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Abstract— Reinforcement learning (RL) has achieved re-
markable success in complex robotic systems (eg. quadruped
locomotion). In previous works, the RL-based controller was
typically implemented as a single neural network with concate-
nated observation input. However, the corresponding learned
policy is highly task-specific. Since all motors are controlled
in a centralized way, out-of-distribution local observations can
impact global motors through the single coupled neural network
policy. In contrast, animals and humans can control their limbs
separately. Inspired by this biological phenomenon, we propose
a Decentralized motor skill (DEMOS) learning algorithm to au-
tomatically discover motor groups that can be decoupled from
each other while preserving essential connections and then learn
a decentralized motor control policy. Our method improves the
robustness and generalization of the policy without sacrificing
performance. Experiments on quadruped and humanoid robots
demonstrate that the learned policy is robust against local motor
malfunctions and can be transferred to new tasks.

I. INTRODUCTION

Recently, many complex robotic systems have been de-
veloped and demonstrated. Quadruped robots, for instance,
have shown their ability to traverse diverse challenging
terrains [1], [2], [3]. Furthermore, attaching an additional
arm to a quadruped robot allows it to perform various
manipulation tasks [4]. Some impressive biped and humanoid
robots also show great improvements in their locomotion
and manipulation skills [5], [6], [7]. However, controlling
these complex robotic systems is a challenging task. Due
to complex robot dynamics and environments, model-based
control methods might fail when the model largely deviates
from the ground truth. Reinforcement learning provides an
alternative way to learn control policies without the need
to model the dynamics and environments. Such mechanism
helps improve robustness and generalization [1], [2], [3], [8].

A typical reinforcement learning controller for robot motor
control is implemented as a centralized neural network
policy. The input to the policy is some important obser-
vations, such as root pose, joint pose, joint velocity, etc.
All these observations are concatenated into a single vector,
which is directly fed to the neural network, and then the
neural network will directly output the actions such as target
poses or the torques of the joints. Such an approach has
some important drawbacks: 1) The policy lacks robustness.
Since all motors are controlled in a centralized way, out-
of-distribution local observations can impact global motors
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Fig. 1: Illustration of our motivation. Standard centralized
policies are highly task-specific and local motor malfunction
can influence actions for all motors. DEMOS can automati-
cally decouple some motor groups, making the policy more
robust and transferable.

through the single coupled neural network policy, as shown
in Figure 1. 2) The converged policy is highly specific to
the training task and will be failed when transferred to new
tasks.

In order to address the challenges of controlling complex
robotic systems, previous work has employed a decentralized
approach. De et al. manually partitioned the robot motors into
multiple groups and treated each group as a single agent [9].
These agents used their local observations to control their
corresponding motors. However, this manual partitioning
could potentially disrupt the coordination between motor
groups and sacrifice overall performance. In contrast, animals
and humans have adopted a gated mechanism [10], [11] that
automatically decides which modules need to cooperate with
each other and which can function independently. For in-
stance, humans can still walk naturally with a broken arm, as
it is independent from their legs, but humans would struggle
to walk with a broken leg, which requires coordination with
the other leg.

Inspired by this biological phenomenon, we propose a
Decentralized motor skill learning (DEMOS) method under
the RL framework. DEMOS automatically discovers motor
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groups that can be decoupled from each other while pre-
serving essential connections and then learn a decentralized
motor control policy, as shown in Figure 1. Specifically,
DEMOS first divide robots into potentially decoupled motor
groups and then introduces a decentralized objective to
encourage each group to influence others as little as possible.
Finally, DEMOS decouple groups with weak connections
and obtain a decentralized policy. Further experiments on
quadruped robots and humanoid robots show the robustness
and generalization of the learned decentralized policy.

Our main contributions can be summarized as follows:
• We propose a distributed motor skill learning (DEMOS)

method inspired by biological phenomenons, which
can automatically decouple motor groups for better
robustness and generalization.

• We apply the DEMOS algorithm to both a quadruped
robot and a humanoid robot and demonstrate that DE-
MOS can learn a robust policy against motor malfunc-
tions.

• We demonstrate that the learned decentralized policy
can be directly transferred to new tasks on the humanoid
robot.
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Fig. 2: Single neural network policy is highly centralized and
task-specific while manually dividing the robot into multi-
agents may disrupt useful coordination. DEMOS partially
decouples modules and keeps essential connections during
skill learning.

