
1

Torque-based Deep Reinforcement Learning for
Task-and-Robot Agnostic Learning on Bipedal

Robots Using Sim-to-Real Transfer
Donghyeon Kim1, Glen Berseth2,∗, Mathew Schwartz3 and Jaeheung Park1,4,5,6,∗

Abstract—In this paper, we review the question of which
action space is best suited for controlling a real biped robot in
combination with Sim2Real training. Position control has been
popular as it has been shown to be more sample efficient and
intuitive to combine with other planning algorithms. However,
for position control gain tuning is required to achieve the best
possible policy performance. We show that instead, using a
torque-based action space enables task-and-robot agnostic learn-
ing with less parameter tuning and mitigates the sim-to-reality
gap by taking advantage of torque control’s inherent compliance.
Also, we accelerate the torque-based-policy training process by
pre-training the policy to remain upright by compensating for
gravity. The paper showcases the first successful sim-to-real
transfer of a torque-based deep reinforcement learning policy
on a real human-sized biped robot. The video is available at
https://youtu.be/CR6pTS39VRE.

Index Terms—Reinforcement Learning, Humanoid and
Bipedal Locomotion, Torque-based Control

I. INTRODUCTION

Control algorithms for robots can be extremely complex
and difficult to implement. They change widely based on
the robot themselves and tasks, and a continuing line of
robotics research has shown the difficulties faced when high-
dof multi-link robots, such as biped robots, are controlled [1, 2].
Recently, reinforcement learning (RL) has become a popular
method for implementing robotic controllers, in part due to
its ability to be applied to challenging tasks and robots. For
example, by introducing RL control methods to biped robots,
challenging tasks could be performed while effectively utilizing
the advantages of biped robots.

Biped robots (and other legged robots) make discontinuous
contact with the ground, enabling greater mobility compared
to wheeled robots. However, the discontinuous contact requires
switching the contact discretely at proper timing and location

*This work was supported by the National Research Foundation of Korea
(NRF) grant funded by Korea government (MSIT) (No.2021R1A2C3005914)

1Donghyeon Kim and Jaeheung Park are with the Department of Intelligence
and Information, Seoul National University, Seoul, KS013, Republic of Korea
kdh0429, park73@snu.ac.kr

2Glen Berseth is with the Université de Montréal, Quebec, H3C 3J7, Canada
glen.berseth@mila.quebec

3Mathew Schwartz is with the College of Architecture and Design, New
Jersey Institute of Technology, Newark, 07102, USA cadop@njit.edu

4,5,6Jaeheung Park is also with ASRI, RICS, Seoul National University,
Republic of Korea, and Advanced Institutes and Advanced Institutes of
Convergence Technology(AICT), Republic of Korea.

∗Both are corresponding authors.

[2, 3], making the biped robot challenging to control. Addi-
tionally, the control challenge varies depending on the task and
robot, and it has resulted in designing solutions that work for
more specific robots and tasks. For example, although a target
pose control (position-based deepRL), which is a widely-used
control space in RL, has many advantages, such as it is more
explainable and it promotes fast learning [4], it comes at the
cost of introducing what is essentially a mass-spring-damper
system with gain parameters into the control design. When
controlling biped robots, the gain parameters are often tuned
for each robot and every task the robot performs [5, 6, 7, 8] as
shown in Fig. 1. This tuning complicates the creation of robot-
and-task-agnostic algorithms and requires manually searching
PD gains, and adding the gains to the optimization space
increases the size and difficulty of the optimization [8].

Additionally, since the reality gap exists between simulation
and the real-world due to various factors, such as contact
dynamics and state estimation gap [7, 9], we should promote
control methods that can be used more broadly whether in a
simulation or real robot. While transferring the trained policy to
the robot hardware, the reality gap would result in a tracking
performance difference and the timing of contact with the
ground cannot exactly match between the trained environment
and the real-world. However, when early contact occurs in the
position-based deepRL policy, the PD controller will try to track
the target position no matter how much torque is generated,
and the robot can lose balance due to high impact force [10].
In this sense, compliance is advantageous to overcome the
reality gap because compliance implicitly controls the energy
transfer to the environment and reduces the impact force [11].

Therefore, it would be better to develop control methods
that require less parameter tuning and reduce the reality gap,
because they will scale better, be more reusable, and be
independent of the robot platform, task, and environment
(simulation or real). One option that fits nicely into this
puzzle is to control the motor torques directly as shown in
Fig. 1 because there is no PD gain that predetermines the
behavior and the torque-based control is known to be compliant
[10, 11]. Early work on deep RL [12] has compared position-
based and torque-based deepRL and reported that the torque-
based deepRL generally shows inferior performance with slow
training. However, the performance was evaluated only on
a simulator, and the Sim2Real problem was not taken into
account. Therefore, it would be worthy to analyze the action
space on the real robot from a robotics perspective.

ar
X

iv
:2

30
4.

09
43

4v
1

 [
cs

.R
O

]
 1

9
A

pr
 2

02
3

https://youtu.be/CR6pTS39VRE

2

Fig. 1: Diagram of position-based deepRL and torque-based deepRL. For position-based deepRL, the PD gain which is proper
for task 1, robot M, and sim-to-real transfer is tuned in advance. In torque-based deepRL, we propose to pre-train the policy
with the gravity compensation torque.

