to the
normal cost, aiming to remove and reorganize triangles from
the assigned cluster if they exhibit large normal differences
compared to the corresponding cluster’s proxy normal. The
CCVT is computed based on the trade-off between distance
and normal costs, as described in (5). For meshes with high
curvature surfaces, we mitigate the influence of the normal cost
to avoid multiple components per cluster, thereby simplifying
the post-processing step [26]. This can be achieved by increas-
ing α2 and decreasing α3 and α4. Conversely, for meshes with
low curvature surfaces, we decrease α2 and increase α3 and
α4 to obtain low curvature clusters.

The CCVT is computed by the Lloyd algorithm as follows.
(i) Randomly select m points zi ∈ W. (ii) Update Voronoi
regions: a face in F, with the associated centroid {yv}nt

v=1, is
assigned to Vq, q = 1, ...,m if

zq = argmin
zi∈{zi}m

i=1

ξ(zi,yv) (8)

(iii) Update the mass centroids of the computed CCVTs using
(2). (iv) Update zi to the constrained mass centroid of the
CCVT Vi using (4). (v) Check if the convergence criteria are
met; otherwise, repeat step (ii).

B. Determination of coverage path using the geodesic metric

The cleaning task is performed by aligning the nozzle
axis at m points located at zi, normal direction −ζn(zi),
and the distance from the nozzle to zi is rs. The CPP of
this task is to find the shortest path traversing all zi. The
distances between zi on the mesh M are computed using the
geodesic metric. However, computing GDs on the entire M is
computationally intensive and impractical, especially on high
resolution meshes. To tackle this issue, we propose a new
approach to decompose the computing on the whole mesh
into the computing on m subgraphs constructed by edges
of each Vi and its neighbor-connected clusters as Algorithm
1, Lines 1-7. Here, GetAdj(·) and ϵ(·) are used to get
neighbor-connected clusters (·) and edges of the cluster (·),
respectively. The exact GD and its path are computed using
ExactGeodesic [33]. Cd and Pd are dictionary mappings
containing cost and tour between generators obtained from
computing the shortest path using Dijkstra’s algorithm for
multiple sources and destinations based on the graph Gg . It
is noted that Dijkstra’s algorithm is only used to compute
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GetCoveragePath({Vi}mi=1, {zi}mi=1)
1 Pgeo = ∅;Eg = ∅;
2 for i = 1 to m do
3 Va, za = GetAdj(Vi); Ep = ϵ(Vi ∪ Va);
4 for z in za do
5 if (zi, za) not in Eg then
6 c, p = ExactGeodesic(Ep, zi, za);
7 Eg

+←− ((zi, za), c);Pgeo
+←− p;

end
end

end
8 Ng = {zi}mi=1;Gg = (Ng,Eg);
9 Cd,Pd = Dijkstra(Gg);

10 for i = 1 to m do
11 for j = i+ 1 to m do
12 if (zi, zj) not in Eg then
13 Eg

+←− ((zi, zj),Cd[i, j]);
14 Pgeo

+←− Pd[i, j];
end

end
end

15 return 3Opt GeoPath(Eg,Pgeo);
Algorithm 1: Computation of a coverage path.

distances and paths of non-existing edges in Eg . Lastly, the
coverage path is determined by finding the shortest path to visit
each generator zi exactly once. This problem is formulated as
the Traveling Salesman Problem (TSP), which is NP-hard. It
is probably impossible to find optimal solutions in polynomial
time [34]. Based on the obtained GD cost in Eg , the 3-Opt
algorithm (Algorithm 1, Line 15) is applied to find the near-
optimal solution of the TSP in 3D space. As a result, we obtain
a near-optimal tour of {zi}mi=1 over M and the corresponding
geodesic path, which represents the coverage path, extracted
from Pgeo. The notations X +←− x and X ← x represent
appending the element x to the list X and assigning x to the
list X, respectively. Cd[i, j] returns the cost length from zi to
zj . Pd[i, j] is used to get geodesic path between zi and zj .
Complexity. Assuming that the processed triangular mesh M
is closed. The relation between the number of faces and edges
ne [35] is ne = 3/2nt. The complexity of an exact geodesic
algorithm is O(n2