II. RELATED WORKS

A. Reinforcement Learning for Legged Robots

Legged robots have the potential to traverse various ter-
rains that are inaccessible by wheeled robots. Quadruped
robots can learn to locomote on diverse terrains through
reinforcement learning with manually designed rewards. Ad-
ditionally, quadruped robots can generate more diverse and
natural gaits through imitation learning on animal mocap
data, as demonstrated by [12], [13], [14]. To perform ad-
ditional manipulation tasks, a robotic arm can be attached to
the quadruped robot. Ma et al. used reinforcement learning
for the locomotion task and a model-based controller for
robotic arm manipulation [15]. Meanwhile, Fu et al. used
reinforcement learning to jointly optimize the control of
the quadruped and attached arm [4]. Aside from quadruped
robots, reinforcement learning with hand-designed rewards
is also applied to biped and humanoid robots, resulting in a
wide variety of robust gaits [6], [16].

B. Decentralized Robot Motor Control

The most common reinforcement learning controller is a
single centralized neural network with concatenated obser-
vation input. This centralized policy is highly specific to
the training task. Moreover, all robot modules are coupled
together and can not function independently.

To address these limitations, several works have adopted
a decentralized approach that partitions the robot into mod-
ules and utilizes multiple policies to control different mod-
ules [17], [18]. For instance, Ma et al. [15] separate the
quadruped-arm robot into the locomotion part and the ma-
nipulation part, controlling them via a combination of data-
driven and model-based methods. Decentralized control can
be viewed as a multi-agent collaboration problem [9], [19],
where each module is treated as an agent that observes local
information and controls its own motors. Huang et al. [20]
propose the most extreme form of decentralization, where
each joint is treated as a separate module, and only receives
information from neighboring joints. However, all the above-
mentioned decentralized control methods typically require
manual partitioning before training, which can affect the
overall performance. In contrast, our method automatically
decouples motor groups while still maintaining the essen-
tial connections between groups, which are necessary for
whole-body performance, thus avoiding any compromise on
overall performance. A comparison of our method with other
approaches can be found in Figure 2.

III. PRELIMINARY
Instead of controlling the robot with a single neural net-

work policy, we divide the robot into n potentially decoupled
modules and control them in a decentralized way. This
setting can be constructed under the decentralized partially
observable Markov decision processes (Dec-POMDP) [21]
defined by ⟨D,S,A,O, O, P,R, γ⟩. D is the set of n modules
and S is the state space. Oi is the set of observations available
to the ith module with elements oi = O(s; i). Mi is the
motor group on ith module. Straightforwardly, the global
observation space O and global action space A are the
aggregation of module’s sub-spaces:

O = O1 ∪O2 ∪ ... ∪On A = M1 ∪M2 ∪ ... ∪Mn (1)

Specifically in our setting, the ith module holds a policy πθi

which inputs local observations oi but outputs global ac-
tions ai. This indicates that each module’s local observations
can contribute to whole-body actions, and the final action a
is the sum of all module actions:

a = a1 + a2 + ...+ an. (2)

P (s′|s, a) denotes the transition probability from s to s′

given the whole joint action a. R(s, a) denotes the shared
reward function and γ is the discount factor. All modules
cooperate with each other to maximize the discounted accu-
mulated reward:

J(θ1, θ2, .., θn) = Eat,st

[∑
t

γtR(st, at)

]
(3)
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Fig. 3: Three steps of the decentralized motor skill learning pipeline: 1) Divide the robot into branches according to the
kinematic tree described in its URDF. 2) Oi and Mi are local observations and actions for branch Bi. Actions out of
Mi (colored grey) are encouraged to maintain zero. 3) Decouple modules with weak connections and obtain decentralized
policies.

After initialization, all modules remain coupled with each
other since all local observations contribute to global ac-
tions. During the training procedure, our proposed method
discourages local observations oi from contributing to motors
outside of Mi, and only keeps essential connections between
modules. The detailed pipeline can be found in Section IV
or Figure 3.

Our setting differs significantly from the settings that treat
decentralized control problems as multi-agent problems. In
the multi-agent setting, each agent observes locally and only
controls its own motor group, which may disrupt coordina-
tion between motor groups. Moreover, since different mod-
ules are not homogeneous agents (i.e. agents have different
observation spaces), some important technical designs such
as policy parameter sharing [22], [23] can not be adopted.

