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Gaussian Process Mapping of Uncertain Building
Models with GMM as Prior

Qiangian Zou, Claus Brenner and Monika Sester

Abstract—Mapping with uncertainty representation is required
in many research domains, especially for localization. Although
there are many investigations regarding the uncertainty of the
pose estimation of an ego-robot with map information, the quality
of the reference maps is often neglected. To avoid potential
problems caused by the errors of maps and a lack of uncertainty
quantification, an adequate uncertainty measure for the maps is
required. In this letter, uncertain building models with abstract
map surfaces using Gaussian Processes (GPs) are proposed
to describe the map uncertainty in a probabilistic way. To
reduce the redundant computation for simple planar objects,
extracted facets from a Gaussian Mixture Model (GMM) are
combined with an implicit GP map, also employing local GP-
block techniques. The proposed method is evaluated on LiDAR
point clouds of city buildings collected by a mobile mapping
system. Compared to the performance of other methods such as
OctoMap, GP Occupancy Map (GPOM), Bayesian Generalized
Kernel OctoMap (BGKOctoMap), Local automatic relevance
determination Hilbert map (LARD-HM) and Gaussian Implicit
Surface map (GPIS), our method achieves a higher Precision-
Recall AUC for the evaluated buildings.

Index Terms—Mapping, Probability and statistical methods,
Laser-based, Uncertainty representation.

I. INTRODUCTION

APS play a crucial role in assisting autonomous sys-

tems, such as robots or automated vehicles, to compre-
hend unknown and complex scenes, enabling them to locate
and navigate themselves accurately and safely. However, the
uncertainties associated with maps significantly impact the
performance of localization, navigation security, and collision
avoidance of the autonomous system. With laser scanners,
the environment can be represented in a straightforward way
with point clouds, and further modelled using structured
maps or abstract surface models [I]. The common maps
are, e.g., high-definition (HD) vector maps [2], acquired with
high geometric and semantic accuracy, 2D or 3D-grids with
occupancy probabilities, such as OctoMaps [3], or 3D-City
models with various levels of detail. Uncertainty sources in
the environment map are inevitable due to, e.g., ambiguous
environment information, sparsity, occlusions and noise in the
measurements [4]. Hence, when the map is treated as an
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ideal perfect reference in localization and path-planning tasks
without considering its quality, this can result in severe errors,
e.g., the wrongly modelled occluded buildings might cause a
bias in the estimated pose. Additionally, one may use multiple
sensors to capture the environment or may have the demand of
updating the existing maps with new data. In those scenarios,
a good uncertainty measure of the maps created by different
sensors and agents is essential for data fusion and motion
planning purposes [5]. Although many existing studies about
uncertainty models are found in automated driving related
fields, they are mostly for pose estimation. There is a lack
of sufficient research describing the accuracy and precision of
maps.

In the field of simultaneous localization and mapping
(SLAM), uncertainty-aware tasks require a reasonable expres-
sion of map uncertainty. There are some existing methods
estimating the uncertainty of maps to improve localization
accuracy or make the results more robust [1]], [6], [7]. For ex-
ample, Biber and Stral3er [6] proposed to represent the environ-
ment using normal distribution transform (NDT) maps, where
the map uncertainty is represented by a grid of distributions.
However, it assumes independent discontinuous distributions
of the neighboring cells and it has been found to result in
a higher uncertainty at cell boundaries [§|]. Javanmardi et al.
[1] introduced the idea to build abstract vectors and planar
surface maps of buildings and ground, where the uncertainty
is given by the normal distribution generated from vectors
and planes. Building maps with fixed interval uncertainties
have been used in hybrid interval-probabilistic localization [7]].
Occupancy maps with uncertain occupied cells are also widely
used in localization, whose uncertainties are represented by the
occupancy probabilities.