elog(ne)) [33]. To compute the coverage
path, GDs between cluster centroids need to be computed
(Algorithm 1, Lines 2-7). Assuming that each cluster has ϖ
neighbors on average, our method achieves the complexity
of O(m(ϖ/2)((ϖ + 1)2ne/(3m))2log((ϖ + 1)2ne/(3m))
and requires O((ϖ + 1)2ne/(3m)) space. Without using
our proposed method, those distances are determined by
computing on the entire edges of M with the complexity
is O((m(m − 1)/2)n2

elog(ne)) and requires O(n2
e) space,

which requires much larger space and is more computationally
expensive compared to the proposed decomposition calcula-
tion, especially for high resolution meshes. The complexity
for the rest computations are O(m3)(Line 8, Dijkstra) +
O(m(m − 1)/2) (Lines 9-14) + O(m3)(3Opt). Thus, the
proposed CPP can be obtained within a reasonable time.

Fig. 2. Set of candidate rays in different views.

C. Correction of Infeasible Robot Configurations and Com-
putation of Final Robot Trajectory

Let ri = {zi, ζn(zi)}, ζn(zi) = [ncx, ncy, ncz]
T , and Ropt =

{ri}m1 . For the cleaning task, it is crucial that the ray ri has no
obstructions, enabling unobstructed airflow from the nozzle to
zi (or unobstructed camera view for model-based inspection or
3D reconstruction tasks in regions of interest). However, this
property cannot be guaranteed solely based on the obtained
proxy normals ζn(zi). Also, there exists a robot configuration,
i.e., an inverse kinematics (IK) solution, ensuring the tool is
aligned to ri without colliding with the surrounding environ-
ment. We propose an optimization problem (see appendix A)
to construct a set of candidate rays representing the possible
directions of the nozzle at zi as shown in Fig. 2. The obtained
result is a set Ccr = {c1, c2, ..., cNc

} containing Nc center
points of circles of radius rc (nozzle radius). These circles are
(almost) uniformly distributed in a specified region, defined by
an elevation angle φ, of a sphere surface of radius rs. Also,
the returned centers of Ccr are then sorted in ascending order
of distance to c1. The set of near-optimal, collision-free IKs is
computed using Algorithm 2. Those IKs are used to compute
coverage trajectories to perform the cleaning task. Since the
rotation about the ray is irrelevant for cleaning tasks, we can
discretize the rotation about each ray into a set of angles Θ as

Θ = {2π(i− 1)/I}, i = 1, .., I, (9)

where I is the discretization step size, thus, for each ri,
there are I possible configurations. We use OpenRAVE [36]
for computing IKs, checking collisions between the corre-
sponding robot configurations and environment (getIKs and
isValidCfg, Algorithm 2), and performing motion planning
to obtain final robot trajectory. A valid robot configuration, i.e.,
isValidCfg(r, θr) returns True if ray r has an elevation
angle less than θr and the obtained configuration is collision-
free with the surroundings. Trimesh [37] library is used to
check self-collision ri∩F, Algorithm 2. A ray rx is considered
invalid if it either collides with the mesh or has no IK
solution aligned with that ray. An invalid ray is corrected (if
possible) by using getIKs and aligning the candidate rays in
AlignCR to new poses such that Ocr is located at zi and c1
lies in the direction of rx. A set of valid robot configurations
Cfree is obtained by applying Algorithm 2, Lines 1-7.