In this paper, we revisit the question of which action-space
is the best in general. First, from the learning perspective,
we show that the torque-based deepRL is a general algorithm
that can be applied out of the box without manually tuning
gains for each robot (Atlas, TOCABI) or task (squat, walk,
run) compared to position-based deepRL. Second, from the
sim-to-real perspective, we include an analysis of real robot
hardware and show that the position-based deepRL policy is
more vulnerable to the reality gap due to its limited compliance.
We also show that the torque-based deepRL policy is compliant
by its nature, and effectively overcomes the reality gap. Third,
since torque-based policies have been described as exhibiting
slow training, we propose to pre-train the torque-based deepRL
policy with a gravity compensation torque to accelerate initial
training and reduce the sample inefficiency. Lastly, this is the
first time that a torque-based deepRL policy is successful on a
heavy human-sized biped robot (≈100kg) with stable walking.
It is demonstrated that a biped robot can be torque-controlled
at various control frequencies with RL, ranging from 250 Hz
to as low as 62 Hz, which could suggest a new method to the
torque control society. We provide evidence for these claims by
comparing position-based and torque-based deepRL policies
to each other, and this results in a single control algorithm
that achieves a larger space of tasks without additional manual
tuning and is adequate for real-world legged robots.

II. RELATED WORK

A. RL on Legged Robot

RL is being actively applied on legged robots because it can
exploit full-model dynamics, leading to higher performance
with less domain knowledge on complex floating-base robot
dynamics with discrete contact [4, 13, 14, 15] while showing
robust behavior compared to model-based controllers [4, 16].
Many researchers have demonstrated RL on legged robots not
only in simulations but also on real robots [17, 18], although
there are not enough hardware verifications on humanoid robots

yet [16, 19, 9, 20]. However, when moving research interests
from simulation to the real robot, early works [15, 4] adopted
popular action space used in the graphics [12, 6] and did not
fully consider how the action space would affect on the real
robot, and the chosen action space became a common standard.

B. Action Space on Legged Robots

When controlling a legged robot with RL, various action
spaces can be designed. Not only action spaces that were
compared in early work on RL by [12], but also any other
action space such as task space [21] can be adopted by using an
additional low-level controller to track the target output by the
policy. The most widely used approach is a method that involves
using a policy to generate a target joint angle qtarget,πθ and
tracking it with a PD controller using gain parameters Kp,Kd

(position-based deepRL policy). Plenty of works using the
position-based deepRL emphasized the importance of selecting
a proper gain. However, how to determine the PD gain in RL
is not unified and decided by the rule of thumb. Since each
task and robot requires a different amount of torque range, the
PD controller requires some insight to set properly for each
individual robot morphology and task [5, 6]. For example, [22]
mentioned that they used a relatively very low PD gain on a
humanoid robot that has heavy legs and a high-ratio gearbox. .
On the other side, [9] emphasized tuning the PD controller to
behave similarly on the real robot and the simulation is critical
because the gap of the PD controller response can result in
non-observed states and increase instabilities.

Alternatively, the action space can be designed to generate
the torque command directly from the policy. To the best of
the authors’ knowledge, the only work in this framework on a
legged robot has been implemented by [23] on a quadruped
robot. They implemented the torque-based deepRL policy with
a relatively high control rate and showed successful sim-to-real
outdoor walking. However, their work was implemented on
a quadruped robot whose impact force could be low, and it

3

has not been discussed which aspects caused the advantages of
torque control. In this paper, we demonstrate that the torque-
based deepRL policy can be applied on various robot platforms
and tasks with minimal tuning along with a comparison of
behavioral differences arising from intrinsic compliance.

C. Compliance of Position Control and Torque Control

When a robot works in a known and structured environment,
position control can be adopted to track the target with a
relatively simple setup. However, when the task involves
contact with an unstructured environment and the tracking error
unexpectedly increases, the PD controller tries to reduce the
error with all available torque [10]. Due to this stiff disturbance
rejection behavior, compliance is lacking in the position control,
and a perturbation is created and transmitted into the robot.
Meanwhile, when using torque control, the torque does not
abruptly change, and the robot shows robust and safe interaction
with the environment without sacrificing tracking accuracy
[11, 24, 25].

D. Sim-to-Real

A fundamental solution to reduce the discrepancies between
the real-world and the simulation is to bring the simulator
closer to reality by developing a high-fidelity simulator [4], or
identifying the robot model accurately [15]. However, since it
is hard to completely imitate reality in the simulator, dynamics
randomization is applied to train the robot robustly in a certain
range of randomized parameters [26, 27]. In addition, implicitly
identifying the randomized environment parameter in the latent
vector and using the information as part of a state [14, 13]
is also being adopted. In this paper, we show a new way to
reduce the reality gap by exploiting the intrinsic compliance
of the controller in the environment where contact is involved.

III. BACKGROUND

A. Reinforcement Learning

We model a robot control problem as a discrete-time
Markov Decision Process (MDP) with a discounted expected
return objective. At each time step t, the robot control policy
πθ observes a state st, and the policy samples an action
at ∼ πθ(·|st) based on the state. The agent applies the action,
transitioning the robot state st to a new state st+1 ∼ p(·|st, at),
and a reward rt = r(st, at, st+1) is calculated accordingly.
The agent tries to learn a policy through interaction with the
environment that maximizes the expected return J(πθ), which
is the expected cumulative discounted reward over a finite-
horizon T

J(πθ) = Eτ∼p(τ |πθ)[

T−1∑
t=0

γtrt], (1)

where τ is the trajectory when executing the policy πθ.

B. Biped Robot TOCABI

In this paper, we use a lab-made biped robot TOCABI for
hardware verification. TOCABI is a human-sized humanoid
that is 1.8 meters tall and weighs 100 kilograms [28]. It is
designed according to the proportions of the human body and
has 12 actuated joints in the lower body and 21 actuated joints
in the upper body. Gears with a high reduction ratio of 100:1
are used due to heavy weight, and the current control-based
servo drives, which communicate with the real-time control
computer through the EtherCAT interface, control each joint
motor with a sampling frequency of 2kHz.

