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RO-MAP: Real-Time Multi-Object Mapping with
Neural Radiance Fields

Xiao Han, Houxuan Liu, Yunchao Ding and Lu Yang

Abstract—Accurate perception of objects in the environment
is important for improving the scene understanding capability of
SLAM systems. In robotic and augmented reality applications,
object maps with semantic and metric information show attrac-
tive advantages. In this paper, we present RO-MAP, a novel multi-
object mapping pipeline that does not rely on 3D priors. Given
only monocular input, we use neural radiance fields to represent
objects and couple them with a lightweight object SLAM based
on multi-view geometry, to simultaneously localize objects and
implicitly learn their dense geometry. We create separate implicit
models for each detected object and train them dynamically
and in parallel as new observations are added. Experiments on
synthetic and real-world datasets demonstrate that our method
can generate semantic object map with shape reconstruction,
and be competitive with offline methods while achieving real-
time performance (25Hz). The code and dataset will be available
at: https://github.com/XiaoHan-Git/RO-MAP

Index Terms—Mapping, SLAM, Semantic Scene Understand-
ing

I. INTRODUCTION

V ISION-based Simultaneous Localisation and Mapping
(SLAM) is an important research problem in the field

of robotics, and has achieved remarkable advances in the
past decade. Previous studies [1], [2], [3] concentrated on
providing accurate ego-motion estimation and reconstructing
scene maps. However, the sparse or dense maps constructed by
these methods only contain metric information, which limits
their application in complex tasks [4], [5] that require scene
understanding. The development of deep learning has paved
the way for introducing semantic information into SLAM,
and object SLAM that incorporates detection [6] or semantic
segmentation [7] has attracted the interest of many researchers.

Different from pure geometric maps, object SLAM utilizes
additional semantic observations to localize and reconstruct
objects in the scene, and the generated object maps can
serve downstream tasks. However, a crucial issue is how to
effectively represent objects. Some research that use only
RGB cameras have explored simple geometric primitives,
such as cuboids [8], [9], ellipsoids [10], [11], [12], and
superquadrics [13]. These compact representations contain
fundamental information of objects such as category, size, and
pose. They can serve as semantic landmarks for localization
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Fig. 1: RO-MAP can localize and reconstruct objects in the
scene online. Each object instance is represented by a NeRF,
which implicitly learns dense geometry from monocular input.

and navigation [4], and have shown advantages in relocaliza-
tion [14] and long-term operation of SLAM systems. However,
these geometric primitives do not capture shape and texture
information of objects, which poses a challenge for monocular-
based methods.

Object shape reconstruction is another widely studied prob-
lem. Some studies have explored various dense object repre-
sentations using additional depth sensors, such as surfels [15]
and signed distance function (SDF) [16], [17]. Furthermore,
it is popular to use learnable compact shape embeddings to
represent objects. Recent works [18], [19], [20], [21] have
used neural networks to learn category-level shape priors and
optimized the object shape codes in latent space by matching
image or depth observations, which are then decoded into
voxel grids [18] or implicit functions [19], [20], [21]. These
methods can generate dense and complete object reconstruc-
tions from partial observations, but they are limited by the
categories of pre-learned priors and cannot handle arbitrary
geometric shapes. A natural question is whether we can
reconstruct objects using only a monocular camera and without
any geometric priors. Neural Radiance Fields (NeRF) [22]
are suitable object representations. With the help of volume
rendering and the powerful fitting ability of MLP, NeRF can
implicitly learn 3D geometry from RGB images. Recently, its
successful applications[23], [24] in SLAM have demonstrated
its strong potential.

In this work, we propose an online pipeline for reconstruct-
ing multiple objects from monocular videos, which consists
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of two loosely coupled components. The first component is
a lightweight object SLAM built upon the ORB-SLAM2 [1]
framework. We use instance segmentation to detect objects in
the scene and estimate their size and pose, and a robust data
association algorithm ensures that multi-view observations are
correctly associated to objects. The second component is a
multi-object reconstruction system, where each object instance
is represented by a NeRF and receives new observations in
real-time for incremental training. We propose an efficient
loss function tailored for objects to speed up convergence
and reduce depth ambiguity caused by RGB-only images.
Furthermore, our CUDA implementation based on the tcnn
framework [25] ensures real-time performance. The average
training time per object is about 2 seconds on a single GPU.
Comprehensive experiments on synthetic and collected real-
world datasets demonstrate the effectiveness of our method.