−−→
zxok

is the normalized vector from zx to ok. Ra(b) ∈ SO(3)
is the rotation matrix representing the rotation about the a-
axis by angle b. T (b) ∈ SE(3) is the translation matrix
translating a point from the origin to position b. Based on
the collision-free set of IKs Cfree, an undirected graph G
is constructed to find a set of optimal robot configurations
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GetOptRobotCfgs(Ropt,Ccr)
1 Cfree = ∅;
2 for i = 1 to m do
3 if ri ∩ F == ∅ and isValidCfg(ri, θr) then
4 Cfree

+←− getIKs(ri);
else

rt = GetFreeRay(ri,Ccr);
5 if rt ̸= None then
6 Cfree

+←− getIKs(rt);
end

end
7 return ComputeOptCfg(Cfree);
GetFreeRay(rx,Ccr)

8 Ccr = AlignCR(rx,Ccr)
9 for k = 1 to Nc do

10 ok = C[k]

cr ; rc = {zx,
−−→
zxok};

11 if rc ∩ F == ∅ and isValidCfg(rc, θr) then
12 return rc;

end
end

13 return None;
AlignCR(rx,Ccr)

14 ϕy = arccos(ncz);ϕz = arctan2(ncy, ncx);
15 Ctmp ← ∅; Ta = T (zx)Rz(ϕz)Ry(ϕy);
16 for k = 1 to Nc do
17 Ctmp

+←− TaC[k]
cr ;

end
18 return Ctmp;

Algorithm 2: Determination of near-optimal, valid, and
collision-free robot configurations.

in configuration space, where the tour cost has a minimal
length in the configuration-space metric. An optimal tour of IK
solutions over coverage lines Cfree can be obtained using the
function ComputeOptCfg(Cfree), Algorithm 2 (by solving
G using Dijkstra’s algorithm in the same manner as [38]).

III. EXPERIMENTS

We use a Ubuntu workstation with an Intel Xeon® W-
2255 CPU, 3.70GHz x 20, 24-GB RAM to benchmark the
proposed algorithm on four objects with the order ascending
of complexity and size (from left to right in Fig. 5), including
Bunny (69,451 faces), Deer (139,306 faces), Nene (193,254
faces), and Lion (206,328 faces). The parameters are selected
as α1 = 1/6ddgn, α2 = 0.93, α4 = 7, where ddgn is
the diagonal length of the object bounding box. We select
α3 = 1/1.9 for Bunny, Deer, and Nene. For Lion, we select
α3 = 1/3 due to the high roughness of its geometry. The
number of clusters m is determined based on the nozzle radius
rc = 5

√
2× 10−3 m, i.e., m = ζa(F)/σe, where ζa(F) is the

total area of all triangle faces and σe = πr2c is the expected
cleaning area at a robot configuration.

A. Coverage Path Planning Results

To assess the effectiveness of the proposed energy function
in generating uniform cluster areas, we perform mesh segmen-

tation experiments using different norm types in the distance
function, represented by (3) with l1-norm (l1), (3) with l2-
norm (l2), (5) with l1-norm (l1n, proposed method), and (5)
with l2-norm (l2n). We evaluate its uniformity by computing
the SD of the obtained cluster areas for the four objects, as
shown in Fig. 3. Results show that l2 yields the lowest SD
in the Bunny object (lowest curvature). For higher curvature
meshes, however, l1-based norms perform better at generating
more uniform cluster areas. Particularly, the use of l1n with
the normal cost results in significantly more uniform cluster
areas compared to l2n. Fig. 4 shows the convergence of the
energy function l1n of all objects after 16 iterations. The result
of computing CCVTs is described as the second row of Fig.
5. The blue lines are geodesic paths connecting all generators
of neighbor-connected clusters. The triangle normals on each
cluster vary within a specific range while maintaining a nearly
uniform distribution of clusters over the mesh.

The CPs on the meshes are shown in the third row of Fig.
5, where a unique, shortest path connects all generators to
form CPs on mesh models. The computation time of our CPP
mainly depends on the computation of exact GDs (Algorithm
1, Lines 2-7). Using the proposed decomposition method,
the GDs between segmented clusters for the four objects are
computed in 10 s (271 clusters), 23 s (209 clusters), 37 s
(233 clusters), and 33 s (332 clusters), respectively. This is a
significant improvement compared to the computing times of
39,240 s, 56,160 s, 91,908 s, and 225,828 s without applying
the decomposition approach. The proposed method results in
a slightly longer computation time for Nene than Lion due
to Lion’s more complex geometry, which requires a larger
number of segmented clusters.