IV. METHOD

To find the best algorithm that can be used to train various
tasks on various robot platforms and can be transferred from
simulation to the real-robot with minimal tuning, we set two
environments. In these environments, the agent generates either
target joint angles (position-based deepRL policy) or torque
commands (torque-based deepRL policy) following the MDP
formulation in Sec. III-A as follows. A diagram of each control
method is also shown in Fig. 1, and in this paper, we focus
on the lower body, and the upper body is PD controlled along
with a gravity compensation to keep its default pose.

A. State Space

The state space S ∈ R30 consists of the robot’s base
orientation in Euler angles αt ∈ R, βt ∈ R, γt ∈ R, the
joint position qt ∈ R12, the low-pass filtered joint velocity
q̇lpf,t ∈ R12, the phase information represented by sine and
cosine sin(2πφt) ∈ R, cos(2πφt) ∈ R, and the command
velocity vcmdt ∈ R.

st = [αt, βt, γt, qt, q̇lpf,t, sin(2πφt), cos(2πφt), v
cmd
t]. (2)

The phase variable φt increments with time from 0 to 1 and
then returns to 0 when it reaches 1 to represent the current
phase of the cyclic motion. However, the phase φt can also be
modulated with the phase modulation action aδφ,t as it will
be described in Sec. IV-B3. The command velocity vcmdt is
given to the robot when the task involves tracking a user-input
velocity (e.g. walk, run). To simulate the sensor noise, we
inject a Gaussian noise wt ∼ N(0, σ) to the joint position
according to the encoder resolution of the robot hardware
(σ = 1e−4rad). A joint velocity q̇noise,t is computed from the
noise-injected joint position and then low-pass filtered with a
cut-off frequency of 4Hz to be used as a state q̇lpf .

B. Action Space

The action space A ∈ R13 is composed of 12 actions
to generate joint commands and one action to modulate the
phase φt. The action is sampled from a Gaussian distribution
whose mean is the output of the policy (µθ), and the standard
deviation (Σ) is fixed to a predetermined value πθ ∼ N(µθ,Σ

2).
Depending on the control method, either position-based or
torque-based deep RL policy generates commands as follows.

4

1) Position-based DeepRL: In the position-based deepRL
method, the policy outputs the target joint angle, and the target
joint angle is tracked by a low-level PD controller.

τcmd = Kp(qtarget,πθ − q) +Kd(−q̇). (3)

In general, the actor-network updates the target joint angle with
30-100Hz, and the PD controller runs faster with 500-2000Hz.

In our implementation, the actor updates the action with
250Hz and the PD controller runs at 2000Hz. The default pose
qdefault is set to a knee-bent standing configuration. Lastly,
the standard deviation Σ is set to a scaled value of each joint
position limit (qlimit/sq) rather than the same value across all
joints. This will respect the hardware design by allowing larger
exploration at the joint whose joint limit is designed to be high
to move a wider range of motion.

2) Torque-based DeepRL: A torque-based deepRL policy
directly outputs the torque,

τcmd = πθ. (4)

In contrast to the position-based deepRL policy, whose behavior
is largely predetermined by the PD gain, there is no inductive
bias on the torque-based deepRL. The bias introduced from
the gains has made learning policies for specific tasks easier
but has also limited the reuse of control methods. Therefore,
torque-based deepRL, as we will show, can be used as a more
robot-and-task agnostic method for learning control policies.
Also, because the generated control input is not restricted to a
mass-spring-damper-like system, there is a higher possibility
of achieving improved performance than the position-based
deepRL policy. Additionally, as opposed to the position-based
deepRL policy whose compliance is restricted by the PD
controller, the torque does not abruptly change. This compliance
results in robust and safe interaction with the environment,
especially for unexpected contacts.

In our implementation, the actor updates the command torque
with 250Hz. Also, the standard deviation is set to a scaled value
of each joint torque limit (Σ = τlimit/sτ), and this will allow
larger torque exploration to the joints whose torque capacity
is large, respecting the hardware design.

3) Phase Modulation: The action is also composed with
a phase modulation action aδφ,t. The phase variable φt
represents the current phase in cyclic motion and the reference
motion is updated accordingly. However, if the phase variable
advances linearly with time by a fixed value, the period of
the learned motion is also determined accordingly and cannot
be modulated [6]. This would generate sub-optimal behavior
when the robot is commanded to walk at high speed. The robot
could generate a wide step with a fixed period Tref to track
the target speed, but it would be better if the robot could also
reduce the walking period. Therefore, in our implementation,
a phase modulation action aδφ,t is additionally added to adjust
the period and timing of the motion as follows.

φt+1 = fmod(φt +
∆t

Tref
+ aδφ,t, 1.0) (5)

The action space of phase modulation action aδφ,t is designed
to be within [0,∆t].