The contributions of this work are as follows:
• We present, to the best of our knowledge, the first 3D

prior-free monocular multi-object mapping pipeline that
can localize and reconstruct objects in the scene.

• We propose an efficient loss function for objects, com-
bined with a high performance CUDA implementation,
enabling the system to have real-time performance.

• We evaluate the effectiveness of the proposed method on
both synthetic and real-world datasets. In addition, the
code and datasets are available.

II. RELATED WORK

A. Object SLAM

The earliest object SLAM can be traced back to 2013 when
Salas et al. [26] first treated objects in the scene as landmarks.
They matched depth observations extracted by pre-trained
detectors with known object models, and continuously refined
camera poses and object map through pose-graph optimization.
However, the requirement of having geometric models of
all object instances beforehand limits the applicability of
this approach. Subsequent works along the RGB-D direction
turned to online reconstruction from scratch. Fusion++ [17]
leverages a 2D instance segmentation network to extract depth
observations belonging to objects, and fuses them across multi-
ple views to generate TSDF reconstructions. MaskFusion [15]
further extend to dynamic scenes. Some studies lie between
using object instance models and reconstructing geometric
shapes from scratch, exploring learning-based object shape
priors. Sucar et al. [18] used CAD models of objects from
the same category to train a variational encoder. The latent
code used to represent shape can generate complete object
reconstruction with only partial depth observation. Similarly,
ObjectFusion [21] further improves the generalization of deep
shape embeddings, capable of adapting to multiple object
categories using only one encoder-decoder network.

Unlike the above studies that focus on dense object recon-
struction, researchers have also shown interest in construct-
ing object maps using simple geometric primitives that only
contain pose and size information. Yang et al. [8] proposed
CubeSLAM, which infers 3D cuboids of objects from multi-
view observations using 2D detection boxes. Compared to

learning-based methods, CubeSLAM has much less computa-
tional cost. In addition, quadrics have also been used to repre-
sent objects due to their compact perspective projection model.
Nicholson et al. [10] first introduced them into object SLAM,
and optimized their parameters by minimizing reprojection
errors in different viewpoints. In this work, we decouple the
estimation of object shape and pose. Our lightweight object
SLAM utilizes cuboids to represent objects, and estimates their
pose and size using multi-view observations and sparse point
clouds.

B. NeRFs and NeRF-based SLAM

Neural radiance fields have emerged as popular implicit
representations in computer vision. They use a multi-layer
perceptron (MLP) to represent a scene and leverage volume
rendering to implicitly learn the geometry and appearance
information from multi-view images. Since its introduction,
NeRF has been widely used in various computer vision tasks
[22], [27]. These methods demonstrate remarkable perfor-
mance but require a large amount of training time. Recently,
Muller et al. [28] proposed a multi-resolution hash encoding,
which significantly reduces the training time of NeRF, making
its online application possible.

Due to the advantage of NeRF to implicitly represent 3D
scenes, several works have introduced it into SLAM. iMAP
[23] is the first complete SLAM system based on NeRF,
which utilizes a compact MLP-based map representation and
performs simultaneous tracking and mapping in two parallel
threads. NICE-SLAM [24] replaces a single MLP with a
hierarchical feature grid, combines with a pre-trained decoder
to achieve larger scenes and faster convergence. Compared
to iMAP, it updates only the visible grid features at each
step, effectively solving the forgetting problem. Subsequent
works [29], [30] have made further improvements, including
the integration with traditional voxel grids [31] and different
shape representations [32]. In contrast to these methods that
focus on dense reconstruction of the scene, our approach em-
phasizes object instances with semantic meaning. Each object
is represented by a separate NeRF model, which are trained
online and in parallel to generate dense object map. The
work most similar to ours is [33], but it focuses on analyzing
the effect of observation quality on reconstruction results. In
addition, vMAP [34] also models objects separately while
reconstructing the scene, but it uses RGB-D observations.