IV. METHODS

In this section, we introduce the proposed Decentralized
motor skill learning (DEMOS) algorithm for complex robot
systems. Our pipeline can be summarized in the following
steps:

1) Pre-training stage (Sec. IV-A): Divide the robot into
potentially decoupled modules according to the URDF
file.

2) Training stage (Sec. IV-B): Introduce a decentralized
control objective to diminish the connections between
modules without sacrificing performance.

3) Post-training stage (Sec. IV-C): Obtain decentralized
policy by decoupling modules with weak connections
and keeping the essential connections.

The overall algorithm can be found in algo. 1.

A. Division Rules

We begin by constructing a kinematic tree from the corre-
sponding Universal Robot Description Format file (URDF).
In this context, a branch refers to a path within the tree

that originates from the root node and terminates at a leaf
node. Multiple branches are present in every tree structure.
Conceptually, joints and links located on the same branch of
the tree are inherently interconnected in a sequential manner,
thereby directly influencing their kinematics and dynamics.
On the other hand, joints located on distinct branches of
the tree exhibit relatively weak connections, as their forces
or torques are conveyed through the root node, and these
influences can be reflected in root velocity, acceleration, and
other related parameters.

Based on the aforementioned analysis, the robot com-
ponents are categorized into n branches with each branch
originating from the root node and extending to a leaf node.
Joints that belong to the same branch form a group or branch
denoted as Bi. For instance, in the case of a humanoid
robot with four limbs, there will be four branches. It’s worth
mentioning that branches may overlap and the same joint or
link can exist in multiple branches. This process is illustrated
in Figure 3 (1).

To represent the local information related to branch Bi,
we employ the notation Oi. This encompasses the local joint
pose, joint velocity, root projected gravity, and central peri-
odic clock signal. Similarly, Mi represents the local motor
situated on branch Bi. Consequently, the global observation
space O and global action space A can be obtained using
Equation 1.Then we initiate policies πθi(1 ≤ i ≤ n) for
branch Bi, which input local observation oi and output
global action ai. All branches are coupled with each other
after initialization since all branches contribute to global
actions.

B. Decentralized Control Objective

During the training process, in addition to the reinforce-
ment learning (RL) objective, we also introduce a decentral-
ized control objective that encourages each branch to affect
other branches as little as possible. We denote motors not



on branch Bi as a complementary set Mi, and we have the
following relationships:

A = Mi ∪Mi, 1 ≤ i ≤ n (4)

We minimize influences between branches through regress-
ing actions in Mi to 0 through L-P norm. Formally, for
policies with global outputs and a sampled transition batch
D consists of tuples (o1, ..., on, s, a):

Jde = − 1

|D|
∑
oi∼D

 ∑
m∈Mi

(πθi(oi)[m]− 0)
p

1/p

(5)

m is the motor sampled from Mi and πθi(oi)[m] stands for
one dimensional action that controls motor m. s represents
all state information in this paper, including all local joint
states and root states.

The reinforcement learning objective can be written as
follows:

µ =

n∑
i=1

πθi(oi), a ∼ N (µ, σ2)

JRL =
1

|D|
∑

(o1,.,on,s,a)∼D

logP (a|s) ·A(s, a)

(6)

Here N (µ, σ2) stands for a diagonal Gaussian distribution
with mean µ and standard deviation σ. A(s, a) stands for the
advantage function.

Finally, the overall objective function is composed of both
the RL objective and the decentralized control objective with
learnable parameters θ1, θ2, ..., θn, σ. The proportion of the
two objectives is controlled by a hyper-parameter λ:

J (θ1, θ2..., θn, σ) = JRL + λJde (7)

However, these two objectives may conflict with each
other. Reinforcing learning may encourage branches to co-
operate with each other to achieve higher performance,
while the decentralized control objective discourages such
cooperation. In practice, a small value of lambda, such as
0.01, is typically chosen. The primary objective remains
to achieve high performance in the training task, while
simultaneously minimizing the connection between branches
without compromising performance.