All these existing studies prove the importance of quantify-
ing the uncertainty of maps. However, it remains challenging
to map the continuous space from noisy sparse point clouds
and assign reasonable uncertainties to it. There is still a
research gap in measuring the spatial uncertainty of maps
in urban areas. There are many man-made structures with
relatively regular geometrical shapes, where buildings are
often the most important ones for localization, e.g. as used in
[1], [[7]. Thus, a detailed spatial uncertainty representation of
building models in urban scenes is of great interest to explore.

The choice of an adequate uncertainty measure in environ-
ment mapping is critical. To tackle this problem, the uncer-
tainty and completeness of a map can be described in a prob-
abilistic fashion. GPs with their data-driven and probabilistic
nature have proven to be a powerful tool for the quantification
of uncertainty in various research fields. Recently, GPIS maps
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[O, [10] have been proposed for continuous environmental
mapping. The posterior mean and covariance kernel of a GP
serve as the best estimation of the surface distance field and
the uncertainty measure, respectively. GP Occupancy Mapping
(GPOM) [12] demonstrates how to predict a continuous occu-
pancy map from sparse noisy point clouds with GP inference.
The occupancy probability of unexplored space with no rays
passing through or hitting is regressed by spatial neighbors
in a GP, including well-calibrated uncertainties. It provides
the possibility to capture the underlying correlation between
spatially neighboring cells. The continuous inference gives the
generalizability to building a map of desired resolution for
diverse applications. However, the drawback of GP lies in the
high computational cost due to matrix inversion operations,
and this drawback limits the applicability of GPs for large
datasets. In order to achieve an acceptable computational
efficiency, many approximation approaches such as the par-
titioning of the spatial world into subsets, the fusion of local
GPs with Bayesian Committee Machines (BCMs) or a sparse
approximation of GPs have been proposed [11]-[15]. To avoid
the unreliable prediction from successive BCM updates, the
Bayesian generalized kernel OctoMap (BGKOctoMap) [16]]
leverages Bayesian kernel inference and sparse kernels to
perform a stable inference-based occupancy mapping. Jadidi
et al. [17] expanded the occupancy mapping to probabilistic
geometric frontiers computed efficiently using the gradient of
the GP occupancy map.

Hilbert Maps, as another continous mapping technique, have
been introduced by Ramos et al. [18], [[19] to efficiently map
the complex real world by operating on a high-dimensional
feature vector. With efficient stochastic gradient descent optim-
ization, it can achieve comparable performance to GP mapping
with less time. Inspired by GP, Duong et al. [20] introduced a
probabilistic formulation that utilizes a sparse set of relevance
vectors to model obstacle boundaries.

However, these methods lack proper uncertainty quanti-
fication for their mapping. The uncertainty inherent in a
GP map has not been sufficiently investigated, which can
be exploited to distinguish unknown areas without enough
information. This highlights the need to evaluate the reliability
of the inferred occupancy probabilities. This issue has been
addressed in recent work by Pearson [21]]. Additionally, occa-
sional discontinuities in the environment can pose challenges
for GP-based mapping, as GPs are often used for continuous
targets. This effect is not well-studied in the current literature
on GP mapping either.

Another group of research is learning structural surface
models from measurements to probabilistically represent the
perceived space. Thrun et al. [22] fitted a set of rectangular
flat surfaces to compose three-dimensional (3D) maps, with a
group of parameters optimized by Expectation Maximization
(EM) and the number of planes estimated by a Bayesian prior.
With similar spirit but higher fidelity in approximating diverse
arbitrary environments, Gaussian Mixture Models (GMMs)
are employed as a semi-parametric tool with large numbers
of components to extract the planar models [23|] or obtain a
high-fidelity representation of sensor observations [8[], [24],
[25], estimating Gaussian mixtures instead of 3D planes.

Nevertheless, the number of components has a great impact
on the performance of GMM-based approaches and it is a
non-trivial task to choose a proper number.

