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Recursive Cross-View: Use Only 2D Detectors to
Achieve 3D Object Detection without 3D
Annotations

Shun Gui!, and Yan Luximon

Abstract—Heavily relying on 3D annotations limits the real-
world application of 3D object detection. In this paper, we
propose a method that does not demand any 3D annotation,
while being able to predict fully oriented 3D bounding boxes. Our
method, called Recursive Cross-View (RCV), utilizes the three-
view principle to convert 3D detection into multiple 2D detection
tasks, requiring only a subset of 2D labels. We propose a recursive
paradigm, in which instance segmentation and 3D bounding
box generation by Cross-View are implemented recursively until
convergence. Specifically, our proposed method involves the use
of a frustum for each 2D bounding box, which is then followed by
the recursive paradigm that ultimately generates a fully oriented
3D box, along with its corresponding class and score. Note that,
class and score are given by the 2D detector. Estimated on
the SUN RGB-D and KITTI datasets, our method outperforms
existing image-based approaches. To justify that our method can
be quickly used to new tasks, we implement it on two real-world
scenarios, namely 3D human detection and 3D hand detection.
As a result, two new 3D annotated datasets are obtained, which
means that RCV can be viewed as a (semi-) automatic 3D
annotator. Furthermore, we deploy RCV on a depth sensor, which
achieves detection at 7 fps on a live RGB-D stream. RCV is the
first 3D detection method that yields fully oriented 3D boxes
without consuming 3D labels.

Index Terms—RGB-D Perception, deep Learning for Visual
Perception, 3D object detection,

I. INTRODUCTION

3D object detection aims to locate, classify, and generate
3D bounding boxes of objects in a scene. With advance-
ments in 3D sensors, annotated datasets, and deep learning
techniques, 3D detection has made remarkable progress in
recent years, and it could play a crucial role in various
applications such as autonomous driving, robot navigation,
robot manipulation, and human-robot interaction. Existing
methods can be broadly classified into several categories,
namely image-based [4,9,10,32-34], projection-based [1,17],
voxel-based [12,14,18], and point-based [5,13,15,16,18,19].
However, most existing works focus on autonomous driving
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Fig. 1: Overview of RCV. Step 1: execute 2D detector on
an image and propose frustums on the point cloud. Step 2:
perform recursion. Step 3: output. Note that, class and score
are given by 2D detector. See Fig. 4 for more details on the
recursion.

and indoor object detection tasks, thanks to publicly available
datasets such as KITTI [24] and SUN RGB-D [25]. Generally,
3D object detection involves training a model to perform
regression on a set of 3D bounding boxes that serve as ground
truths. Nevertheless, what if one needs to detect a new object
in a new scene?

A common solution is to first label enough 3D annotations
and then train a network. However, manual 3D labeling on
data collected by RGB-D sensors or LiDAR is both laborious
and expensive [20,21]. For example, the authors of SUN RGB-
D hired and trained 18 oDesk workers who spent a total of
2051 hours annotating data [25]. Obviously, this approach is
not very efficient for achieving fast (within several hours) real-
world applications. Many studies adopted a fully supervised
learning paradigm, that is, representing data, learning features,
and classifying and regressing. However, the efficacy and relia-
bility heavily rely on the availability of precise 3D annotations.
To alleviate the need for 3D annotations, weakly supervised
[20,21,42], semi supervised [8,22], and self-supervised [23]
strategies on 3D object detection were proposed. [20] proposed
a weakly supervised framework that leveraged BEV center-
click annotations and several hundred 3D labels to train a
model. However, it still consumes 3D annotations. So, can
we just rely on other easily available labels to achieve 3D
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detection?

While certain 3D detection approaches have demonstrated
strong performance in certain scenarios, their effectiveness is
largely constrained to detecting objects with a vertical ori-
entation [1-3,5-7,13-16]. Specifically, the generated boxes are
restricted to a vertical orientation and do not account for any
potential roll or pitch, thus limiting the applicability of these
methods. If one wants to predict fully oriented boxes, he/she
has to enlarge the output dimension, inevitably increasing the
detection difficulty. Also, almost no dataset is available. Fully
oriented detection has a wider application scope, for example
robot manipulation and human-robot interaction. If a 3D
detection method that can detect fully oriented objects can be
quickly implemented on novel 3D sensors in various scenarios,
it would be highly beneficial for real-world applications.