We further compare our proposed method (l1n) with a
conventional CCVT approach (l2) and a baseline [17] by
additional CPP criteria as Table I. bl and bl×3 are the results
produced by the baseline method using the same number of
VPs and three times the number of VPs generated by our
method, respectively. Here, we use GD from the triangles of
interest to the generators of adjacent clusters and a threshold
determined by rc to estimate coverage and overlap rates. RSD
is the relative standard deviation of the expected area per
cluster computed based on clusters’ area and σe. Funreach is the
set of unreachable triangles per object in terms of the normal
cost. A triangle is added to Funreach if the angle constructed by
its normal and the corresponding generator’s normal is larger
than a certain value θ0, i.e., θ = arccos(ζn(τ) · ζn(zi)) > θ0.
The physical meaning of Funreach is that if θ is greater than
that value, then the performance of the task will be degraded.
For the cleaning task, we select θ0 = π/3 rad. For each
object, Funreach (%) is determined by Funreach/nt. Table I shows
that the baseline method bl has significantly higher rates of
overlapping and unreachable features (Funreach) and signifi-
cantly lower coverage rates compared to our proposed method
(l1n). The coverage rates can be improved by bl×3; however,
the overlapping becomes markedly worse. Both l2 and our
proposed method (l1n) achieve nearly complete coverage with
much lower overlapping rates compared to the baseline.

Fig. 6 shows the computed CCVTs in different views around
the Deer’s left ear. Generators on the ear are marked as
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TABLE I
COMPARISON RESULTS.

Coverage (%) Overlap (%) RSD (%) Funreach (%)
bl bl×3 l2 Ours bl bl×3 l2 Ours bl bl×3 l2 Ours bl bl×3 l2 Ours

Bunny 64.6 95.1 97.7 97.6 44.1 86.3 10.7 11.5 0.8 0.43 1.1 1.3 5.7 1.6 5.4 0.5
Deer 80.6 97.6 98.9 97.5 63.6 92.7 26.9 28.8 2.1 1.2 2.2 2.4 21.3 5.9 21.3 5.9
Nene 67.3 95.3 94.4 92.3 45.1 87.9 10.7 8.3 1.4 0.86 2.0 2.4 16.7 5.8 15.0 2.5
Lion 69.0 93.6 95.1 92.4 57.8 86.1 11.3 11.4 2.1 1.2 1.6 1.9 19.7 5.1 17.7 13.7

Fig. 3. The standard deviations of the cluster areas of the four objects.

Fig. 4. Convergence of the energy function of the four objects.

yellow. For each cluster, edges of unreached triangles are
visualized in darker colors compared to its corresponding
cluster color. By using the proposed energy function, our
method achieves a significantly lower portion of unreached
elements. The presence of larger and more numerous dark
portions (high Funreach rate) in the l2 method degrades the
performance of the cleaning task as the airflow’s impact
on the target clusters is either diminished or absent. For
model-based inspection and 3D reconstruction tasks, capturing
entire clusters at computed VPs is not feasible, rendering VP
planning using a set covering problem [17] ineffective. With
nearly complete coverage, considerably low rates of RSD and
Funreach, our proposed method allows for generating a high-
quality set of VPs for surface-based coverage tasks.

B. Actual Cleaning Demonstration

Practical cleaning demonstrations are conducted using a
collaborative robot (UR3e) for Deer, Nene, and Lion objects,
which have high geometry complexity. The 3DP objects after
unpacking from a printing station (HP MJF5200) are shown
in Fig. 8(a). The blasting pressure is set at 60 psi, θr = π/3
rad, and rs = 0.05 m. Fig. 7 shows the results of finding a set
of valid robot configurations using Algorithm 2. The relative
position of the object and the UR3e is (0.24 m, 0.2 m, 0.08
m), as shown in Fig. 7 (a). By using Algorithm 2, a part of
the rays in Ropt (Fig. 7 (b)) is either adjusted by correcting
their normal directions to attain feasible IK solutions Cfree,
as shown in Fig. 7 (c) and (d), or removed because there is no
feasible IK solution satisfying the condition in Algorithm 2,
line 5, as shown in Fig. 7 (e). The set of unrecoverable rays can
be reduced by increasing θr depending on the manipulator’s
arm length and the object placement. However, a larger θr
also increases the planning and execution time, as it requires
more time for correcting rays and transitioning between highly
stretched configurations. Based on Cfree, the final trajectory

Fig. 5. Results of the planned coverage paths (Algorithm 1).