C. Reward

The reward is formulated to execute a given task while
imitating a reference motion. In addition, several regularization
rewards are used for real-robot implementation. The overall
reward is composed as follows.

rt = rbase,imitatet + rq,imitatet + rc,imitatet + rv,taskt

+ rq̇,regt + rq̈,regt + rF,regt + r∆F,reg
t + rτ,regt + r∆τ,reg

t

(6)

The reward can be categorized into imitation reward, task
reward, and regularization reward, and each term is defined
in Table I. Imitation rewards guide the robot to follow the
reference base orientation expressed in quaternion qrefbase,t,
reference joint angle qreft , and foot contact status. Specifically,
the foot contact imitation reward rc,imitatet is given if the
current foot contact status cr,t, cl,t ∈ {0, 1} matches with a
predetermined desired foot contact status (double-support phase
φDSP or single-support phase φSSP,r, φSSP,l). The task reward
encourages the robot to track the command velocity vcmdt

on locomotion tasks. Lastly, regularization rewards penalize
joint velocity, joint acceleration, contact force, contact force
difference, joint torque, and joint torque difference, respectively
for real-world implementation.

TABLE I: Reward Definition

Reward Definition
rbase,imitatet 0.3 · exp(−13.2||qrefbase,t − qbase,t||
rq,imitatet 0.35 · exp(−4.0||qreft − qt||22)

rc,imitatet

0.2 if

cr,t = 1, cr,t = 1, φt ∈ ΦDSP
cr,t = 1, cr,t = 0, φt ∈ ΦSSP,r
cr,t = 0, cr,t = 1, φt ∈ ΦSSP,l

0 else
rv,taskt 0.3 · exp(−3.0||vcmdt − vt||22)

rq̇,regt 0.05 · exp(−0.01||q̇t||22)

rq̈,regt 0.05 · exp(−20.0||q̈t||22)

rF,regt 0.1 · exp(−0.0005(||Fr,t||2 + ||Fl,t||2))

r∆F,reg
t 0.1 · exp(−0.0005(||∆Fr,t||2 + ||∆Fl,t||2))
rτ,regt 0.05 · exp(−0.01(||τcmd,t||2))

r∆τ,reg
t 0.2 · exp(−0.01(||τcmd,t − τcmd,t−1||2))

D. Gravity Pre-training

Generally, since πθ is initialized to a small value, the
robot must first learn to support its weight in the early
stages of learning, which deteriorates sample efficiency. To
accelerate the initial training and increase sample efficiency, we
propose a relatively weak inductive bias on the torque-based
deepRL policy without damaging compliance. This method
only requires pre-training a torque-based policy to maintain
the initial pose of the robot (gravity compensation).

To collect the pre-training data, the gravity compensation
torque-based policy is obtained based on the contact-consistent
whole-body model [29]. The gravity torque is computed based
on the base orientation αt, βt, γt, current joint configuration
qt, and contact state of each leg cr,t, cl,t, and experience is
collected across various configurations by randomly initializing
the robot and perturbing the robot. Except for state variables

5

that affect the gravity torque (αt, βt, γt, qt, cr,t, cl,t), other state
variables are randomly set at each time step. Likewise, the phase
modulation action aδφ,t is also set to a random value. 200, 000
experience samples are collected on 8 parallel environments
for 5 hours and required less than 10 minutes to pre-train the
policy. Note that once the policy is pre-trained, it can be reused
as long as the state space and action space are not modified.

E. Training Setup

a) Dynamics Randomization: To narrow the reality-
gap and improve the robustness in the real-world imple-
mentation, the dynamics parameters are randomized dur-
ing training, as shown in Table II. The default values
of mdefault, Idefault, pCoM,default are acquired from the
robot CAD model, while the default values of joint friction
vjoint,default and joint damping fjoint,default follow the gear
specification sheet. Since our real robot actually controls not a
torque but a motor current, as opposed to the simulation, it is
also important to randomize the motor constant. Additionally,
the delay is randomized between 2ms and 6ms, considering
the delay of mechanical response.

TABLE II: Dynamics Randomization Parameters

Parameter Range Unit
Link Mass [0.6, 1.4]×mdefault kg
Link Inertia [0.6, 1.4]× Idefault kg·m2

Link Center of Mass [0.6, 1.4]× pCoM,default m
Joint Damping [0.6, 1.4]× vjoint,default Nm·s/rad
Joint Friction [0.6, 1.4]× fjoint,default Nm

Motor Constant [1.0, 1.1]× cmotor,default -
Delay [0.5, 1.5]× tdelay,default ms

b) RL Algorithm: As an RL algorithm, Proximal Policy
Optimization (PPO) is used to train the policy. Both the actor
and the critic are modeled as multi-layer perceptions with 2
hidden layers of 256 ReLU units. The agent is updated with
a batch size of 128 after 16, 384 samples are collected, and
80, 000, 000 samples are collected in total. The learning rate
linearly decreases from 5e−5 to 1e−6 as the training progresses.
The maximum episode length is set to 16s, which is 8, 000
simulation steps, and the early termination occurs when the
robot’s links, other than both feet, contact the ground.

c) Tasks: In this paper, we selected three tasks (squat,
walk, run) so that the difficulty level of each task differs. In
the squat motion, the robot bends its knee for 2s, maintains its
pose for 2s, and then stretches the knee for 2s without requiring
foot contact switching, and the reference motion for the squat
is handcrafted. For the walking task, the robot is commanded
to follow the target velocity by switching the contact, and a
single clip of walking motion with a 1.8s cycle is acquired
from the model-based controller [30] for reference motion. For
the running task, the robot follows a wider range of target
velocity, and the motion capture data from DeepMimic [6] is
used as a reference motion.

V. RESULT

We aim to answer four questions about torque-based poli-
cies: (1) Does pre-training with gravity compensation torque

Fig. 2: Trained squat motion

Fig. 3: Trained running motion

accelerate the learning of the torque-based policy (Sec. V-A),
(2) Can the torque-based policy be applied to a wider range of
tasks and robots without additional tuning (Sec. V-B), (3) Does
the torque-based policy exhibit compliant behavior (Sec. V-C1),
and (4) Does the compliant behavior of the torque-based policy
reduce the reality gap in sim-to-real transfer (Sec. V-C2).