In this work, we propose a simple yet effective 3D detection
method named RCV that does not use 3D annotations. Fig. 1
demonstrates the overview of RCV. By exploring the principle
of three-view drawings, we convert 3D detection into several
2D detection tasks. Following a recursive paradigm, RCV
can achieve instance segmentation and predict fully oriented
3D bounding boxes. RCV offers several advantages over
existing works. First, it does not rely on 3D annotations,
which enhances its applicability in the real world. Due to
mature 2D detectors, RCV only requires some 2D labels to
achieve 3D detection and can inherit the properties of 2D
detectors, such as robustness and generalization. Second, RCV
can predict fully oriented boxes, which greatly extends the
range of application. Third, RCV can be quickly deployed
to new 3D sensors in new real-world scenes. Moreover, once
trained, RCV can be viewed as a 3D annotation tool to simplify
manual labeling or formulate datasets for pretraining.

Estimated on the SUN RGB-D and KITTI datasets, our
method outperforms existing image-based approaches. Particu-
larly, our method is extremely data efficient, and it outperforms
existing image-based methods dramatically in the 3D detection
of Pedestrian and Cyclist in KITTI using only 25% of the
training data. In the real-world experiments, RCV can achieve
3D detection by training only on 2D images and 2D labels.
Once trained, RCV can be used as a (semi-) automatic 3D
annotator, and two datasets are formulated via RCV. Our
approach provides a solution that uses some 2D annotations
to achieve 3D detection, which is an important practical
contribution of this work.

Our contributions are as follows:

e« We propose a new method for fully oriented 3D ob-
ject detection without 3D annotations. Also, our method
achieves state-of-the-art performance on SUN RGB-D
and KITTI datasets.

o We formulate a (semi-) automatic 3D annotator, which
can be used to label 3D bounding boxes in new scenarios.

o We deploy our method to a real 3D sensor, achieving
real-time detection of a new object in a new scene.

In the following sections, Section II outlines the core com-
ponents of RCV. Section III presents experiments conducted
on open-source datasets as well as our own collected data.
Discussion and future work are presented in Section IV.
Finally, the conclusion is presented in Section V.

2D bounding boxes to
a 3D bounding box

Fig. 2: Conversion between 3D and 2D. The left-top and
right-top subimages are three views, and the left-bottom
subimage is the derivation of 3D bounding box from three
views.

II. RECURSIVE CROSS-VIEW
A. Conversions between 3D and 2D

Since manually annotating 3D bounding boxes is quite
labor-intensive and expensive, it motivates us to consider how
to circumvent this problem so that 3D detection algorithms
can be quickly implemented into previously unseen scenar-
ios/objects. RCV is inspired by the principle of engineering
drawing, in which a 3D object can be fully depicted by three
views (the left-top subimage in Fig. 2) and vice versa (the
right-top subimage in Fig. 2). This correlation means that a
3D object can be restored using only three 2D views, this
is the essential idea of RCV. However, how to derive a 3D
bounding box in this process? In 3D object detections, the
aim is to produce a 3D bounding box for each object instead
of reconstructing all of its details. A 3D bounding box can be
derived by detecting the size and location of the 2D bounding
boxes and then following the mechanism of three views, as
shown in the left-bottom subimage in Fig. 2. During this
process, 3D annotations are not required. Another benefit of
RCYV is that it can directly detect fully oriented bounding boxes
without raising the difficulty of detection because it does not
rely on regression. To justify this advantage, we formulate
a “3D_HAND” dataset, which includes annotations of fully
oriented boxes, see Section III for more details.