In this work, GP is used to obtain an inference-based surface
model of structured buildings with GMM priors, leveraging the
flexibility of non-parametric methods in arbitrary structures
as well as the scalability of parametric approaches in large
environments. When exploring large urban scenes, buildings
are one of the most important structures for localization, which
have relatively simple geometry and are easy to extract. GMMs
are first applied to extract the main planar surfaces with a
few components, while GPs are used subsequently to carve
the irregular parts. In GP inference, the sets of local GPs
corresponding to certain planar objects are applied to adapt
the discontinuities and reduce redundant computation, while
the sparse kernel and data block partitioning techniques similar
to the prior work [13]], [14] are utilized to further improve the
computational efficiency.

The contributions of this work are the following:

e We map uncertain building models in a probabilistic
manner using laser scanning point clouds, which can be
applied in various downstream tasks and can be updated
probabilistically. This method addresses the issue of a
lack of uncertainty quantification for reference maps. The
merit of this uncertainty representation is revealed in the
experiments where better results are achieved when using
accurate inference.

o« GMM planes and local GP blocks are combined to yield
a map with efficient surface prediction and to maintain
a faithful uncertainty description. Both GMM planes and
GP functions represent the statistical uncertainty of the
mapping process.

o We evaluate the mapping performance and the faith-
fulness of the uncertainty description with real-world
LiDAR point clouds, collected by a mobile mapping sys-
tem (MMS). The Precision-Recall (PR) curve and the area
under the curve (AUC) are used as metrics to evaluate the
results of OctoMap, fast GPOM, BGKOctoMap, LARD-
HM, GPIS, and our method. A comparison to the receiver
operating characteristic (ROC) AUC is also discussed.

The rest of the letter is structured as follows. Section II
defines the problem we aim to solve as well as the represent-
ation of building maps with uncertainty measures. In Section
III, a brief introduction to GMMs and GPs is presented. We
explain how GPs are used to model non-planar surfaces with a
GMM prior, representing the uncertain building facade surface.
The strategies for parameterizing the discontinuities, reducing
computational efforts, and outlier filtering are explained in
detail. In Section IV, experiments using real LiDAR data
collected by MMS are presented, and qualitative results as well
as a quantitative evaluation with state-of-the-art benchmarks
are shown. Finally, we provide our conclusions and an outlook
for future work in Section V. Figure [I] illustrates the overall
workflow of the mapping process and evaluation.

II. PROBLEM STATEMENT

The objective is to produce maps for automotive robots in
outdoor scenarios, which consist of building models including
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Figure 1. Overall workflow.

quantitative uncertainty measures for each surface point, as
illustrated in Figure 2} More specifically, the goal of the
mapping problem is to estimate continuous facade surface:
determining the relative surface depth and its uncertainty at
any given query point.

Data sources are building points obtained from LiDAR
range measurements. (Classification of the raw measurements
to extract the building points is performed during a prepro-
cessing step.) Due to the measurement process with a MMS,
there are invisible areas occluded by other objects (cars, trees)
or also self-occlusion. The resulting map should take these
factors into account by properly describing the uncertainty
measures. Such a representation also allows for integrating
data from different sensors of different accuracy.

Although buildings are 3D objects, they can be modelled
as being composed of a set of facades, each of which consists
of planar protrusions, extrusions, slopes (non-vertical planes)
and non-planar shapes, leading to a 2.5D representation.

Each individual facade of a building is then modelled
with two parts: (1) regular planar parts are segmented by
a GMM; (2) deviations from planar segments are modelled
by GPs to capture arbitrary shapes. The planar parts can
be modelled using plane parameters and boundary points
indicating the location and the shape of each local planar
facet. These parameters are optimized in GMM to provide
a prior surface estimation. In this way, the main fagade plane,
as well as protrusions and extrusions can be specified with
the corresponding plane layers resulting from a GMM. The
remaining non-planar parts are represented as relative surfaces
via non-parametric approaches, namely GP in our case, which
describes the surface as a function with depth values of each
point. Given a point € R? on the local projected surface
plane, the distance s to the prior mean surface is:

.
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Figure 2. Depiction of a building model where for each
location an uncertainty can be queried (indicated by color).

