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Abstract— In this work, we present a learning method for
both lateral and longitudinal motion control of an ego-vehicle
for the task of vehicle pursuit. The car being controlled does not
have a pre-defined route, rather it reactively adapts to follow
a target vehicle while maintaining a safety distance. To train
our model, we do not rely on steering labels recorded from an
expert driver, but effectively leverage a classical controller as
an offline label generation tool. In addition, we account for the
errors in the predicted control values, which can lead to a loss of
tracking and catastrophic crashes of the controlled vehicle. To
this end, we propose an effective data augmentation approach,
which allows to train a network that is capable of handling
different views of the target vehicle. During the pursuit,
the target vehicle is firstly localized using a Convolutional
Neural Network. The network takes a single RGB image along
with cars’ velocities and estimates target vehicle’s pose with
respect to the ego-vehicle. This information is then fed to a
Multi-Layer Perceptron, which regresses the control commands
for the ego-vehicle, namely throttle and steering angle. We
extensively validate our approach using the CARLA simulator
on a wide range of terrains. Our method demonstrates real-
time performance, robustness to different scenarios including
unseen trajectories and high route completion. Project page
containing code and multimedia can be publicly accessed here:
https://changyaozhou.github.io/Autonomous-Vehicle-Pursuit/.

Index Terms— Vehicle Pursuit, Deep Learning, Data Aug-
mentation, Autonomous Driving.

I. INTRODUCTION

The latest technological advances in the field of au-
tonomous driving have sparked a growing interest in develop-
ing more efficient and robust transportation solutions. In this
regard, autonomous multi-vehicle platooning and convoying
have appeared as a prominent research direction, which
promotes various advantages over single vehicle operation
such as improved traffic flow, reduced fuel consumption and
improved overall transportation efficiency [1]–[4].

In this work, we focus on following a chosen vehicle
and, therefore, refer to it as vehicle pursuit. This task can
be defined as an imitation of the driving behavior of a
specific target vehicle without overtaking or violating any
traffic rules. In this case, the target vehicle guides the
ego-vehicle across a wide spectrum of scenarios and, thus,
enables autonomous operation of the ego-vehicle without
human intervention. This way, vehicle automation allows
to eliminate human errors and ensures precise trajectory
control. Moreover, credibility of such methods can only be
ascertained via deployment in actual scenarios. Nonetheless,
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this may be too risky to perform using hardware imple-
mentations as it involves direct interaction with the driving
environment.

Autonomous driving simulators provide a viable alterna-
tive for the training and validation of new approaches for
urban driving. Recent open-source platforms, such as [5],
offer multi-sensor high-fidelity data to safely test and evalu-
ate driving algorithms. In addition, recording various driving
situations and rare corner cases is made feasible due to
flexible and easy-to-control simulation. This has inspired us
to choose this platform for the design and deployment of our
method for the task of vehicle pursuit.

Specifically, we offer a deep learning method for estimat-
ing both the lateral and longitudinal steering commands (also
referred to as control values) of an ego-vehicle, which pur-
sues a desired target vehicle. Our network relies on a stream
of images capturing the target vehicle and the velocities
of both cars. The target vehicle is controlled by a human,
whereas the ego vehicle is autonomous and controlled by
our method. We handle a wide range of scenarios, such as
sharp turns, roundabouts, as well as sudden velocity changes
of the target car without any human expert supervision and
labeling. The latter is achieved as we utilize model predictive
control (MPC) for the generation of training labels, including
throttle and steering angle. In comparison to other classical
controllers, MPC has superior performance as shown by [6],
[7].

It is important to mention that MPC is only applied offline
to extract control labels for training and validation of the
neural network and, thus, it is not required online during test
time. As we follow a dynamic object, we deploy existing
3D object detectors to localize the target. We make our
approach more robust to small inaccuracies in predicted
steering commands by incorporating novel views into the
training set, which are efficiently generated with the same
sensor setup using dense depth maps and an image rendering
approach. We demonstrate the full pipeline in Fig. 1.