B. Perspective View

RCV aims to gradually eliminate points that do not belong
to the object, while preserving volumetric regions that are
occupied by the object but not rendered in the depth camera.
Finally, a bounding box is generated for each object. With
this guideline in mind, we formulate each step of RCV.
The first step called “Perspective View”, involves processing
the raw data, i.e., RGB images and point clouds captured
by the depth camera. This step is similar to the operation
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Fig. 3: Perspective view. A 2D bounding box can be obtained
from 2D detector, then a frustum can be derived.

used by F-PointNets [3], in which a frustum can be derived
according to the projection matrix of depth camera and the 2D
bounding box. Fig. 3 illustrates this process. RCV, however,
leverages totally different ideas with F-PointNets apart from
this operation.

The reasons why we leverage perspective view first include
(1) it is straightforward to capture RGB-images from cameras;
(2) the perspective view is larger than the orthographic view,
which is helpful for handling detections in large scene, such as
self-driving tasks. After this step, a very coarse 3D bounding
box enclosing the point cloud in the frustum can be generated,
but it is not mandatory. This depends on the specific scenarios,
for example, we generate bounding boxes at the first step
on SUN RGB-D benchmark since the presence of significant
object occlusion and background clutter. However, coarse 3D
boxes are not generated at the first step in the experiment
conducted on KITTI. Note that RCV exploits YOLOVS5 as the
2D detector at all steps.

C. Recursive Orthographic Cross-View

For each frustum obtained through perspective view, we
leverage the idea of divide and conquer to detect objects in par-
allel. We then apply the orthographic Cross-View recursively
to generate the corresponding bounding box for each object
based on the principle presented in the left-bottom subimage
in Fig. 2. Any two views of the three views can be used
to generate a deterministic box. Therefore, we choose front-
view and side-view in all experiments. Fig. 4 demonstrates
the recursive flow. The point cloud presented in the topmost
portion of Fig. 4 is obtained from the frustum introduced by
a 2D box. Next, we project these points along orthogonal
axes to generate two RGB images, as shown in the second
row of Fig. 4, with red arrows indicating the projection axes.
Thereafter, we use YOLOVS to detect objects on these two
images, as shown in the two images in the second row of Fig.
4. As a result, the points that are not deemed to be objects are
eliminated, as well as a more refined box can be obtained by
performing the Cross-View, see the point cloud in the middle
of Fig. 4. Recursively, we perform these operations on the

Orthographic
Projection

Cross View

Orthographic
Projection

Cross View

Until Convergence

Fig. 4: Recursively Cross-View. Red arrows indicate ortho-
graphic view direction, blue curved arrows indicate projection
and Cross-View that generates a 3D bounding box.

retained point cloud, i.e. (1) computing the projection axes,
(2) projecting RGB images for both views, (3) performing 2D
detection to remove the external points, and (4) obtaining a
new box through Cross-View, until convergence.

Convergence Conditions Several conditions are set to
terminate the recursion. One of conditions is projection axes,
that is, the red arrows shown in Fig. 4. We can see that
the directions of the axes converge as the recursion proceed.
The recursion terminates when their variation is less than a
certain threshold. The second condition is the variation of
the 3D bounding box, i.e., the recursion terminates when the
difference between two consecutive boxes is less than a certain
threshold. The third condition is to empirically fix the number
of steps for recursion. The method for calculating the axes is
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presented in the next section.

Pseudo-view Images The point cloud acquired by the
depth camera contains spatial (XYZ) and color (RGB) data.
The orthographic projection derives the corresponding pixel
for each point based on the spatial data and preserves the
color information. Finally, the projected images are obtained.
We call these projected images "pseudo-view’ images.

Multi-object Detection in One Frustum The presence of
occlusion can result in the existence of multiple objects within
a frustum. Therefore, RCV is set to detect multiple objects on
the pseudo-view images generated from the frustum’s point
cloud. Note that, only detections that have the same label as
the 2D bounding box of the original image that proposes the
frustum are preserved. For example, the topmost point cloud
in Fig. 4 is from the frustum proposed by the 2D box in Fig.
3, and the label is “sofa”. Then we only detect multiple boxes
with the label of “sofa” on the projected images in the second
row of Fig. 4. After that, one or more 3D boxes are generated
through Cross-View, followed by a recursive process for each,
see Fig. 4. On the contrary, only one box is remained during
the subsequent detections, which is used to refine the related
3D bounding box.