III. SYSTEM OVERVIEW

Fig. 2 shows an overview of the proposed method. The
pipeline consists of two main components, a lightweight object
SLAM and a multi-object NeRF system. Given a monocular
input stream that includes RGB images and instance segmen-
tations, our object SLAM system simultaneously estimates
camera frame poses and localizes objects in the scene. We
leverage both semantic information from instance segmen-
tation and geometric information from sparse point clouds
associated with objects to perform data association and object
pose and size estimation. The results and original image inputs
are fed into the multi-object reconstruction system. In this
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Fig. 2: Pipeline overview. RO-MAP consists of a lightweight object SLAM and a multi-object NeRF system. They correspond
to the bounding box estimation (pose and size) and shape reconstruction of objects, respectively.

part, each object instance is represented by a separate NeRF
model. They receive new observations in real-time and are
trained in parallel. We use the marching cubes algorithm [35]
to extract visual 3D meshes and transform them to the global
coordinate system through object poses, thus constructing a
complete dense object map.

IV. LIGHTWEIGHT OBJECT SLAM

Our object SLAM is implemented based on ORB-SLAM2
[1]. For monocular input, the system initially extracts ORB
features and performs inter-frame matching. As we only
consider static scenes, the camera pose estimation is consis-
tent with the original ORB-SLAM2, i.e. only the traditional
reprojection error is used. Simultaneously, matched image
features are triangulated to generate sparse point clouds.
We associate the sparse point clouds with object instance
segmentation, effectively utilizing them in subsequent object
data association and pose estimation. The object association
strategy comprises two parts: consecutive association and non-
consecutive association. The former calculates the intersection
over union (IoU) of object 2D bounding boxes obtained from
instance segmentation in consecutive frames. The latter utilizes
a parameter statistical test based on object’s sparse point
clouds to handle isolated object observations in time series
and merge duplicate object landmarks. Since data association
is not the focus of this paper, please refer to our previous
work [13] for more details. After associating the latest object
observations with landmarks, we employ a lightweight, hand-
crafted method for object localization instead of learning-
based methods.

A. Outlier Removal

After extracting image features, the feature points that are
covered by the instance mask will be associated to objects.
The sparse point cloud generated by triangulating these points
during the tracking process is used for roughly representing

the position of objects. However, due to measurement noise
and occlusion, the associated sparse point cloud often contains
many outliers that do not belong to objects. We employ the
Extended Isolation Forest (EIF) [36] to remove outliers and
maintain a sparse point cloud that accurately fits objects.
Specifically, EIF recursively partitions the sample space using
a plane with a random slope, gradually reducing the number of
samples in each enclosed space until each sample is isolated
or the depth limit is reached. Obviously, the points that are
located on the object surface after multi-view observations
tend to be dense, and require more steps to be isolated. We
remove those points that are isolated after very few steps,
which are likely to be outliers.

B. Pose and Size Estimation

We represent objects using cuboids and assume that objects
are always stationary and placed on a support, with roll and
pitch angles fixed at zero, so that only the translation t and yaw
angle θ need to be estimated. First, we directly compute the
center of the filtered point cloud PW to estimate the translation
t as follows:

t =
max

(
PW

)
+min

(
PW

)
2

(1)

For object rotation, the simple and effective Principal
Component Analysis (PCA) method is considered first. We
project the 3D sparse point cloud onto the horizontal plane
and then calculate its dominant orientation using PCA as the
corresponding rotation matrix. However, this method performs
poorly for cuboid-shaped objects such as books and keyboards,
as the extracted main direction deviates significantly from the
ideal orthogonal edges. This results in inaccurate object pose
estimation and further affects the subsequent shape recon-
struction. We combine a line feature alignment method based
on object appearance to improve the robustness of rotation
estimation. Specifically, we first project the three orthogonal
edges li(i ∈ 1, 2, 3) of the object bounding box onto the image,
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then extract line features [37] and select those that have similar
slopes to the projected line segments as observations. The
accumulative angle error between the extracted line segments
ldi and the projected line segments loi is optimized to estimate
yaw θ. The optimization function is defined as follows:

θ∗ = argmin
θ

3∑
i=1

∥g(loi)− g(ldi)∥2 (2)

loi = KT−1
wc (R (θ) li + t) , i ∈ {1, 2, 3} (3)

where g (·) calculates the slope of line segment. Twc represent
the camera pose and K is the camera intrinsic matrix. A good
initial value is crucial for this nonlinear optimization problem.
We uniformly sample from −45◦ to 45◦ with an interval of
5 degrees, and select the sample with the minimum error as
the initial value for optimization. Finally, we obtain the sparse
point cloud PO transformed to the object coordinate system
by the estimated object pose, and directly calculate the size
a = [ax, ay, az]

T as follows:

a =
max

(
PO

)
−min

(
PO

)
2

(4)

V. MULTI-OBJECT RECONSTRUCTION SYSTEM

After estimating bounding boxes and camera poses in object
SLAM, we use NeRF to implicitly learn the dense geometry of
objects. When a new object instance is detected, we initialize
a new NeRF model, which consists of a multi-resolution hash
encoding [28] and a single-layer MLP. Unlike some methods
that reconstruct the whole scene with NeRFs, our model only
needs to represent a single object, which allows us to use tiny
network structures and accelerate training speed considerably.
Moreover, we leverage multi-threading to train models in
parallel, thus further improving system efficiency .

A. Training

1) Data: Since there are small viewpoint changes between
adjacent frames in SLAM, using all images for training would
introduce a lot of redundant information. We only use those
images that are chosen as keyframes in the tracking process.
Besides the original RGB images and instance masks, we also
reproject the sparse point clouds associated with objects onto
the images, and the resulting sparse depth maps can serve
as additional supervision during training. This facilitates the
model to learn accurate geometry. For all object instances, they
have different training data and different appearance times. We
implement an incremental update method for the training data
to handle each model separately. As shown in Fig. 3, assuming
that the last updated image is Im and the currently observed
object image is In, we calculate their relative rotation angles
with respect to the object as follows:

α = arccos

(
(tIm − tO) · (tIn − tO)

∥tIm − tO∥ ∥tIn − tO∥

)
(5)

If α is larger than the preset threshold, then update the training
data. As the viewpoints increase, the number of training
iterations gradually increases to converge quickly.

𝐼𝑚

𝐼𝑛

𝛼

𝐼j

𝐼𝑘

Fig. 3: (a) The training data will be updated if the rotation
angle between the current image In and the last updated image
Im is larger than α. (b) Thanks to the zero density learned by
background rays in image Ij , the rays pointing to the object
in image Ik can quickly focus on the object surface.

2) Parallel Training: We adopt a thread pool approach to
enable parallel training of multi-object models. Each worker
thread in the thread pool has its own CUDA stream and
asynchronously fetches training tasks from the work queue of
the object SLAM system. When an object no longer receives
new observations, the model will stop training to make more
efficient use of computational resources. We configure the pool
with 8 worker threads, which is sufficient for most scenes.

B. Volume Rendering

Differentiable volume rendering is used to optimize the
implicit representation of objects. We first transform the cam-
era pose to the object coordinate system and back-project
the pixels that are within the object’s detection box. If the
ray intersects with the 3D bounding box, we compute the
truncation distance and sample N points within it. Unlike other
RGB-only implicit reconstruction methods, we only perform
uniform sampling and do not include the popular importance
sampling. This can save the time cost of one inference
process of the model, although it slightly compromises the
reconstruction quality.