Our main contributions can be summarised as follows:
• We propose a novel framework that enables au-

tonomous vehicle pursuit without expert driver super-
vision. Specifically, during inference time our neural
network operates in real-time and is capable of simulta-
neously predicting the commands for both longitudinal
and lateral control from a single RGB camera and
vehicle velocity streams.

• We extensively test our method across a wide range
of scenarios such as roundabouts, sharp turns and in-
tersections using an autonomous driving simulator [5].
Our approach demonstrates higher tracking accuracy
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Fig. 1: Overview of proposed framework: Our proposed framework consists of preparatory offline steps (left) & online
deployment (right), which are respectively done during training & testing of our system. Left: Firstly, we perform label
generation using Model Predictive Control - MPC (Sec.III-A). MPC takes location & orientation of the target with respect to
the ego-vehicle estimated by a LiDAR-based 3D detector. Next, data augmentation is done by utilizing estimated dense depth
maps for novel view synthesis (Sec. III-B). Right: Our learning method is trained to predict accurate lateral & longitudinal
control values by leveraging obtained labels, augmented image dataset and velocities of both ego & target vehicles (Sec.
III-C). At test time, our approach only needs RGB image sequence & velocities as input for ego-vehicle control.

and robustness to variable conditions than the method
inspired by [8].

• Training & evaluation code along with videos
showing qualitative results is available here:
https://changyaozhou.github.io/Autonomous-Vehicle-
Pursuit/.

II. RELATED WORK

There have been multiple proposed solutions for the task
of car-following, which can be roughly classified into two
categories: those based on traditional techniques using con-
trol and optimization theory and those that deploy a neural
network or a learning-based algorithm.

Control-based methods. [9] involves a feedback con-
troller to obtain desired velocity for steady platooning.
Similarly, in [10] a kinematic model, describing the mo-
tion of vehicles, is created. Then a speed controller is
designed to adjust the vehicle’s longitudinal and lateral
speed. Meanwhile, [2] focuses on energy-saving adaptive
cruise control for eco-following. In our work, we leverage
an MPC controller to collect training labels for our learning
control method, which eliminates the necessity of manual
annotation and recording of expert motion trajectories. [11]
propose a two-layered control structure based on distance
measurements and communication between the vehicles. In
our case, we do not require a separate sensor for distance
measurement. Rather, the distance and orientation are im-
plicitly determined from an RGB image.

Learning-based approaches. [12] propose an end-to-end
hierarchical deep neural network to follow a target pedestrian
according to input images. In our case, vehicle pursuit poses
an additional challenge due to the high and variable velocity
of the target car. [13] designs a dual-task CNN, which
simultaneously performs detection of the pursued object in
2D and semantic segmentation to determine drivable road
regions. Based on the neural network estimates, a PID
controller is utilized during inference time. In comparison,

our approach neither requires semantic labels nor slow con-
trol optimization at inference time. We perform 3D object
detection and MPC optimization offline and, thereby, ease the
computational load at test time. [8] utilizes a Convolutional
Neural Network (CNN) for the prediction of steering control
values given a three-camera setup, where each camera is
forward-facing and laterally displaced. This work is the
closest to our method. Nonetheless, our method does not
require a third camera as we effectively render novel camera
views using dense depth maps, which also makes our method
more robust to noisy disturbances. Several recent works focus
on the driving task via imitation learning by following a pre-
defined route as in TransFuser [14] or relying on a high-level
control planner policy [15] that infers motion of all nearby
traffic participants in a viewpoint-invariant manner. The ego-
vehicle in our work, in contrast, follows a dynamic trajectory,
which is unknown a-priori, and reactively adapts to the target
car behavior. Moreover, our control method generalizes well
to the viewpoint changes due to effective data augmentation.
Furthermore, [14] and its extension [16] deploy an additional
LiDAR sensor along with the desired goal position to predict
the future waypoints of the vehicle at inference time. In our
work, we only use RGB images to determine the position and
orientation of the goal (target vehicle) at inference and do
not require extra LiDAR sensor to be present in the vehicle
setup. [17] proposes a image-based learning method for
lateral control. Our work in contrast presents a solution for
both lateral and longitudinal control.