3D Bounding Boxes For each point cloud in Fig. 4, we
calculate the projection axis, and then obtain the next set
of the point cloud and the box leveraging the Cross-View.
Therefore, the transformation matrix (77*!) of two sets of
point clouds and boxes of adjacent steps can be obtained
from the coordinate system determined by the projection axes.
Specifically, the middle point cloud in Fig. 4 is projected along
the projection axis (red arrows), and the bottom point cloud
and box are obtained after performing Cross-View. Inversely,
the bottom point cloud and box can be transformed into the
coordinate system of the middle point cloud according to the
transformation matrix determined by the previous projection
axis. Consequently, we can transform the last box into the
original point cloud system through Eq. (1):

N-1
B,= [ 17" By (M)
i=0
where By, 4 by 8 matrix, is the box generated at the Nth step
of the recursion. B,, 4 by 8 matrix, is the box corresponding
to the original point cloud system. TZ“ is a homogeneous
transformation matrix with 4 by 4. Finally, we utilize non-
maximum suppression (NMS) algorithm for all detected 3D
bounding boxes, filtering the redundant detections.

D. Projection Axes

Camera Coordinate Axes It is straightforward to leverage
camera axes as the projection directions. These axes adopted
in all point clouds extracted from frustum, which is the first
step of recursion, see the top point cloud in Fig. 4. The reason
is that the point cloud in the frustum has a high probability of
severe occlusion and cluttered background. The projection and
Cross-View without any transformation can quickly perform
preliminary detection.

Eigenvectors The eigenvectors of point cloud are able to
roughly depict its orientation, which thus can be used as

projection axes. However, there is a limitation that they cannot
represent the orientation of an object if only a small portion
of the point cloud is acquired.

Normal Vectors The normal vectors can represent the
orientation of the object, even when only a partial view of the
object is available. We use normal vectors as the projection
axes in our experiments. Specifically, we leverage K-Means
algorithm to obtain the major normal vector of the point cloud.
RCV could generate fully oriented 3D boxes, see Section III.D
for more details.

ITII. EXPERIMENTS

We implement four experiments, namely (1) 3D detection
performance on SUN RGB-D, (2) data efficiency on KITTI,
(3) 3D annotator on our own data, and (4) real-time detection
on a depth camera. As stated above, we do not formulate
a new neural network. Thus, we only need to rely on the
projected images to train YOLOvVS, which is a simple and
straightforward task. Note that we use default hyperparameters
for all experiments.

A. Obtaining 2D Annotations and Training data

In this section, we present the method for obtaining 2D
bounding boxes on both open datasets and our own datasets.
For open datasets, due to 3D bounding boxes have already
been annotated, the 2D bounding boxes can be obtained via
the orthogonal projection of 3D bounding boxes , as shown in
Fig. 5. Then the obtained images and 2D bounding boxes are
utilized to train a 2D detector, which is utilized to formulate
a RCV model. Although 3D bounding boxes are leveraged
to derive 2D bounding boxes, they are not directly involved
in model training. Next, we will introduce how to label 2D
bounding boxes without using any 3D bounding boxes on our
own dataset.

Manually annotating 3D bounding boxes is very challeng-
ing. Here, we demonstrate how to label 2D annotations on
various scenarios or tasks for our method. Indoor 3D human
dataset is used as an example. First, an image and a point
cloud are captured by a depth camera, then we label 2D
bounding boxes on the image, see the first row in Fig. 6.
Next, the points in the frustum are retained, which is then used
for projection to generate 2D images, see the second row in
Fig. 6. The similar steps are repeated to generate two more
2D images, see the last row in Fig. 6. Particularly, we call
these 2D images ‘pseudo-view’ images. 2D bounding boxes
can be easily annotated on these images, which are then used
to train a 2D detector. Finally, we can obtain a RCV model
enabling detect 3D humans. In the Section IIL.D, we label
1,600 2D bounding boxes for 3D human detection and 530 2D
bounding boxes for fully orientated 3D hand detection. A more
detailed introduction to the 2D annotation can be accessed in
the supplementary material.