=0 on the mean surface,
s=f(x)d <0 on an extrusion, (D
>0 on a protrusion.

This GP surface representation provides an estimate of depth
regarding the local planar segment at any location on the
surface. Combining both components, the surface depth d(x)
is given by:

d(@) = g(x) + f(2), @)

where g(x) is the expected plane depth from the GMM and
f(x) denotes the local surface distance from Equation (T).

IIT. UNCERTAIN BUILDING SURFACE MODEL

In addition to the depth value, the uncertainty is represented
probabilistically using GMM and GP components. Figure [3]
visualizes the effect of each stage in the processing chain. To
generate uncertain building models, the building points are first
extracted by a semantic classification from calibrated MMS
point clouds. For each individual building, each facade plane
is extracted by using a Random Sample Consensus (RANSAC)
approach [26]], where points are allocated to the corresponding
facades. Then, an uncertain model of facades can be explored
with GMMs and local GPs, illustrated in Figure 32 3b]
[3d and The ground truth of this exemplary building is
provided for comparison, as shown in Figure [31]

A. Gaussian Mixture Models for planar surfaces

A fagade is mainly composed of local planar objects, which
can be modelled by the plane normal, location, and the
boundary of the facets. The plane normal, i.e. the orientation
of the building facade, is determined by a principal component
analysis (PCA), using the eigenvector belonging to the smallest
component. It serves as the depth direction, which decides the
local frame of the fagade used in the following modelling.
Many map representations such as 3D CityLoD2 models
only map the building fagade with one plane and ignore
the extrusions and protrusions. Often, the uncertainty is not
specified at all, or if it is, is given in terms of a single,
global uncertainty measure only, e.g. as used in [7]]. This is
not sufficient for many tasks requiring high accuracy. A GMM
is applied to cluster the points with different depth values to
depth layers. Each depth layer is described by one Gaussian
component in the GMM:

K
p(d) = 3" mN (dlp o),

k=1

3)
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(a) Surface depth layers clustered by GMMs
(5 components for each fagade, i.e., 5 layers)
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Figure 3. Visualization of different stages of the mapping process.

where d is the surface depth of a point, K being the
number of Gaussian components, which is determined by
the number of peaks detected in the histogram of all depth
values; (g, tk, o) are the GMM parameters for the k-th
depth layer, 7 is the prior probability or weight, representing
the importance of the component, and pj, and oy, are the mean
and standard deviation of the Gaussian distribution.

The parameters { (7, jix, 0% )} i, are optimized by max-
imizing the log-likelihood using the EM algorithm. Figure
[ shows an example of the GMM results. The Gaussian
component with the highest prior probability is the main
facade plane.

Nevertheless, the limits of GMM are: 1) Non-planar sur-
faces cannot be modelled. 2) If the number of points on
different layers varies greatly, meaning the training for dif-
ferent components is not balanced, the method might fail to
model the small protrusions and extrusions. 3) Slopes might
be simply modelled as a vertical plane. The non-parametric
approach GP, on the other hand, is capable to model them in
a data-driven fashion. It is, therefore, introduced here to solve
these problems.

6 -04 -02 0.0 0.2
d(m)

Figure 4. GMM for plane modelling: the left picture shows a
facade profile, i.e., all scanned points of a facade in a view
from the side; The Gaussian components (right) with different
colors represent each depth layer. The one with highest peak
is the main fagade plane.

B. Gaussian Processes

A GP f(x) ~ GP(u(x),k(z,z')) is a popular Bayesian
nonlinear regression method in machine learning. It can be
seen as a multivariate normal distribution with infinite vari-
ables in a continuous domain, e.g. a continuous space. The
distribution of any finite subset of those variables is still a joint
Gaussian distribution. It is characterized by a mean function
w(x) and a covariance function k(x,z’), which is also called
the kernel function. The prior GP mean function is often set to
zero. There are many possible choices for the kernel function
and in this letter, automatic relevance determination (ARD) is
used as the prior GP kernel function:

2
ko(z,z') = 0']2) exp <—; Z b (T — z’m)2> , @
m=1

where 0 = (0, b1, b2) are the hyper-parameters for the kernel
function, which are optimized by maximum likelihood, given
a measured dataset.