III. OUR APPROACH

In the next sections we provide a detailed overview of our
proposed method for the car-following task as demonstrated
in Fig. 1. Specifically, we describe three main steps of
our pipeline: 1) label generation using Model Predictive
Controller (MPC) and a 3D object detector (Sec. III-A);
2) data augmentation via image rendering from novel views
(Sec. III-B); 3) two-stage neural network training to predict

https://changyaozhou.github.io/Autonomous-Vehicle-Pursuit/
https://changyaozhou.github.io/Autonomous-Vehicle-Pursuit/


control values for the ego vehicle such as throttle and steering
angle to successfully follow the target car (Sec. III-C).

A. Label Generation using MPC

Ground truth data generation is carried out in a two-stage
manner. Firstly, we leverage a 3D object detector to localize
the target vehicle given sensor data from the ego-vehicle
(Sec. III-A.1). Secondly, the obtained target pose together
with velocity information is forwarded to the designed MPC
algorithm in order to obtain optimal control values for the
ego vehicle (Sec. III-A.2). The label generation for car
following can be seen as an alternative to an “expert driver”,
which also allows richer and more diverse supervision [18].

1) 3D Object Detection: In recent years, data-driven
approaches have shown great performance for the task of
3D object localization in autonomous driving scenarios. Nu-
merous camera-based [19], [20] and LiDAR-based methods
[21], [22] have been proposed and extensively evaluated on
various driving benchmarks. In this work, we leverage an
off-the-shelf LiDAR-based 3D object detector and obtain 3D
position x ∈ IR3 and yaw angle θ of the target vehicle. In
case of false positives, we prune the detections based on a
simple, yet effective heuristic based on the distance to the
ego-vehicle.

2) Model Predictive Controller: Model Predictive Control
(MPC) is a method that is used to control a process while
satisfying a set of constraints [23]. It takes a prediction
horizon instead of a single time step into account and aims
to get an optimal control result by minimizing the cost
function within the prediction horizon. In the following, we
describe the cost function and dynamic model designed for
our vehicle-pursuit scenario.

Cost Function. We consider several factors when design-
ing the cost function for optimization. For brevity, the vari-
ables associated with the ego and target (reference) vehicle
are denoted with the ego and re f subscripts respectively.

To follow the target vehicle, the ego-vehicle must maintain
a safe distance between the two vehicles to avoid a collision
especially when a sudden application of brakes is applied
by the target car. The safe distance dsafe is formulated in
proportion to the velocity of the target vehicle dsafe = L ·
(1+w1 · vre f ), where L should be at least the length of the
vehicle and w1 = 0.2 is a scaling constant that is empirically
chosen in our experiments. Then the ideal distance between
two vehicles along the x- and y-axis, namely Dx and Dy, are
computed respectively as

Dx = w2 ·dsafe · (cosθego + cosθre f ) (1)
Dy = w2 ·dsafe · (sinθego + sinθre f ), (2)

where θego, θre f are yaw angles of the corresponding vehi-
cles, w2 = 0.5 is a scaling constant.

The positional cost term to be minimized during the
optimization is costx =

∣∣(xre f −Dx)− xego
∣∣ and costy =∣∣(yre f −Dy)− yego

∣∣ computed separately for x-and y-axis
based on the ideal distances Dx and Dy provided above.
Moreover, the yaw angle of both vehicles should be as
close as possible. Thus, we introduce an angle cost term

as costθ = (θego − θre f )
2. Meanwhile, we assure that the

estimated yaw angle θego is within the range [−π,π]. The last
component, velocity cost term of the cost function computed
as costv = w3 ·

∣∣vre f − vego
∣∣ is based on the velocities of

both vehicles, where a scaling constant w3 = 2 is chosen
empirically. The final optimization objective is defined as
a sum of the aforementioned terms, namely the positional,
angle and velocity cost terms.

In addition, we enforce a reasonable range of the lateral
and longitudinal control values during optimization. Specifi-
cally, the range of throttle is [0, 1] and the range of steering
angle is [-1, 1]. This range corresponds to the steering limits
of the CARLA platform.

Vehicle Model. The model is used to update the state of
the vehicle within the prediction horizon given the control
values estimated by the optimization method.