C. Decentralized Policy

After the learning process finishes, we can evaluate how
much contribution local observations oi have on Bj’s motors.
Formally, for branches Bi and Bj(1 ≤ i ≤ n, 1 ≤ j ≤ n),
we calculate the connection strength Cij with L-P norm:

Cij =
1

|D|
∑
oi∼D

 ∑
m∈Mj

(πθi(oi)[m]− 0)
p

1/p

(8)

Specifically, Cjj represents Bj’s contributions to itself. If
connections between Bi and Bj are essential to overall
performance, the reinforcement learning objective will keep
Cij/Cjj at high levels. If the relative connection strength
Cij/Cjj is smaller than a small threshold: Cij/Cjj < η, we

Algorithm 1 Decentralized Motor Skill Learning (DEMOS)

# Pre-training stage
Divide robot into n branches B1 ∼ Bn with observation
space O1 ∼ On and motor sets M1 ∼ Mn. Global
observation space O and global action space A are defined
by equation 1.
Initialize policies πθ1 ∼ πθn with local observations o1 ∼
on and global actions a1 ∼ an.
# Training stage
Input: Number of episodes ne, steps of policy updates per
epoch np, policies πθ1 ∼ πθn , replay buffer D, proportion
coefficient λ.
for k in {0, 1, 2, ...,ne} do

Interact with the environment a =
∑n

i=1 an, full fill the
buffer D with (o1, ...on, s, a).
for i in {0, 1, 2, ...,np} do

Update θ1 ∼ θn with objective J = JRL+λJde (7)
end for

end for
# Post-training stage
for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j do

Calculate connection strength Cij between branches Bi

and Bj with equation 8.
if Cij < η then

Decouple influences from Bi to Bj with equation 11.
end if

end for
Obtain decentralized motor policy π : {πθ1 , πθ2 , ..., πθn}.

can remove the connection between Bi and Bj :

πθi(oi)[m] = 0, m ∈ Mj , if
Cij

Cjj
< η (9)

In addition, it is possible to implement decentralization at
the motor level, particularly in cases where branches overlap.
From another perspective, each motor receives influences
from all branches. We can calculate the connection strength
Sij between branch Bi and an individual motor mj , and then
remove weak connections:

Sij =
1

|D|
∑
oi∼D

|πθi(oi)[mj ]| (10)

πθi(oi)[m] = 0, m ∈ Mj , if
Sij

Sj
< η′ (11)

Here, Sj represents the connection strength from the
motor’s own branches: Sj =

∑
mj∈Bi

Sij .
After we perform decentralization, only essential con-

nections remained while others are removed. Our approach
ensures that all policies are optimized jointly and coordinated
under the same central clock. As a result, each local obser-
vation has the potential to contribute to global motor actions
and all policies can work together under equivalence by
preserving essential connections. For instance, if a particular
branch detects a collision, it can transmit signals to other
branches and modify their original actions to prepare for the
collision.
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Fig. 4: Locomotion tasks on challenging terrain for various types of robot. X-axis stands for environment interaction steps
and Y-axis stands for the average reward. DEMOS(removal) denote performance after removing the weak connections.
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Fig. 5: Visualization of normalized connection strength between branches. X-axis stands for the environment interaction step
and Y-axis stands for the relative connection strength Cij/Cjj . Subfigure (i, j) stands for influence from Bi to Bj during
the training, and the threshold is set to 0.04. Connections in subfigure (i, i) are always equal to 1 and we do not plot it.

V. EXPERIMENTS
In this section, we present experimental results aimed at

addressing the following questions:
1) Does decentralized policy sacrifice performance on the

original learning task when compared to a centralized
policy? (Sec. V-B)

2) Is decentralized policy more robust to local motor
malfunctions? (Sec. V-C)

3) How can we transfer a decentralized policy to new
tasks and rapidly acquire new skills? (Sec. V-D)

A. Setups and baselines

We choose different types of robots in our experiments,
which include a quadruped robot with 12 motors, a humanoid
robot with 16 motors, and a quadruped with an attached
arm, powered by 15 motors. The complete set of observation
dimensions can be found in Table I.Our neural network
policy output the PD target of all motors and runs at 50
Hz, and the low-level PD controllers run at 1000Hz with
kp = 40 and kd = 1.