Note that there are fundamental differences between our
2D annotation strategy and common 3D annotation strategy.
While it is true that two 2D boxes from orthogonal views
can form a 3D box, it does not necessarily guarantee the
quality of the resulting 3D box since the correct projection
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Fig. 5: 2D bounding boxes projected by the 3D bounding
box for SUN-RGBD dataset.
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Fig. 6: Manually 2D bounding box labeling method on our
own dataset.

axes are not known. In Fig. 4, the middle 3D box is not good
enough to be used as a 3D annotation. 2D annotations are only
used to enable 2D detector to detect objects in the projection
images, regardless of the projection direction. We utilize a
recursive process to iteratively refine the 3D bounding box
until convergence, resulting in a good’ 3D box. At each step,
points outside the box are removed, and new projection axes
- namely, the orientation of the 3D box - are obtained. Only
the projection images at the first two steps in the 'Recursion’
are labelled, which cannot generate a good 3D annotation.
Similarly, 2D boxes are derived from annotated 3D boxes in
SUN RGB-D and KITTI, but our method still do not obtain the
correct orientation of the object. Therefore, our method does
not directly leverage 3D annotations in these open datasets.

TABLE I: Settings of training YOLO for 10 out of 37 object
categories [30] in SUN-RGBD. The first row is the setting
of the first step detection model, and the second row is the
setting of the recursive detection model.

[ [ Model Train no.  Valno.  Size  Device |
1 YOLOvV5x6 27,044 5050 / 3090
2 YOLOvV5x6 70,924 69848 640 3090
B. SUN RGB-D

SUN RGB-D is an indoor 3D dataset with 5285 training
samples and 5050 testing samples. We conduct a comparative
experiment involving monocular 3D detection methods on this
dataset. Our method takes several images as input, including
a raw RGB image and several ’pseudo-view’ images obtained
through point cloud projection. Therefore, RCV has similar
settings to some image-based 3D object detection methods.
Monocular detection methods have been developed to detect
3D objects by combining a monocular image and geometric
features or 3D world priori. In addition to this, some methods
integrated a monocular image with depth maps for more
accurate 3D object detection. LPCG-Monoflex [40] leveraged
an image and LiDAR points to accomplish monocular 3D
object detection in autonomous driving.

To compare RCV with monocular detection methods, we
evaluate RCV on SUN-RGBD for 10 out of 37 object cate-
gories [30]. First, we convert all 3D objects into 2D images
and 2D bounding boxes following the method in Section III.A,
generating more than 100k images for training and more than
70k images for validation. Tab. I presents more details of train-
ing 2D detectors. In our experiment, we observe that the raw
RGB image and ‘pseudo-view’ images exhibit considerable
differences. Therefore, we train two separate 2D detectors:
one for RGB images and one for ’pseudo-view’ images. We
adopt this setting for all experiments. Once the 2D detectors
are trained, we can formulate RCV and leverage it to detect
3D bounding boxes on the validation set of SUN RGB-D.
Tab. II demonstrates that RCV surpasses all previous methods
and achieve state-of-the-art performance on this benchmark,
without directly utilizing 3D annotations. Note that IM3D
utilized extra data to train the model. Therefore, we do not
compare our method with it.

C. Data Efficiency

To demonstrate the efficiency of our method in terms of data
utilization, we conduct experiments on the KITTI dataset. As
the Pedestrian (4,487 samples) and Cyclist (1,627 samples)
categories in the KITTI dataset are significantly smaller in
size than the Car category (28,742 samples), they are chosen
as benchmarks for this experiment. This selection is made
to effectively evaluate the ability of our method to handle
smaller datasets. The proposed method is trained using varying
proportions of the available training data, specifically 80%,
50%, and 25% respectively. The performance of the trained
models is subsequently evaluated on the KITTI test set. Tab.
IIT reports the 3D detection performance of Pedestrian and
Cyclist on the KITTI test set. Our method greatly outperforms
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TABLE II: 3D detection performance on SUN-RGB-D val. set for 10 out of 37 object categories [30].