Given the current state of the vehicle xt , yt , vt and θt we
therefore obtain its next state at time t +1 as

xt+1 = xt + vt · cosθt ·dt

yt+1 = yt + vt · sinθt ·dt

vt+1 = vt +at ·dt −w3 · vt

θt+1 = θt +(vt ·dt ·Φ)/l,
(3)

where l is the length of vehicle and w3 = 0.05. at and Φ

are proportional to throttle and steering angle respectively,
which are optimized by the MPC.

With the updated states of the target and ego vehicles,
the process repeats with a new iteration of cost function
evaluation and optimal control values prediction. Despite
the constant target velocity assumption in the optimization
horizon, our full pipeline is robust to imperfect ground truth
MPC labels and can handle sudden velocity changes of the
target vehicle well.

B. Data Augmentation
Small inaccuracies in the estimated lateral and longitudinal

control values can cause variation in the perceived sensory
data. Accumulation of such errors can even make the ego-
vehicle lose track of the target car and crash. Hence, we
propose a data augmentation approach, which allows the
network to recover from divergences from the route being
followed, thus generalizing to unseen scenarios and distur-
bances. Specifically, we include off-trajectory samples into
consideration. While the on-trajectory samples are collected
when the ego vehicle follows the target vehicle perfectly, the
off-trajectory samples should be generated by sampling posi-
tions around the ideal trajectory. The off-trajectory positions
of the ego-vehicle are computed by applying uniform offsets
within some ranges to the on-trajectory position including
longitudinal, lateral, and rotational offsets.

1) Augmentation Steps: To generate images from the view
of the ego-vehicle, which is located at an off-trajectory
position, image rendering can be used. For this, we only
utilize on-trajectory RGB images and the corresponding
dense depth maps. For depth map, we propose to utilize
existing stereo-based depth estimation methods [24], [25].

Our data augmentation approach comprises the following
steps. Firstly, we generate a local pointcloud by backproject-
ing every image pixel to the 3D camera coordinate frame



given a dense depth map. Then we select an offset and
transform the pointcloud from the on-trajectory ego-vehicle
coordinate frame to the off-trajectory coordinate frame by
applying a rigid body transformation T ego′

ego ∈ SE(3). Thirdly,
the points are projected to the image plane by applying
the inverse operation to backprojection. This way, we warp
image pixels from one view onto another.

Although we introduce off-trajectory samples, we do not
need to perform 3D object detection from Sec. III-A.1 for ev-
ery novel view. Instead, we can directly compute the relative
transformation between off-trajectory ego vehicle coordinate
and target vehicle coordinate according to Eq. (4) and use
it as a training label for our neural network, where ego and
ego′ represent on- and off-trajectory ego vehicle respectively,
T ego′

re f ∈ SE(3) represents a rigid transformation between the
coordinate frame of the off-trajectory ego-vehicle and the
target vehicle.

T ego′
re f = T ego′

ego ·T ego
re f (4)

T ego
target can be extracted from the 3D object detector (Sec. III-

A.1), while T ego′
ego is computed according to the longitudinal,

lateral, and rotational offsets to the on-trajectory ego-vehicle
pose.

2) Sampling distances: In this section we explain the
sampling distances at which additional off-trajectory camera
views are generated, which makes our model robust to
noisy control values. We synthesize novel views at positions
sampled from a uniform distribution every 0.2 meters in
the lateral x-direction for up-to 3 meters on either side of
the on-trajectory data. In addition, we add small random
noise to sampled points. Specifically, sampling noisy offsets
xo f f can be formulated as xo f f = k ·0.2− N

10 + ε , where k ∈
{0,1 . . .N} and ε ∼U (−0.05,0.05). Meanwhile, for each of
these lateral offset positions we sample longitudinal (yo f f ∼
N (0,0.66)) and rotational (θo f f ∼N (0,0.05)) offsets. This
way, 30 additional off-trajectory samples are collected at
each frame. Given the offset values, a transformation matrix
T ego′

ego between the off-trajectory vehicle and on-trajectory
vehicle is computed.