The proposed decentralized motor skill learning pipeline
is compatible with various on-policy or off-policy rein-
forcement learning algorithms and we choose PPO [24] as
our backbone RL algorithm. However, training robots with

Quadruped Humanoid Quadruped
+Arm

Projection of gravity 3 3 3
Clock inputs 2 2 2

Joint positions 12 16 15
Joint velocities 12 16 15

Last actions 12 16 15

Overall 41 53 50

TABLE I: Observation space for the various types of robots
used in our experiments. The projection of gravity (in robot
root coordinates) reflects the orientation of the root link.
Clock inputs are periodic sin and cos signals used for
periodic walking.

manually designed rewards can lead to unnatural behaviors.
To mitigate this, we integrated animal and human motion
capture (Mocap) data into the learning process. This Mocap
data was used as a form of regularization to produce natural
robot behaviors. The overall reward r is the combination
of task reward rtask and style reward rstyle similar to
Deepmimic [13]: r = rtask + rstyle.

Besides our proposed Decentralized motor skill learning
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Fig. 6: Evaluations on various types of robots with motor observation noises and motor stuck errors. We can find that local
motor errors have less influence on decentralized policy since DEMOS minimizes the influences between branches.

(DEMOS) Method, we compared our algorithms to the
centralized approach and the multi-agent approach:

• PPO [24]: The most common approach in the previous
works, typically using a single neural network as a
centralized controller.

• MAPPO [25]: A popular multi-agent reinforcement
learning algorithm shown to have state-of-the-art per-
formance in cooperation games. Under this setting, each
module has its own actor that observes locally and acts
locally.

Our simulated environment is built with Isaac Gym [26].
All the experiments are run over 5 random seeds.

B. Performance on original task

In this part, we want to demonstrate that our proposed
DEMOS algorithm will not sacrifice performance on original
learning tasks compared to the centralized approach. The
quadruped robot and humanoid robot are required to walk
on various types of terrains such as up-slope, down-slope,
and random up-down terrains. Before the training stage, the
quadruped robot is divided into 4 branches {B1, B2, B3, B4}
which stand for {Left-forward branch, Right-forward branch,
Left-behind branch, Right-behind branch}. And humanoids
robot is divided into 4 branches {B1, B2, B3, B4} stand
for {Left-arm branch, Right-arm branch, Left-leg branch,

Right-leg branch}. Quadruped with arm is divided into
5 branches {B1, B2, B3, B4, B5} which stand for {Left-
forward branch, Right-forward branch, Left-behind branch,
Right-behind branch, Arm branch}.

Comparisons can be found in Figure 4. We notice that
our decentralized policy achieves comparable performance
with a single centralized PPO policy. However, the multi-
agent approach reduces the performance since each agent
only contributes to its own motors, making the cooperation
between modules more difficult. Moreover, removing weak
connections did not sacrifice performance, denoted as DE-
MOS(removal).

We also visualize the relative connection strength Cij/Cjj

between modules during the DEMOS training in Figure 5,
calculated by equation 8. For the quadruped locomotion task,
we find that all connections between modules are relatively
high, and DEMOS maintains all connections between the
four branches. This means that the four branches must
work in cooperation with each other to achieve optimal
performance. On the other hand, in the humanoid locomotion
tasks, only B3 (left-foot branch) and B4 (right-foot branch)
preserve relatively high connections. DEMOS has reduced
all other connections without sacrificing performance. For the
quadruped robot with an arm, we can remove the connection
from the arm to the legs and preserve others.
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Fig. 7: Transfer part of the decentralized policy to new tasks: move-box task, move-stick task, hold-cup task.

C. Local motor malfunctions

In this part, we demonstrate that DEMOS learns poli-
cies that are more robust to motor malfunctions. DEMOS
achieves this by encouraging each branch to have minimal
influence on others. As a result, errors on a single branch
may also impact other branches less. Additionally, the DE-
MOS pipeline may decouple the connections between two
branches, which means that errors in one branch will not
affect the other branch at all.

We consider 2 kinds of malfunctions that widely exist in
motors:

• Motor noise: a damaged motor may have a large motor
observation noise and lead to out-of-distribution local
observations.

• Motor stuck: a motor may lose the power to move or be
stuck at a certain degree by external force or obstacle.
In this setting, we assume that one motor is stuck at a
certain degree and cannot move.

We assume that one motor on the quadruped left-forward
leg and one motor on the humanoid left arm suffer these 2
types of motor malfunctions with different levels.