A. Effect of gravity pre-training
When using the torque-based deepRL policy, the sample

efficiency in the early stages of learning is normally low. First,
we verified that the pre-trained policy is capable of maintaining
its pose on various configurations, indicating that the gravity
torque is properly learned and compensated. We then train
the torque-based deep RL policy on squat and walking tasks,
using the pre-trained model as a starting point, to ensure that
pre-training works regardless of whether the task requires
foot contact transitions. The learning curves of the position-
based and the torque-based deepRL policy with/without gravity
pre-training are shown in Fig. 4 with mean and variance of
three runs for each task and policy. The pre-trained torque-
based policy learns at a comparable or faster speed than the
position-based deepRL policy depending on the task because
the pre-trained torque policy can stand still from the beginning
of training, similar to the position-based deep RL policy. Also,
as training progresses, the pre-trained torque policy converges
faster than the torque policy trained from scratch, demonstrating
that gravity pre-training accelerates the training procedure.

B. Torque-based RL for Task-and-Robot Agnostic Learning
For the position-based deepRL policy, PD gains should be

tuned depending on the task and robot to achieve optimal

https://github.com/xbpeng/DeepMimic

6

Fig. 4: Effect of gravity pre-training

policies, unlike the torque-based deepRL policy. In this
subsection, we aim to verify this by showing that tuning gains
is critical for the training(Experiment 1), and tuning gains
that work across tasks (Experiment 2) and robot platforms
(Experiment 3) is difficult for the position-based deepRL policy
compared to the torque-based deepRL policy in simulation.

Experiment 1: The behavior of the robot in position-based
deepRL is significantly impacted by the PD gain, which in turn
affects the training process. In this experiment, we investigate
the effect of the gain and standard deviation of the action
distribution on the training of a single task (walk) on a single
robot (TOCABI). We examine 16 different combinations by
testing four different gains and four standard deviations. The
gain starts from Kp = Kdefault, which is the same gain used
by the model-based controller[30], and then it is halved Kp =
Kdefault/sp, where sp = {1, 2, 4, 8}. The standard deviation
of the action distribution is set to a scaled value of the joint limit
Σ = qlimit/sq, where sq = {100, 200, 400, 800} respectively.
Note that Kp = Kdefault with a standard deviation of Σ =
qlimit/100 would generate the largest exploration torque during
training.

In Fig. 5, we display the learning curves for each gain and
action standard deviation. It is observed that the robot cannot
learn to walk when a high gain of Kp = Kdefault is used. The
gain is a critical parameter, and finding an appropriate value
that balances compliance and tracking performance for the
given task is necessary. However, upon examining four runs
when Kp = Kdefault/2, we discover that not only the gain but
also the standard deviation of the action distribution affects
the success of the training. The robot begins to walk when the
standard deviation is less than qlimit/200. This demonstrates
that setting a suitable gain for the position-based deepRL
policy is crucial, and that tuning the gain becomes even more
complex when combined with the standard deviation of the
action distribution.

Experiment 2: To apply a control method on diverse tasks,
the controller should have the potential to satisfy the required
specifications (e.g. tracking performance, compliance) of mul-
tiple tasks. To understand the limitations of tuning position-
controlled policies compared to a torque-based learning method,
our second experiment compares position-based deepRL poli-
cies with PD gains to a torque-based deepRL policy across

Fig. 5: Effect of gain and action noise on training

multiple tasks on a single robot. We attempted to train position-
based deepRL policies across a set of tasks (squat, walk, run)
using a single set of PD gain across all tasks. However, it was
difficult to find a single set of gains that could be applied to
all tasks simultaneously because each task required different
levels of tracking performance and compliance. To train the
position-based deepRL policy successfully, not only the PD
gain but also the action standard deviation should be tuned
for each task. Specifically, by examining various PD gains
Kp = Kdefault/sp, sp = {1, 2, 4, 8}, and action standard
deviations Σ = qlimit/sq, where sq = {100, 200, 400, 800},
the squat motion and walking motion could be learned by
fixing the gain to Kp = Kdefault/4,Kdefault/8 and tuning
the action standard deviation for each task (sq = 100 for
squat, and sq = 100, 200, 400 for walking). However, the
running motion could not be learned at all with gains of
Kp = Kdefault/4,Kdefault/8, and Kp = Kdefault/2 should
be adopted. In contrast, the torque-based control method did
not require further parameter tuning across tasks, and it was
relatively robust to the action standard deviation by learning
all tasks with sτ = 5, 10, 20. This is because the torque-based
method can utilize a wider range of control space and has a
higher potential to satisfy the requirements of multiple tasks
since it is not pre-restricted and not inductively biased, unlike
the position-based deepRL policy that uses the PD controller.

Experiment 3: In the third experiment, we investigate
whether the same gains can be used as the robot platform
changes and adopt Atlas and TOCABI as the comparison
candidates. These robots are chosen to demonstrate that,
although they are both human-sized robots with a mass of
90 kg and 104 kg, respectively, and have the same order of
lower-body joint direction (YRPPPR), the gain is restricted
to a specific robot. Specifically, when using the gains of
TOCABI KP = Kdefault/4,Kdefault/8 in the position-based
deepRL policy, which is verified in Experiment 2, on Atlas
for the walking task, the simulation became unstable and the
training could not progress. This is due to the kinematics
and dynamics differences between the two robots, making it
extremely difficult to find a single set of gains that would
fit both robots. Instead, we had to tune a separate gain for
Atlas. In addition, the gain had to be tuned for each joint by
allocating a larger gain for joints that would sustain gravity. In
contrast, the same parameter (action standard deviation) used in

7

TOCABI sτ = 5, 10, 20 could be simply transferred to Atlas,
and no trial-and-error was required in the torque-based deepRL
policy. Moreover, setting the action standard deviation Σ to a
scaled value of the torque limit of each joint as proposed in
Sec. IV-B2 was successful without exception.