Provided a measurement dataset D = (X,y), where
X = {z;}}¥, are N input vectors and y = {y;}, are
the corresponding target values measured with additive noise
n; ~ N(0,072), we have the following likelihood:

p(yX,0) = N(y[Ky + 071), (5)

where Ky = ko(X, X) is the covariance matrix of the input
points with N x N entries calculated by the prior kernel
function.

The rest of the space X, can be predicted with a multivariate
Gaussian distribution conditioned on the observations D. The
posterior GP mean and kernel are calculated by [27]:

() = po(ws) + kI (Ky + o21) " (y — 1o(X)),  (6)

k(zs, @) = ko(zs, @) — kL (Ky + 01) 'K, + 07, (7
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where the prior mean po () is set to zero, [k.]ny = ko(X, )
and [k,]n = ko(X, ") are the prior covariance between the
N input training points and the predicting points.

To utilize a GP for generating an uncertain building model
from dense point clouds, there are mainly two problems. First,
mapping methods using GPs have to consider the discontinuity
of the environment while the GP often encodes the continuity
and smoothness assumptions on targets. It is hard to model
functions, which exhibit arbitrarily large derivatives, with a GP.
Unfortunately, large derivatives often appear in environment
mapping. This issue is also addressed in [12], [14]], where
they tried special kernels to adapt the discontinuities, e.g.
Matérn covariance functions. However, the improvement is
limited. Second, with large training datasets, the GP regression
faces a computational problem due to the inversion matrix
calculation having time complexity O(N?). To capture the
discontinuity and reduce the computational cost of GPs in the
case of a building model, the two strategies applied here are:
1) using the GMM results as prior, and 2) partitioning data into
blocks. These strategies are explained in detail in the following
sections.

C. Using the GMM as prior

Using the GMM as prior offers several advantages. The
GMM is used to “explain” the planar building parts. Thus, only
the remaining arbitrary surfaces have to be modelled by GP,
namely non-planar points, points of non-horizontal normals
and outlier points too far away from the mean. In this way,
the GMM information reduces the number of training points
for GPs, as only the irregular points are used for GP training.

Another advantage of using GMM as prior is to provide
parameters to the prior distributions of GPs. The estimated p-
values from the GMM serve as prior means in GP modelling,
denoting the prior surface depth expectation of each planar
layer, while the variances parameterise the prior covariance
functions and depict the local data variability. The non-planar
points which fall into a local facet on a certain layer are mod-
elled by a local GP with this prior mean. The g(x) in Equation
is substituted by the mean i, of a GMM component. Each
local GP model has its own hyper-parameters and estimates
the predictions only for the corresponding area. All local GPs
compose a GP list for inference.

Different mean and covariance functions adapt GPs to the
local facets, capturing and parameterising the discontinuities
on the facade surface, caused by the sharp change between
two depth layers. With this process, the entire continuous
space is also divided into multiple local areas of GMM facets,
modelled by GPs individually, which reduces the size of the
kernel matrix as well.

There might be cases, where there are regions without any
training data and not covered by any local GPs. Then, a global
GP prior is included in our GP list. The mean value of this
GP is determined by the mean of the Gaussian component
with the largest weight in the GMM. Its prior variance can be
set as the variance of the entire facade plane, representing the
overall variability across all layers of the facade.

Initially, we considered weighted averaging of the inferred
results from adjacent local GP segments in empty areas, using

either BCM [28] or Product of Expert (PoE) [29]. However, in
our case, the fusion did not significantly improve the results,
and the resulting decrease in uncertainty was not desirable.
Furthermore, the use of mixtures of GPs would have impacted
efficiency. Therefore, in this letter, mixtures of local GPs are
not utilized.