Experimental results are shown in Figure 6. The decentral-
ized policy is more robust against local motor malfunctions
since DEMOS minimizes the connections between branches,
resulting in less performance drop for quadruped robots
compared to the centralized policy. Furthermore, in the case
of humanoid robots, motor malfunctions in the left arm
have almost no effect on locomotion performance. This is
reasonable since DEMOS has decoupled the arm branch from
the leg branch, thus preventing errors from propagating to
the legs. However, the centralized PPO policy experiences a
rapid drop in performance as local motor error can impact
global motors through a centralized neural network policy.

It is worth mentioning that decentralized policies are
incapable of resisting large motor errors in the humanoid leg.
This is reasonable since even humans struggle to walk with
a broken leg. However, similar to human beings, humanoid
robots are now capable of walking with a broken arm, thanks
to the decentralized policies.

D. Transfer decentralized policy to new tasks

In this section, we demonstrate that it is possible to transfer
subsets of the decentralized policy to new tasks and acquire
new skills rapidly.

In the original task, we divide the humanoid robot
into 4 branches {B1, B2, B3, B4}, and initialize policies
πθ1 , πθ2 , πθ3 , πθ4 respectively. During the training stage,
branches are decoupled except for the left-leg branch and
right-leg branch. This means we can divide policies into 3
subsets:

{πθ1}, {πθ2}, {πθ3 , πθ4} (12)

Connections between these subsets have vanished, and each
subset can function independently. Specifically, {πθ1} con-
trols left arm to swing naturally, {πθ2} controls right arm
to swing naturally and {πθ3 , πθ4} jointly controls 2 legs to
walk on terrains.

When faced with new tasks, we can reuse certain sets of
sub-policies in 2 approaches: (1) Combination lead to new
skills. For instance, in the move-box task, we can utilize
the leg-walking policy set {πθ3 , πθ4} from the previous task.
To complete the move-box task, we only need to substitute
the original arm swing policy πθ1 , πθ2 with the grasp policy
πbox. The new sub-policy πbox can be either a model-based
policy or a pre-trained neural network policy. (2) Provide a
great starting point to learn new tasks. In the move-box case,
we can initiate a new policy for the arm while retaining or
freezing the policy parameters in the set {πθ3 , πθ4}. Utilizing
an agent who already possesses the knowledge of walking
can serve as a strong foundation for the move-box task.

In our experiments, we combine pre-designed model-based
arm policies and certain previously learned policies to handle
new tasks:

• Move-box skill: {πbox}+ {πθ3 , πθ4}
• Move-stick skill: {πstick}+ {πθ3 , πθ4}
• Hold-cup skill: {πcup}+ {πθ2}+ {πθ3 , πθ4}

Here πbox is a model-based controller for 2 arms to hold
a box. πstick is a controller for 2 arms to hold a long stick.
πcup is a controller for a single arm to hold a cup.

Experimental results are shown in Figure 7. The decen-
tralized policy can be successfully transferred to new tasks
and combined into new skills. However, a typical centralized
PPO policy is highly task-specific with all modules coupled
together, thus can not transfer to new tasks. MAPPO policies
lose performance when transferred to new tasks since some
important cooperation between modules has been destroyed.



VI. CONCLUSIONS

In this work, we propose decentralized Motor skill learn-
ing (DEMOS), a decentralized approach for complex robotic
systems control. Instead of one typical neural network policy
that is highly centralized, we leverage multiple local-input-
global-output policies to control the robot and decouple mod-
ules with weak connections automatically during training.
Experiment results demonstrated that DEMOS are effective
for a wide range of robot types, including quadrupeds,
humanoids, and quadrupeds with arms, etc. However, In the
face of robots with largely overlapped branch structure, we
may need other division rules in the pre-training stage to
better decentralize the control policy.

APPENDIX

A. Implementation details

Our simulation environments are built in IsaacGym
[26] and we implement our DEMOS algorithm and
baselines in Pytorch based on opensource codebase
https://github.com/leggedrobotics/legged gym [27].

Hyperparameters of the backbone PPO algorithm can be
found in table II.

Parameters Value

Number of Environments 4096
Learning epochs 5

Steps per Environment 24
Minibatch Size 24576
Episode length 20 seconds
Discount Factor 0.99

Generalised Advantage Estimation(GAE) 0.95
PPO clip 0.2

Entropy coefficient 0.005
Desired KL 0.01

Learning Rate 5e-4
Weight decay 0.01

TABLE II: Hyperparameters of backbone PPO algorithm.
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