C. Torque-based RL for Sim2Real Transfer

In this subsection, we evaluate the analysis of simulation and
real robot hardware to determine the generality of torque-based
control and how its built-in compliance can assist in Sim2Real
transfer.

1) Compliance Analysis:
We start by demonstrating how the intrinsic compliance of
position-based and torque-based deepRL policies differ by
examining the reaction of both policies to unexpected contact
(Experiment 4) and how the PD gain affects compliance in the
position-based deepRL policy (Experiment 5) on the TOCABI
robot while performing a walking task.

Experiment 4: In this experiment, we demonstrate how the
position-based deepRL policy and torque-based deepRL policy
respond to unexpected contact and analyze compliance behavior.
To simulate the unexpected contact, the robot is trained on flat
terrain, and after training is completed, an obstacle is placed
in the environment in the simulation. The obstacle is modelled
as a box with a one cm height lying on the ground 60 cm
from the robot’s starting position and results in early contact
with the ground. In Fig. 6, the command torques of the ankle
pitch joint of a foot stepping on the obstacle, which is the most
influenced joint by perturbation, are plotted. In Fig. 6(a), when
the robot steps on an unexpected obstacle at around 4s with
position-based deepRL policy, the command torque abruptly
increases compared to when the robot walks on flat terrain.
This is because the low-level PD controller generates large
torque when the tracking error increases due to early contact.
The sudden impact is propagated from the foot to other links
and the robot loses balance eventually. However, as seen in Fig.
6(b), the torque-based deepRL policy does not show any peak
torque although the robot steps on an unexpected obstacle and
smoothly passes the obstacle.

We conducted the same experiment on the real robot and
the time-lapse of both policies encountering an obstacle is
shown in Fig. 7. By examining the contact force of both
policies when stepping on the obstacle, the result showed that
the position-based deepRL policy produced a larger impact
force when stepping on an unexpected obstacle and fails to
overcome the obstacle, eventually losing its balance as in the
simulation. Conversely, the torque-based deepRL policy did not
show any sudden torque-change when the robot encounters an
unexpected obstacle. This compliant behavior is consistent with
the simulation result and demonstrates that the torque-based
deepRL policy shows greater compliance than the position-
based deepRL policy.

Experiment 5: In the position-based deepRL policy, the
low-level PD controller restricts compliance, and the level of
compliance is predetermined by the PD gain. In this experiment,
we examine how compliance in the position-based deepRL
policy varies as we adjust the gain in the same simulation

Fig. 6: Command torque with/without obstacle in simulation

environment as Experiment 4. To achieve this, we evaluate the
success rate as the target velocity changes when implementing
position-based deep RL policies trained with various gains and
the torque-based deep RL policy. Success is defined as not
falling for 16 seconds, which is the maximum episode duration
of the training environment. The target velocity increases by
0.02 m/s in each episode, with 25 trials ranging from 0.02 m/s
to 0.5 m/s, which fall within the range of target velocities used
during training.

The position-based deepRL policy with Kp = Kdefault/8
(sp = 8), which was verified in Sec. V-B, resulted in the robot
losing balance 10 times out of 25 trials. Then, we inspected
various PD gains of the position-based deepRL policy by
continuously decreasing the P gain by half, starting from the
proportional gain Kp = Kdefault/8. Each policy is trained
from scratch with the corresponding gain, and the results
in Table III indicate that the success rate increases as more
compliance is introduced by using a low gain requiring trial and
error to find a proper gain for the desired level of compliance.
In contrast, the torque-based deepRL policy never fell and
remained stable at all target velocities regardless of which
action standard deviation sτ was used.

Gain Scale Factor sp 8 16 32 64 128
Success Rate 15/25 18/25 22/25 22/25 25/25

TABLE III: Success rate of position-based deepRL policy
according to the gain

2) Benefits of Compliance for Overcoming Reality Gap:
Since we have verified the inherent compliance of the torque-
based deepRL policy in Sec. V-C1, we demonstrate its benefits
when deploying the trained policy to environments other than
those used for training. To this end, we show that the torque-
based deepRL policy can quickly adapt to an unstructured
environment with fine-tuning(Experiment 6) and advantageous
for Sim2Real transfer by exploiting its intrinsic compliance
(Experiment 7, 8).

Experiment 6: In order to demonstrate the effectiveness of
compliant controllers in handling and adapting to unstructured
environments, both position-based and torque-based deep RL
policies are initially trained on flat terrain and then fine-tuned

8

Fig. 7: Time-lapse of position-based deepRL policy and torque-based deepRL policy stepping on an unexpected obstacle

Fig. 8: Uneven terrain generated in MuJoCo

on uneven terrain. The height of the uneven terrain is randomly
generated using the ’hfield’ asset of MuJoCo, as depicted
in Fig. 8. The experiments conducted in Sec. V-C1 suggest
that the torque-based deepRL policy is less susceptible to
unexpected uneven ground due to its inherent compliance, and
hence has a greater likelihood of survival. The fine-tuning
curve in Fig. 9 supports this, with the torque-based deepRL
policy exhibiting a higher episode reward at the beginning
of fine-tuning by surviving longer than the position-based
deepRL policy. Consequently, the torque-based deepRL policy
is able to explore longer on various terrains and adapts more
quickly, ultimately resulting in a higher final performance than
the position-based deep RL policy. This reveals that, while
the position-based deepRL policy can learn how to handle
unexpected environments by experiencing various terrains, as
shown in several studies [7, 13, 31], the inherent compliance
of the torque-based deepRL policy leads to more effective and
stable locomotion in unstructured environments.