We classify the points that cannot be effectively modelled by
the GMM into three categories: (1) non-planar points, (2) non-
vertical slopes whose normal vectors deviates considerably
from the normal of the main plane, and (3) points that
are significantly outside their Gaussian distributions, i.e. not
within the 95% confidence interval (1.9604) of a certain
component. Figure [3D| illustrates an example, where the red
points are selected as training points and model the GP implicit
surface as a function of the continuous surface depth estimate.
These points are selected according to the rules regarding the
depth value d and the normal vector n = {n,,n,,n,}:

|d — Nk| > 1.960, ()

n.(z) < cos(as), )

where pj and o are the parameters of the k-th Gaussian
layer, and n,(x) is the component of the normal n, which
is perpendicular to the main facade plane. . is the angle
threshold for the normal n deviating from the normal of the
assigned GMM plane. In this letter, o, = 25° is applied.

The estimate for o, in the kernel of a local GP is set as
the standard deviation of the corresponding planar patch oy.
Optimization of other hyper-parameters is done on a small
subset of the training data, involving a reasonable choice of
the initial estimates:

o The initial {by, b2} are set to the same value, i.e. isotropic.

We set % = é = 0.0025 m?2, observed from the invest-
igation of the impact of the length-scale (% = i = é on

kernels and the empirical value from the existing study
(12];

e oy, reflects the precision of the sensors, point cloud
alignment noise and random environmental noise. In this
case, o, = 0.02m.

D. Applying GP-block techniques

Although we reduced the training points in the last section,
the computational efficiency can be further improved by the
data partitioning and GP-block techniques, which are inspired
by [13]. In practice, the spatial correlation between two
points decreases with their distance. This property is naturally
captured by the length-scale hyper-parameter b = (by, bs)
in the covariance functions of the GPs. As the points far
from each other have negligible influence that can be ignored
in the covariance matrix, only close points have significant
covariance and need to be considered. An idea to exploit this
property is to apply a sparse covariance function [15]], by
setting the covariance to zero when the distance is larger than
a threshold. It also indicates the possible data partition of the
training data. The entire training samples can be divided into
local blocks within a certain range, as proposed in [13], [[14].
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In those methods, the block size is set as the predefined scale
value of the sparse kernel while in our case, the block size
is determined by the distance corresponding to the threshold
cmin Of covariance values, calculated by Equation @), when
op is set to 1 and by = by = b:

2
1
€xp <_2 Z b(l’m - -T:q»L)Q) Z Cmins
m=1

where ¢, = 0.0001 in this case. The block size is equal
to |z — «’| when it makes both sides equal. The extended
block of a given block is defined as the central block with
its neighboring blocks. In GP regression, the points from the
extended block are the training data for the central block being
under consideration.

(10)

E. Outlier filtering

To generate a GP inference robust to outliers, a model is
required for outlier processing. There might be outliers in the
training samples due to false classifications (e.g. points of road
signs in the vicinity of a building) or other unexpected reasons.
A statistical test on a GP with Gaussian likelihood is applied
to check the probabilistic significance and identify the outliers,
e.g. a Chi-squared test. In this work, the Chi-squared test with
one degree of freedom is applied to remove outliers.

The procedure of outlier filtering is as follows.

1) The GP is trained normally with all training data and the
mean and variance of each training point are inferred,

2) The Chi-squared test-statistic is calculated using v? =
(di — pi)*/o?,

3) The test-statistics are compared to the x? value given a
certain a-quantile level and the points with test-statistic
values larger than X2 value will be removed as outliers,

4) The GP is trained again with the filtered training data
and the test points are predicted with mean and variance.

The above process may as well be repeated to iteratively

trim the outliers, which, however, will lead to an increased
computation time. Therefore, in this case, we only perform the
test once in our experiment. The a-percentile level in the test
serves as a threshold to filter outliers, indicating the strictness
of outlier detection. High values of o will see many points as
outliers, while a small a gives more tolerance to the points
deviating from the mean and might miss the outliers.