Then the relative transformation between the coordinate
frame of the off-trajectory ego-vehicle and the target vehicle
T ego′

re f can be computed, as defined in Eq. (4).
As we render novel views with lateral displacement given

a single depth map, void regions are inevitable to obtain
due to limited field of view, especially at image borders.
We postprocess our rendered images by applying central
crop and resizing before feeding them to the network.
Nonetheless, our method for car following is robust against
the remaining void regions caused by occlusion or discon-
tinuities in the predicted depth map. [26] showed that the
sensorimotor control model focuses on high-level features
such as lane markings, and pavement for immediate de-
cision making. Thus, our processed rendered images still
contain relevant information for the model to predict cor-
rect control commands. Fig. 2 shows some visual exam-
ples of rendered images with various lateral, longitudinal
and rotational offsets. More examples can be seen on our

Project Page: https://changyaozhou.github.io/Autonomous-
Vehicle-Pursuit/.

It is worth noting that attempting to collect such novel
views in real life by physically driving the car off-course may
be too dangerous as the vehicle may invade lanes, sidewalks
etc. thereby risking the safety of other road participants.

C. Neural Networks

After the data augmentation step discussed above, we can
now train the models. As shown in Fig. 1 (right), the whole
pipeline consists of two parts, that are trained separately:

1) A Convolutional Neural Network (CNN) model takes an
RGB image from the ego and velocities from both vehicles
as input and estimates the relative transformation between
the two vehicles. Here we use the AlexNet [27] model pre-
trained on ImageNet [28] as backbone. After flattening, we
add linear layers to do regression for relative transformation.

2) A Multi-layer Perceptron (MLP) model takes the pre-
dicted relative transformation as well as velocities as input
and predicts the longitudinal and lateral control values (throt-
tle, steering angle) for the ego-vehicle. The MLP model con-
sists of five successive units, each containing a linear layer
with ReLU as the activation function, a batch normalization
layer and a final extra linear layer.

We found that additionally providing velocity information
of the two vehicles to the CNN model improves its per-
formance. We believe this information facilitates providing
scale information to the model for determining the metric
transformation while given a single-camera RGB stream.

1) Training CNN: The inputs of the CNN model are
an RGB image sequence captured by a monocular camera
mounted on the ego vehicle and velocities for both vehicles
detected by speed sensors. The training labels are relative
transformations between two vehicles, which have been
obtained from a 3D object detector (Sec. III-A.1). A 6-
layer MLP model is designed for training, combining ReLU
activation and Batch normalization.

The CNN model is trained with both on-trajectory data
from 9 trajectories, and off-trajectory data generated through
image rendering. The collected dataset contains around 210k
images, with 180k allocated for training and 30k for valida-
tion. The model is successively trained with three different
learning rates for 100 epochs in total (1e-3 for 20 epochs,
1e-4 for 60 epochs, and 1e-6 for 20 epochs).

2) Training MLP: As shown in Fig. 1 relative transforma-
tions predicted by the CNN model along with the velocities
of both vehicles are fed into an MLP model, which is used to
predict the control values, namely the throttle and steering
angle. The corresponding control values generated by the
MPC controller (Sec. III-A.2) in each frame are utilized as
ground truth labels for training the MLP model.

The MLP model is only trained with on-track data from 6
trajectories. The size of the dataset is around 30k samples,
from which 24k samples are prescribed for training and 6k
for validation. We train the model for 350 epochs with the
learning rate 1e-4 and 1e-6 successively.
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Fig. 2: The figures show some examples of rendered images with varying lateral (xo f f ), longitudinal (yo f f ) and rotational
(θo f f ) offset from the original camera position. Note that the values of lateral and longitudinal offsets are in meters and the
values of rotational offsets are in degrees.

After training, given the relative transformation predicted
by the former CNN model and the velocities of both vehi-
cles, the MLP model can predict reasonable control values,
leading the ego vehicle to follow the target vehicle stably.

Note that both the CNN and MLP are trained using the
Mean Squared Error (MSE) as the loss function.