Experiment 7: To examine how compliance contributes to
robust sim-to-real transfer, we first simulate the reality gap
by training both policies without dynamics randomization and
then randomizing the parameters in simulation after training is
completed. After training both policies with default parameters
in Table. II, the parameters are randomly scaled between
[0.7, 1.3] from their default values. Additionally, a parameter
that scales leg length is also randomized to effectively simulate
early or late contact with the ground, resulting in a total of

Fig. 9: Mean episode reward during fine-tuning on uneven
terrain

nparameter = 8 randomized parameters. At the start of each
episode, the parameters are uniformly randomized, and the
sampled parameters are logged with the episode reward and
a success indicator at the end of the episode. The success
indicator is set to True when the robot walks for the maximum
episode length (16s), and the episode reward is a cumulative
reward during an episode to measure motion quality.

Both policies encountered 4, 870 sets of randomized param-
eters, and the position-based deepRL policy could withstand
nalive = 3, 477 sets of parameters without falling, while the
torque-based deepRL policy exhibited greater robustness by
successfully handling nalive = 3, 604 sets of parameters. When
examining the episode rewards of the successful runs, as shown
in Fig. 10, the torque-based deepRL policy exhibited a higher
mean reward with less variance than the position-based deepRL
policy. This indicates that the torque-based deepRL policy
produces higher-quality motion by more accurately tracking
the reference motion and generating smaller contact forces as
a result of its compliance.

To analyze which parameters each controller is sensitive to,
we applied principal component analysis (PCA) to the failure
data (Dnfail×nparameter) for each policy. With PCA, we were
able to identify an axis that effectively represents the failure
sets and determine the sensitive parameters by identifying
the dominant elements of the principal axis. The results of
the analysis revealed that both the position-based and torque-

9

Fig. 10: Histogram of episode reward of alive runs

Fig. 11: Contact force comparison in simulation and real robot

based deepRL policies are primarily affected by delay, with
dominant values of 0.708 and 0.625, respectively. Additionally,
the principal axis showed an interesting result indicating that the
position-based deepRL policy is more vulnerable to leg length
randomization compared to the torque-based deepRL policy.
This finding supports the argument that the position-based
deepRL policy is susceptible to unexpected contact timing due
to a lack of compliance. However, the position-based deepRL
policy demonstrated greater resilience to motor constant and
mass randomization.

Experiment 8: In this experiment, we demonstrate how
compliance is helpful for Sim2Real transfer. We transfer the
trained policy to the real robot and commanded it to walk on
flat ground with a target velocity of 0.2m/s. Fig. 11 shows
the contact force of both policies on the real robot along with
the contact force in the simulation. In Fig. 11(a), the impact
force of the position-based deepRL policy on the real robot (≈
1800N) is much larger than in simulation (<1400N), while in
Fig. 11(b), the impact force of the torque policy is very similar
both on the real robot and in simulation due to the compliance
of the torque policy. Although the robot could walk on flat
terrain with both policies, the reality gap on the position-based
deepRL policy continuously resulted in a stamping motion of
the foot due to high impact force, and the motion was less
stable. Also, the contact timing gradually mismatched with
the simulation in the position-based policy as the walking
progressed. Additionally, as demonstrated in Fig. 7, when a

larger reality gap is introduced by an unexpected obstacle, the
position-based deepRL policy could not withstand the reality
gap. These comparisons indicate that torque-based policies can
more smoothly handle differences between the simulation and
the real world.

D. Torque-based DeepRL Policy Control Frequency

Lastly, we argue that the torque-based deepRL policy can
be applied with various frequencies. In traditional humanoid
torque control, it is common to use high control frequencies of
up to 1-4 kHz. However, the torque-based deepRL policy was
implemented on the real robot with control frequencies of 62.5
Hz, 125 Hz, and 250 Hz, and it was not difficult to reduce the
control rate without episode reward drop. The main difference
was that the training time was longer at lower control rates to
collect the same amount of training samples.

VI. CONCLUSION

In this work, we investigated which action space is suitable
not only for task-and-robot agnostic learning but also for
reducing the reality gap on biped robots. By analyzing the
proposed torque-based deepRL policy alongside the widely-
used position-based deepRL policy, it is demonstrated that
the torque-based deepRL policy can learn to squat, walk,
and run with minimal tuning. Additionally, the torque-based
deepRL policy did not require further parameter tuning when
the robot platform changes from TOCABI to Atlas, making
it suitable for task-and-robot agnostic learning. Furthermore,
it is shown that the torque-based deepRL policy is inherently
compliant, and this compliance is beneficial when the trained
policy encounters an environment different from the one it was
trained on by reducing the unexpected impact force. Lastly,
we have accelerated the training of the torque-based deepRL
policy by pre-training it with a gravity torque. This is the
first successful attempt to implement a torque control method
with deep RL on a human-sized humanoid, and we believe
this could suggest a new way to actively take advantage of
torque-based control methods in RL.

REFERENCES
[1] J. Englsberger, G. Mesesan, A. Werner, and C. Ott, “Torque-based

dynamic walking-a long way from simulation to experiment,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 440–447.