The metric

is average precision with 3D IoU threshold 0.15. We compare our scores with previous state-of-the-art monocular detection
method. Bold is used to highlight the best results. * means the method (IM3D) utilized extra data to train the model.

[ Method | Ref. input label sink bed lamp chair desk dresser ntstand sofa table cab | mAP |
ImVoxel WACV Mono.+ 2D+
Net [29] 2022 cam. pose 3D 4512  79.17 1327 63.07 31.20 35.45 38.38 60.59 51.14 19.24 43.66
tapupe) | CVER - Mono+ 2D+ e hs 6065 504 1755 2793 2119 1701 4490 3648 1451 | 2638
2020 geo. 3D
CVPR Mono.+ 2D+
IM3D[31] 021 extra data 3D 33.81 89.32 1190 35.14 49.03 29.27 41.34 69.10 57.37 33.93 45.21%*
Perspecti NeurIPS 2D+
veNet[28] 2019 Mono. 3D 41.35 79.69 13.14 4042 20.19 / / 62.35 44.12 / /
Mono.+
Ours / pseudo- 2D 65.44 76.32 2248 70.66 18.06 32.02 56.19 58.71 42.85 6.80 44.95
view

previous state-of-the-art monocular-based methods on all eval-
uated categories, even when utilizing only 25% of the training
data.

D. 3D Annotator Using RCV

To justify that our method does not consume any 3D
annotations and can be viewed as an automatic 3D annotator,
we formulate two annotated datasets, named ‘“3D_HUMAN”
and “3D_HAND”, using RCV. All data is collected by an
Azure Kinect DK. Following the 2D annotating method in
Fig. 6, we label 1,600 2D bounding boxes for “3D_HUMAN”
and 530 2D bounding boxes for “3D_HAND”. Note that these
2D bounding boxes are labeled on ‘pseudo-view’ images.
Annotations for the original image are not mentioned as
they are quite straightforward. After training, we obtain two
RCV models, which can produce 3D bounding boxes for
humans and hands respectively. “3D_HUMAN” contains fully
annotated humans in about 30 indoor scenes, as shown in Fig.
7. It consists of approximately 1,500 frames of data, each of
which includes a RGB image, a point cloud, and one or more
3D bounding boxes. Totally, it contains more than 4,500 3D
bounding boxes generated by RCV.

“3D_HAND” contains fully annotated hands from 8 par-
ticipants. It consists of 1500 frames of data. Totally, this
dataset contains about 1,500 fully oriented 3D bounding boxes
generated by RCV, as shown in Fig. 8. We argue that the
final datasets can be used to at least pretrain some 3D
detection models after slight manual selection and adjustment.
Therefore, we believe that it is feasible to use RCV as a
preliminary 3D annotation tool. In the future, we will train
some 3D detectors on our datasets. Similarly, if one wants
to realize any 3D object detection in different scenarios, the
same steps can be performed relying on RCV. We just need
to collect the data and label some 2D images, which is very
simple compared to 3D labeling.

E. 3D Detection on A Depth Camera

To justify that our method can detect in real-time in the real
world, we apply RCV on an Azure Kinect DK. Specifically, we

leverage the hand detection model described in Section III.D to
detect a hand and generate a fully oriented 3D bounding box.
The system achieves a frequency of approximately 7Hz. The
full video and the code can be accessed in the supplementary
materials.

IV. DISCUSSIONS AND FUTURE WORKS
A. Imitate 3D Labeling Process

In fact, our method imitates the manual 3D labelling process
[1], where the annotator first places a coarse bounding box and
then rotates the box multiple times while manually detecting
2D bounding boxes on three different views to obtain a 3D
annotation. Our method imitates this process by replacing
‘rotate the box’ with generating projection axes (as described
in Section I1.D), manually detects 2D bounding boxes’ with
YOLOVS, and ’multiple times’ with a recursive process.
Finally, our method can perform this 3D annotation process
automatically.