IV. EXPERIMENTS AND EVALUATION
A. Dataset

The GP-based representation of a building surface is evalu-
ated using real-world LiDAR point clouds collected by a Riegl
VMX-250 mobile mapping system for the urban environment,
in Hanover, Germany. The scanner measurements are specified
as b mm precision and 10 mm accuracy. However, the accur-
acy of the GPS sensor in the system is much worse than the
laser scanners. Point cloud alignment is thus used to correct the
GPS trajectories in preprocessing and the data noise is given
by a 2cm standard deviation, resulting from the alignment
[30]. In the experiments, only building points were used, which
were extracted using the deep learning based method [31].

In total, we used five measurement campaigns for the
same urban areas collected on different dates to obtain very
dense point clouds. 2,239,670 points from one measurement
campaign were used for modelling the uncertain map and
the remaining data (11,694,768 points) was used as ground
truth for testing and evaluation. In one single measurement
campaign, the number of points for one building facade is
often larger than 10,000 and can reach up to 450,000 in our
dataset. The investigated urban area is around 55 x 93 x 22 m?3.

B. Experiments

The building fagades obtained from the RANSAC, are
firstly transformed individually to the local frame of their
main planes, where a map point is a 2.5-dimensional point
P = {x,d}, with the location € R? on the plane and the
depth value d in the direction of the plane normal (derived by
the PCA using all facade points).

In the local fagcade frame, the planar points are used as i.i.d.
samples to optimize the parameters of the GMM. Training
points selected according to Equation () and (9) are used to
derive the posterior GP-based models. For different building
facades, the amount of training points varies. Depending on
the building structures, 20 to 50% of the points are selected as
training points in the experiment. The initial hyper-parameters
are given based on the rules in Section III.C. The initial o, is
chosen as 2 cm for this dataset.

Figure [5] shows the qualitative result of modelled buildings
with their associated uncertainties. In the original measure-
ments, certain areas are occluded, where the inferred surfaces
exhibit high uncertainties. Among the occluded regions, those
located on simple facades with smaller prior variances, have
lower uncertainties, since the variance of the entire facade
is indicative of the potential surface variability, and hence,
the possible errors. In general, the buildings that have been
observed with denser measurements are modelled with lower
uncertainties. In practical localization applications, users are
able to select only the accurate part of maps or use the
entire reference map with weights indicating the uncertainty.
The benefits of only using maps with low uncertainties in
occupancy maps are investigated in the following evaluation
section.

Standard deviation
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(b) Accurate inference

(a) Surface inference

Figure 5. Qualitative results of the building models: uncer-
tainties are denoted by colors. Redder colors indicate higher
uncertainties while blue colors denote low uncertainties.



ZOU et al.: GP MAPPING OF UNCERTAIN BUILDING MODELS WITH GMM AS PRIOR 7

C. Evaluation

To evaluate the proposed method, existing state-of-the-art
approaches are used as benchmarks, namely OctoMap [3]],
GPOM [14], BGKOctoMap [16]], LARD-HM [18] and GPIS
map [9]. To make the comparison possible, we first transform
our abstract surface map to a 3D occupancy map, where
probabilistic least-squares classification is applied and the
occupancy probabilities are obtained through a cumulative
Gaussian density function, inspired by previous research [12],
[13]. The details can be found in the paper [13].

The metrics used for evaluation are 1) Precision-Recall (PR)
curves and 2) Area under the curve (AUC). Note that some
previous work used the ROC curve and the corresponding
AUC as the metrics. However, it is not proper to use ROC
in highly-skewed data, where a large change in the number
of false positives can only lead to a small change in the
false positive rate used in ROC [32]. This occurs in our
case, as in outdoor scenarios, the number of free samples is
much larger than the number of occupied ones. This issue has
also been addressed in previous research [33]]. Alternatively,
the PR-curve is more suitable for highly imbalanced data
[32]], especially when the positive (occupied) case is of more
concern. Precision compares the false positives with true
positives, and therefore, captures the detection errors of a large
number of false positives. Unlike the case with ROC curves,
the goal of PR curves is to reach the upper right corner, instead
of the upper left corner.