[2] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1560–1567, 2018.

[3] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. IEEE, 2014, pp. 279–286.

[4] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[5] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue, Z. Song,
L. Yang, Y. Liu, K. Sreenath, et al., “Genloco: Generalized locomotion
controllers for quadrupedal robots,” arXiv preprint arXiv:2209.05309,
2022.

[6] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills,” ACM Transactions On Graphics (TOG), vol. 37, no. 4, pp. 1–14,
2018.

10

[7] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Rloc: Terrain-aware legged locomotion using reinforcement learning
and optimal control,” IEEE Transactions on Robotics, vol. 38, no. 5, pp.
2908–2927, 2022.

[8] X. B. Peng, G. Berseth, and M. Van de Panne, “Dynamic terrain traversal
skills using reinforcement learning,” ACM Transactions on Graphics
(TOG), vol. 34, no. 4, pp. 1–11, 2015.

[9] D. Rodriguez and S. Behnke, “Deepwalk: Omnidirectional bipedal gait
by deep reinforcement learning,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 3033–3039.

[10] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal,
“Compliant quadruped locomotion over rough terrain,” in 2009 IEEE/RSJ
international conference on Intelligent robots and systems. IEEE, 2009,
pp. 814–820.

[11] A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for
compliant control of stiff and fixed-compliance robots,” IEEE/ASME
transactions on mechatronics, vol. 21, no. 2, pp. 613–624, 2015.

[12] X. B. Peng and M. van de Panne, “Learning locomotion skills using
deeprl: Does the choice of action space matter?” in Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2017, pp. 1–13.

[13] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5,
no. 47, p. eabc5986, 2020.

[14] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation
for legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[15] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped
robots,” arXiv preprint arXiv:1804.10332, 2018.

[16] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
2811–2817.

[17] L. Smith, I. Kostrikov, and S. Levine, “A walk in the park: Learning
to walk in 20 minutes with model-free reinforcement learning,” arXiv
preprint arXiv:2208.07860, 2022.

[18] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[19] S. Masuda and K. Takahashi, “Sim-to-real learning of robust compliant
bipedal locomotion on torque sensor-less gear-driven humanoid,” arXiv
preprint arXiv:2204.03897, 2022.

[20] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback

control for cassie with deep reinforcement learning,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1241–1246.

[21] H. Duan, J. Dao, K. Green, T. Apgar, A. Fern, and J. Hurst, “Learning
task space actions for bipedal locomotion,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
1276–1282.

[22] R. P. Singh, M. Benallegue, M. Morisawa, R. Cisneros, and F. Kanehiro,
“Learning bipedal walking on planned footsteps for humanoid robots,”
in 2022 IEEE-RAS 21st International Conference on Humanoid Robots
(Humanoids). IEEE, 2022, pp. 686–693.

[23] S. Chen, B. Zhang, M. W. Mueller, A. Rai, and K. Sreenath,
“Learning torque control for quadrupedal locomotion,” arXiv preprint
arXiv:2203.05194, 2022.

[24] J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo,
R. Burger, A. Beyer, O. Eiberger, K. Schmid, et al., “Overview of the
torque-controlled humanoid robot toro,” in 2014 IEEE-RAS International
Conference on Humanoid Robots. IEEE, 2014, pp. 916–923.

[25] M. Focchi, T. Boaventura, C. Semini, M. Frigerio, J. Buchli, and D. G.
Caldwell, “Torque-control based compliant actuation of a quadruped
robot,” in 2012 12th IEEE international workshop on advanced motion
control (AMC). IEEE, 2012, pp. 1–6.

[26] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE
international conference on robotics and automation (ICRA). IEEE,
2018, pp. 3803–3810.

[27] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning
locomotion skills for cassie: Iterative design and sim-to-real,” in
Conference on Robot Learning. PMLR, 2020, pp. 317–329.

[28] M. Schwartz, J. Sim, J. Ahn, S. Hwang, Y. Lee, and J. Park, “Design
of the humanoid robot tocabi,” in 2022 IEEE-RAS 21st International
Conference on Humanoid Robots (Humanoids). IEEE, 2022, pp. 322–
329.

[29] J. Park and O. Khatib, “Contact consistent control framework for
humanoid robots,” in Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 1963–
1969.

[30] M.-J. Kim, D. Lim, G. Park, and J. Park, “Humanoid balance control
using centroidal angular momentum based on hierarchical quadratic
programming,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 6753–6760.

[31] X. B. Peng, G. Berseth, and M. Van de Panne, “Terrain-adaptive
locomotion skills using deep reinforcement learning,” ACM Transactions
on Graphics (TOG), vol. 35, no. 4, pp. 1–12, 2016.

	I Introduction
	II Related Work
	II-A RL on Legged Robot
	II-B Action Space on Legged Robots
	II-C Compliance of Position Control and Torque Control
	II-D Sim-to-Real

	III Background
	III-A Reinforcement Learning
	III-B Biped Robot TOCABI

	IV Method
	IV-A State Space
	IV-B Action Space
	IV-B1 Position-based DeepRL
	IV-B2 Torque-based DeepRL
	IV-B3 Phase Modulation

	IV-C Reward
	IV-D Gravity Pre-training
	IV-E Training Setup

	V Result
	V-A Effect of gravity pre-training
	V-B Torque-based RL for Task-and-Robot Agnostic Learning
	V-C Torque-based RL for Sim2Real Transfer
	V-C1 Compliance Analysis
	V-C2 Benefits of Compliance for Overcoming Reality Gap

	V-D Torque-based DeepRL Policy Control Frequency

	VI Conclusion