B. Automatic Labeling Pipeline and Datasets

Our method can achieve (semi-) automatic 3D annota-
tions with some 2D bounding boxes from scratch. This is
a significant practical contribution to scenarios without any
annotated data. Compared to some existed semi-automatic
labeling pipeline, for example H20 [43] that leveraged already
trained DenseFusion [44] to label the data, our pipeline has
a distinct practical advantage. The two obtained datasets can
be used to train many existed 3D detectors, which will be our
future work. Notably, 3D_HAND comprises fully-oriented 3D
box annotations.

C. Limitations

In some cases, the method may fail to converge, resulting
in failure to detect the object: (1) Poor performance of the
trained 2D detector, which filters out points belonging to the
object in each iteration, making it difficult for the system to
converge, and (2) the 2D detector fails to detect the object
in the projected images, resulting in early stopping of the
detection process. We found in our experiments that the first
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TABLE III: 3D Detection performance of Pedestrian and Cyclist on the KITTI test set. Bold is used to highlight the

best results.

APR40 [Easy / Mod / Hard]

APRr40 [Easy / Mod / Hard]

Method Ref. Data  Input
AP3p@JIoU = 0.5 APprv@IoU =0.5 AP3p@IoU =0.5 APgrv@QIoU =0.5
Moﬁggefi 40] Ez%g 100% Iﬁ?gieg 10.82/7.33 / 6.16 12.11/7.92 / 6.61 6.98 / 4.38 / 3.56 8.14 / 4.90 / 3.86
DEVI ECCV Image+
ANT[39] w02 100% g 13.43 / 8.65 / 7.69 14.49 /9.77 / 8.28 5.05 /3.13 / 2.59 6.42 /3.97 /351
ICCV Image+
DD3DJ[38] 100% 13.91/9.30 / 8.05 15.90 / 10.85 / 8.05 7.52 /479 /1 4.22 9.20/5.69 / 5.20
2021 depth
PS-fld[37] ngf 100% IL“ilgieg 16.95/10.82 /926  19.03 /12.23 / 10.53 1122/ 6.18 / 5.21 12.80 / 7.29 / 6.05
R-AL Image+
OPA-3D[35] | 505 100% ['pap  15.65/10.49 /8380 17.14 / 11.01 / 9.94 5.16 /3.45/2.86 6.01 /3.75/3.56
D¥§F;6] C;(gf 100% E?Sieg 1533/ 10.18 / 8.61 16.66 / 10.59 / 9.00 5.05/3.27/3.19 5.84 /4.11 /3.48
80% mages  40.19 /31.89/28.32 52.26/42.93/37.34 20.02 /13.93/12.48 28.51/21.82/18.94
Ours / 50% pseudo  40.85/31.60/27.96 51.14/44.11/38.39 16.66/13.17/11.18 21.70/17.70/15.28
25% VW 37.50/30.24/26.72 50.08/43.52/38.03 13.69/11.22/9.45 19.55/15.80/13.60

T=0.456s

T=10.608s

T=1.064s

Fig. 8: 3D boxes generated by RCV on ’3D_HAND’.

T=1.216s

T=1.368s



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2023

case rarely occurs. Instead, the more common scenario is the
second case. Our method heavily relies on the performance of
the 2D detector.

Furthermore, we observe that our method performs rela-
tively poorly on larger-sized objects. An intuitive explanation
is that larger objects are more likely to have a smaller
proportion of their regions captured by the camera, potentially
resulting in decreased performance. However, it needs to be
experimentally verified in the future work.

V. CONCLUSION

We propose a new 3D detection method, named RCYV, that
does not consume 3D labels and yields fully oriented 3D boxes
on point clouds. In the future, we will explore the application
of this method in scenarios such as human-following robots
and robotic grasping tasks. Currently, we have only explored
one type of divide-and-conquer recursive strategy, and there
is still a need for further research on additional recursive
strategies.
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