Fig. 6. CCVT results in different views around the left ear of the Deer.

is computed using built-in functions in OpenRAVE and is
sent to the robot using the Universal Robots ROS Driver. Fig.
8(c) shows the sequential snapshots of the cleaning actions
for the Lion, where the robot fits its configurations properly
to the computed collision-free configuration at generators. As
a result, all residual powder is removed from Lion’s mouth
and also from the entire object surface, which demonstrates
the effectiveness of our approach. The cleaning time is about
300 s. Although the computed coverage is not complete,
practical implementation achieves nearly complete coverage
as the actual affected area of the nozzle surpasses rc.

In depowdering tasks, the residual powder on the object
surface undergoes variations as it is blown away during the
cleaning process. In addition, the affected cleaning area in
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Fig. 7. Results of finding the set of valid configurations (Algorithm 2).
(a) Object and robot in OpenRAVE. (b) Pre-calculated rays. (c) & (d) Rays
of valid configurations after applying Algorithm 2. (e) Unrecoverable rays.

specific configurations depends on various factors, such as
surface properties (material, geometry complexity), the adhe-
sion profile of unfused powder, and airflow power, making
analytical determination of the affected cleaning size per VP
impossible. In our approach, we select rs, σe, θr, and blasting
pressure from practical perspectives to ensure sufficient airflow
for effective removal of residual powder at computed robot
configurations, while consistently maintaining the distance of
rs at these configurations. However, this distance is relaxed
during transitions between configurations to provide flexibility
and rapidity for relocating the nozzle and the attached hose.

IV. CONCLUSION

In this study, we have introduced a new approach to obtain-
ing a nearly complete coverage path on general surfaces and
high-quality VPs using the information extracted from their
mesh models. By introducing a new energy function, the mesh
model is segmented into multiple clusters using the CCVT
method such that coverage quality (uniform cluster areas) and
the variation of triangle normals can be obtained harmoniously.
Our results showed that using the l1-norm in the proposed
energy function outperforms the l2-norm in achieving lower
standard deviations of cluster areas on complex surfaces. A
decomposition calculation is proposed to speed up the finding
of the shortest path visiting all segmented clusters using the
geodesic metric. As a result, we can attain high coverage,
low overlapping, and low curvature of segmented clusters
on the coverage path within a reasonable time. An effective
optimization-based strategy is then proposed to address the
self-occlusion of viewpoints and support the finding of valid
robot configurations. Then, a collision-free robot trajectory is
computed, allowing the CPP to be applied to cleaning and
model-based inspection applications. We validated the effec-
tiveness of our approach on an industrial cleaning platform
used for additive manufacturing. Our future plans include: (1)
Investigating advanced approaches [30] [39] to accelerate the
construction of CCVTs. (2) Implementing faster approaches
with high-quality approximated GDs [40] to accelerate CPP’s
computation. (3) Developing advanced model-based inspection
and 3D reconstruction algorithms based on the obtained high-
quality VPs.

APPENDIX

Appendix A. Construct the set of candidate rays using
optimization.

We propose the following optimization problem to construct
the set of candidate rays:

minimize
ci

∑Nc

i=2 x
2
i + y2i (10)

subject to (x1, y1) = (0, 0), (11)
zi ≥ R cos(φ), (12)
∥ci − cj∥2 ≥ l, (13)

i = 1, ..., Nc, j = i+ 1, ..., Nc,

where zi =
√

R2 − x2
i − y2i , ci = [xi, yi, zi]

T , l is the
distance between two adjacent circles determined as

l = 2rc cos(arctan(
rc
rs
)), (14)

The objective function (10) and the function on the left-hand
side of (13) are both convex. Thus, the above formulation
is not a convex optimization problem. This problem can be
solved using disciplined convex-concave programming [41].
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