Since we are more interested in dense reconstruction than
novel view synthesis, only the positions of the sampled points
are encoded and fed into the network to estimate their density
values σ and colors c, without including the ray direction.
For a point xi, there are its occupancy probability oi = 1 −
exp(−σiδi) and the probability wi = oi

∏i−1
j=1(1 − oj) that

the ray terminates at this point, where δi = di+1 − di is the
difference in distance between adjacent sample points. Finally,
the predicted color and depth of the corresponding ray r are
defined as follows:

Ĉ(r) =

N∑
i=1

wici, D̂(r) =

N∑
i=1

widi (6)

Object reconstruction requires suppressing the background
and occluders since objects are not isolated but embedded in
scenes. Instance masks contain valid spatial semantic informa-
tion that is used to guide learning the geometry distribution of
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objects and their surroundings. We follow the strategy in [33]
and categorize the optimization loss of rays. Specifically, we
classify the sampled rays into three types according to their
instance masks. For rays Ro that hit the reconstructed object,
i.e., their mask value m matches with object instance Mo, we
calculate their photometric loss as usual:

Lrgb =
∑
i∈Ro

∥∥∥Ĉ(ri)− C(ri)
∥∥∥
2

(7)

For some rays Rd that have depth supervision, additional depth
loss is also included:

Ldepth =
∑
i∈Rd

∣∣∣D̂(ri)−D(ri)
∣∣∣ (8)

Second, we expect the space outside the objects to be empty,
i.e., the rays pointing to them should not terminate. To achieve
this, we give those rays Rb corresponding to the background
varying random colors as supervision to guide them to learn
zero density:

Lrr =
∑
i∈Rb

∥∥∥Ĉ(ri)− Crandom

∥∥∥
2

(9)

However, the convergence of volume density caused by this
loss is slow and requires many rounds of optimization. We
propose an efficient and aggressive loss that skips volume
rendering and directly optimizes the density of sampling points
as follows:

Ldensity =
∑
i∈Rb

N∑
j=1

∣∣σri
j − 0

∣∣ (10)

Although it looks inelegant, it quickly improves the conver-
gence speed and helps reduce depth ambiguity caused by only
monocular images. Fig. 3 demonstrates an example where
rays pointing to the object in image Ik can rapidly focus
on optimizing near the object due to zero density learned
by background rays in image Ij . Finally, for rays that hit
other occluding objects, we do not construct optimization
loss because we cannot specify spatial information along their
paths. Overall, the total loss for object instance is defined as:

L = Lrgb + Lrr + λ1Ldepth + λ2Ldensity (11)

where λ1 and λ2 are loss weights.

VI. EXPERIMENTS

We evaluate the proposed pipeline on synthetic and real-
world datasets. Due to the low requirement of object localiza-
tion for NeRF training, i.e., the estimated bounding box only
needs to loosely enclose objects, we focus on evaluating shape
reconstruction. We also provide detailed runtime analysis
and two ablation studies that supports our design choices.
Considering the online nature of our method, please see the
attached video demonstration.

TABLE I: Quantitative evaluation of object reconstruction.
Bold and underline indicate the best and the second-best
respectively.

Acc. [cm]↓ Comp. [cm]↓ Comp.Ratio
[<0.4cm %]↑

Comp.Ratio
[<1cm %]↑

[33]* w/ GT depth 0.259 0.162 93.69 99.98
COLMAP 0.612 0.656 57.72 81.17

[33]* 0.476 0.228 83.16 99.38
Ours 0.431 0.248 80.85 98.93

Book Laptop Cup

Ours

[33]* w/ 

GT depth

COLMAP

[33]*

GT

Bluebell

Fig. 4: Qualitative results on the Cube-Diorama room se-
quence. Note that all the comparison methods run offline.

1) Implementation Details: Our pipeline is implemented
using C++ and CUDA, and all experiments are conducted
on a desktop computer with a 3.0GHz Intel Xeon 6154 CPU
and an NVIDIA RTX 4090 GPU. All object instances use
the same NeRF model parameters, including hash table size
T = 216, finest resolution Nmax = 2048, and hidden size 64
of the single-layer MLP. For volume rendering, we trigger 300
iterations of training each time new observations are received.
Each iteration randomly samples 4096 rays from all training
images, with N = 32 sampling points per ray. In addition, we
set the loss weights λ1 = 0.5, λ2 = 0.01 and the training data
update threshold α = 25◦. Marching Cubes [35] are used to
extract meshes online, with the same resolution of 643 for all
objects.