Figure [6] compares the AUC of different approaches in two
resolutions (0.1 m and 0.05m grids). In general, GP-based
maps have a good performance, among which our proposed
method (green and orange curves) achieves the highest AUC
values and is robust to small resolutions. The green curves
denote the case when we only consider the accurate inference,
i.e. areas with small uncertainty. The variance threshold is
selected as 0.01 in this case. Areas with inference variance
larger than 0.01 are considered being unknown. The figure
shows that improvement is obtained by using only the accurate
parts and the corresponding maps (green curves) give the
best performance. This shows the value of the uncertainty
representation for maps and indicates the potential application
of this uncertainty model in downstream uncertainty-aware
tasks.

The uncertainty evaluation is conducted by plotting AUC
changes across varying uncertainty thresholds and distances of
query points from the nearest observations. The proposed work
is compared with the benchmark - GPIS map, shown in Figure
The results reveal a clear monotonic trend in the AUC values
as the uncertainty threshold varies. The proposed method
shows robustness compared to GPIS for the areas far from the
observations, where the uncertainty is high. The AUC values
remain consistently high, indicating strong performance. In
contrast, GPIS exhibits a higher AUC only when a small
number of predicted points, which are close to the original
training points, are retained, as shown in Figure [7b] However,
our method maintains a high AUC even with a larger number
of predicted points, suggesting its ability to deliver reliable
predictions for unobserved areas around observation points.
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Figure 6. PR curves and AUC comparison: the AUC value of
each curve is given in the legend.
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Figure 7. Uncertainty evaluation: change of AUC with varying
uncertainty thresholds and distances between the predicted
points and original training points.

D. Comprehensive comparison

The GPOM and BGK models use fixed values for prior
variance, noise, or length scale, which may not adequately
support accurate spatial correlation and data variability. Ad-
ditionally, the fixed prior variance and kernels struggle to
model sharp changes in voxel occupancy, potentially impacting
the final posterior occupancy probability. Similarly, the GPIS
benchmark sets pre-fixed values for prior variance and mean,
introducing inaccuracies in surface estimation, particularly for
regions far from the observations. The fixed variance also leads
to potential overestimation or underestimation of uncertainties.
Thus, the results are sensitive to these fixed priors.

By contrast, our proposed method addresses these limita-
tions by leveraging the GMM for obtaining a more tailored
prior variance and mean, and employing local GPs for captur-
ing the spatial correlations and uncertainties in a more adaptive
manner. This allows for a more accurate estimation of facade
surfaces.

E. Computational time comparison

Regarding computational time, BGK and GPOM reach the
fastest speed for mapping, as shown in Figure [8| Our proposed
method demonstrates comparable training times to bench-
marks, thanks to the assistance of the GMM prior. During test-
ing, it may require more time than BGK, GPOM, and LARD-
HM but remains faster than GPIS. While we acknowledge the
importance of efficient online mapping, our goal is to deliver a
mapping framework that prioritizes accuracy and uncertainty
awareness, enhancing map-based localization tasks.
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Figure 8. Computational time.

V. CONCLUSIONS

In summary, this letter proposed a method to generate build-
ing models as reference maps with associated uncertainties.
The GMM and GP approaches are combined to map the
planar parts and non-planar surfaces together. Local GP and
data partition techniques are introduced in GP to reduce the
computational cost and parameterise the discontinuity of the
building surface. In the experiments, the abstract surface map
is transformed into an occupancy map representation and then
is compared with state-of-the-art benchmarks. Our evaluation
shows that the local GP with GMM prior yields the highest
AUC values, indicating its potential for utilizing uncertainty
characterizations in future applications.

The generated map will be applied for localization tasks in
the future and the positioning results will be compared with
other methods, such as NDT-based localization. The approach
also has a large potential to be used for updating and refining
existing models from new data or other sensors; this will also
be studied in future work.
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