2) Baselines: We compare to the classical COLMAP [38]
and an implicit object reconstruction method [33] also based
on NeRF. We faithfully re-implement the latter, denoted as
[33]*. Since both of these comparison methods operate offline
and do not consider object localization, we use the training
data obtained from running our method online as their input
to ensure a fair comparison. Additionally, we also compare
our method with two other NeRF-based approaches, namely
iMAP [23] and vMAP [34].
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TABLE II: Quantitative evaluation of object reconstruction.

Acc. [cm]↓ Comp. [cm]↓ Comp.Ratio
[<1cm %]↑

Comp.Ratio
[<5cm %]↑

iMAP
room-0 3.02 1.71 52.57 93.72
office-1 2.62 2.58 48.93 91.09

vMAP
room-0 2.18 1.13 74.09 96.68
office-1 2.27 1.77 65.24 92.94

Ours room-0 3.65 0.93 69.25 98.53
office-1 3.74 1.15 67.93 97.73

Pot Stool Cushion Chair

iMAP

vMAP

Ours

Fig. 5: Qualitative results on the Replica room-0 sequence.

3) Datasets and Metrics: We first evaluate on the synthetic
Cube-Diorama dataset [33] and Replica dataset [39], which
provide ground-truth depths and instance segmentations. Accu-
racy, Completion and Completion Ratio are used for quantita-
tive evaluation of object reconstruction. On the Cube-Diorama
dataset, due to the scale ambiguity of monocular SLAM
systems, we use ICP [40] to align the reconstructed meshes
and the GT meshes. Subsequently, we qualitatively evaluate
on a collected real-world dataset.

A. Object Reconstruction Evaluation

1) Cube-Diorama: We first evaluate the quality of object
reconstruction on the room sequence, as shown on the left
of Fig. 1, which captures four different-shaped objects on a
desktop. We use ground-truth instance masks to test the upper
bound of system performance and additionally show the results
of [33] trained with ground-truth depth for reference. Table I
presents the quantitative results. Benefiting from the powerful
capabilities of implicit representation and volume rendering,
our method significantly outperforms traditional COLMAP,
which is difficult to handle black or textureless object surfaces.
Since both our method and [33] utilize the same network

Book Laptop Cup Banana

COLMAP

[33]*

Ours

Fig. 6: Reconstruction results of all objects on the real-world
sequence. Instance masks are produced by YOLOv8.

models from [25], they demonstrate comparable performance.
However, [33] solely implements offline reconstruction, which
requires estimating the poses of all frames and manually
labeling object bounding boxes in advance. In contrast, our
complete pipeline, integrating object SLAM for online oper-
ation, object pose estimation, and parallel training, achieves
higher completeness and practicality. As expected, the use
of additional ground-truth depth in [33] makes it easier to
capture geometric information, resulting in better results. Fig.
4 shows the visualization results of all objects. Our method can
generate watertight object meshes. It is worth noting that, due
to the reflection and the noise in the estimated camera pose,
all RGB-only methods suffer from artifacts. This remains a
challenge for monocular reconstruction without 3D priors.

2) Replica: Since our heuristic object pose estimation
method based on monocular input is difficult to handle large
objects such as beds and dining tables, we restrict the eval-
uation of RO-MAP to the room-0 and office-1 sequences
that mainly contain smaller objects. The number of objects
in these sequences is 13 and 29, respectively. For dense
reconstruction, we use RGB-D input similar to the comparison
methods. The quantitative results are presented in Table II.
Our method achieves higher reconstruction completion. Due
to our straightforward uniform sampling strategy, the sampling
number near the surface of larger objects is insufficient, which
leads to some artifacts inside the generated object surfaces and
consequently impacting the accuracy metrics of our method.
Fig 5 illustrates the visualization results, RO-MAP has better
reconstruction fineness and can construct multi-object maps
with semantic information. Compared to vMAP, our method
encounters challenges in dealing with heavily occluded areas,
which will be a focus of future research.

3) Real-world Sequence: We evaluate on a real scene
collected with a Realsense D455 camera, as shown on the
right of Fig. 1. Noisy object masks are provided by YOLOv8,
which has real-time performance. Fig. 6 presents the qualita-
tive results. We can see that COLMAP fails to reconstruct
the non-Lambertian laptop screen, resulting in large holes.
Compared with [33], our method generates more complete
object reconstruction and has better visual quality.
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Fig. 7: (Top) The scene of the challenging real-world sequence.
(Bottom) Dense object map and constrained camera motion
trajectory.

TABLE III: Runtime of different system components.

Component Tasks Runtime(mSec)

Object SLAM
Frontend Tracking 41.6

Backend optimization 204

NeRF Model
Iteration

(avg/object)

Ray Sampling 0.0932
0.706Forward and Volume Rendering 0.156

Backward and Optimization 0.455

Marching cubes 2.84

4) Challenging Real-world Sequence: In practical appli-
cations of robotics or AR, it is often impossible to obtain
observations from all viewpoints of objects. We provide a
challenging real-world sequence, which contains eight objects
of different shapes, and the camera only gives limited view-
point observations along a constrained motion trajectory. Fig. 7
shows the scene and the qualitative results. It can be observed
that the generated object meshes are well separated from
the background in the observed viewpoints. However, for the
unobserved regions of the objects, although the interpolation-
based multi-resolution feature grid has some predictive ability,
it still cannot produce satisfactory results. Reconstructing ob-
jects from partial observations [41] is an interesting direction
for future work.

B. Runtime Analysis

Table III shows the detailed breakdown of average compu-
tation time for each main component. For object SLAM, our
hand-crafted object pose estimation method only introduces
a small amount of time consumption to the original ORB-
SLAM2. For a single NeRF model, our parallel implemen-
tation requires only 0.7ms for one iteration of training. The
number of iterations for training different object instances
depends on the size of the observed view angle. On average,
each object takes about 2 seconds. Compared to the whole
scene reconstruction, representing and optimizing a single
object allows us to use tiny networks and simple sampling
strategies, which help reduce the branch divergence problem in
parallel computing and improve the training speed. When the
scene contains a large number of objects, resulting in a queuing
situation in the NeRF thread pool, our system’s unidirectional

w/

w/o

w/o

w/

Fig. 8: Ablation Study. (Left) Convergence plot of training
with all data on the room sequence. (Right) Intuitive results
of the laptop from the challenging sequence.

TABLE IV: Ablation study of object model sizes.

Hash table size 14 16 18 20 16 16
MLP layers 1 1 1 1 2 3

Acc. [cm]↓ 0.435 0.424 0.451 0.450 0.409 0.442
Comp. [cm]↓ 0.227 0.233 0.236 0.243 0.241 0.243

Iteration time [ms] 0.658 0.706 0.921 1.495 0.862 1.052

data flow ensures that it does not block the SLAM tracking
process. It only slightly increases the training time per iteration
to approximately 0.83ms.

C. Ablation Study

1) Losses: The depth ambiguity caused by monocular input
has a significant impact on learning the geometry of textureless
or smooth objects, such as leading to slow convergence and
scattered artifacts. The convergence plot in Fig. 8 shows the
comparison results on the room sequence. It can be observed
that the training guided only by the random color loss is
difficult to converge in the early stage, which indicates that
directly regressing the voxel density of empty regions is
helpful for the disambiguation of the optimization process.
The right side of Fig. 8 shows an intuitive example.

2) Object Model: We investigate the impact of different
object models on the reconstruction quality, including the size
of the hash encoding table and the number of layers in MLP.
In Table IV, we can see that using larger models did not
improve the reconstruction quality. This can be attributed to
the limited number of iterations caused by online processing,
which is insufficient to adequately train model parameters. In
contrast, models with fewer parameters are already capable of
representing individual objects and have faster training speed.

VII. CONCLUSIONS

We present RO-MAP, a real-time multi-object mapping
pipeline that only uses monocular input and does not rely
on 3D priors. The method employs neural radiance fields
as implicit shape representations, and combines them with
lightweight object SLAM, to localize and reconstruct objects
in a scene and generate dense object map with semantic
information. Our high-performance implementation allows
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creating separate implicit models for each object, which can
be incrementally trained and converge quickly. Comprehensive
experiments demonstrate the effectiveness and advantages of
RO-MAP. In the future, we are interested in how to utilize
implicit object maps for downstream tasks such as robot
navigation, grasping, and relocalization.
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