IV. EXPERIMENTS

A. Experimental Setup

Algorithms for sensorimotor control involve online in-
teraction with the environment. Unfortunately, common au-
tonomous driving benchmarks do not provide an option to
conduct online interaction. Therefore, we use the CARLA
driving simulator (version 0.9.11) [5] for our experiments.
CARLA has been widely adapted for online evaluation in
control algorithms such as [13], [14], [16] due to a wide
range of sensors that can be attached to the ego-vehicle for
both data collection and inference, as well as having maps
with different terrains and routes. It also furnishes precise
ground truth labels for various tasks such as semantic seg-
mentation, optical flow, dense depth, etc. Real-time vehicle
data, such as global position, orientation, velocity etc. can
also be extracted from the simulator. The ability of simulators
to test vehicle pursuit on various scenarios is very pertinent
for our experiments. Nonetheless, it is worth mentioning that
driving simulators cannot fully reproduce the full range of
interactions in the real world. Specifically, other vehicles and
pedestrians operate in a controlled manner as they have been
modeled to follow a certain behavior. Moreover, simulators
cannot fully replicate the physical hardware as they rely on
mathematical models and approximations. For instance, a
simulator may not be able to model sensor degradation under
different circumstances such as heavy rain in the case of Li-
DAR. Despite these disadvantages, we believe that simulators

remain a valuable tool for our work as a cost-effective and
flexible alternative to the hardware implementations.

Data Collection. Data were collected from 9 trajectories
across Towns 03 and 04. The target vehicle is run on
autopilot by the Traffic Manager. Meanwhile, the ego vehicle
is controlled by an MPC algorithm to follow the target while
maintaining an appropriate safety distance. LiDAR and RGB
sensors are placed on the ego-vehicle. We use the approach
from [22] to determine the 3D position and orientation of
the target vehicle using LiDAR data. This information is in
turn used by the MPC to determine the appropriate throttle
and steering angle values as labels for training the neural
network. At data collection, the RGB images are of size
1200 x 352 which are, firstly, center-cropped to 600 x 350 to
remove the void regions and then resized to 128 x 128 before
being fed to the CNN. Note that at inference time, only the
RGB camera is used. The only information that we assume
is given is the speed of the target and ego-vehicle. This can
easily be read from a car’s speedometer measurements.

The overall performance is evaluated on 5 trajectories
from Towns 03 and 04 that are to a large extent differ-
ent from the routes collected during the training phase.
Since we noticed their partial overlap with the training
routes, we further test the generalization capability of our
method by adding 5 trajectories from two completely unseen
maps, i.e. Town 01 and 05. While we describe quanti-
tative results in Sec. IV-C, we also provide videos that
show qualitative performance of our model on different sce-
narios: https://changyaozhou.github.io/Autonomous-Vehicle-
Pursuit/.

B. Metrics

To quantitatively evaluate the performance of vehicle
pursuit, we adapt the Infraction Count (IC) and Route
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Completion (RC) metrics from [14]. Higher IC and RC
values indicate better system performance. Specifically for
our application of vehicle pursuit, we introduce two addi-
tional metrics, namely Mean Translation Error (MTE) and
Control Difference (CD). MTE captures how accurately the
ego-vehicle can replicate trajectories of the target vehicle.
CD represents the accuracy of the model in estimating the
control values at each matching point. In order to compute
Mean Translational Error values, we first find corresponding
matching points in the ego and target trajectories using bipar-
tite matching with the Hungarian algorithm [29]. Formally,
we define MTE as

MT E =
1
N

N

∑
i=1

||Ti||22, (5)

where N is the number of matching points and ||Ti||2 is
the Euclidean norm of relative translational error at point
i. Control Difference can be computed with

CD =
1
N

N

∑
i=1

√
(aegoi −are fi)

2 +(δegoi −δre fi)
2, (6)

where aegoi and are fi are predicted and target vehicle throttle,
δegoi and δre fi are predicted and target vehicle steering angle
at point i respectively.

C. Quantitative Results
TABLE I: Performance of different methods.

Models RC ↑ IC ↑ MTE ↓ CD ↓

Baseline 36.87 0.01 2.90 0.29
Three-camera [8] 40.09 0.11 2.15 0.48

Our approach (SS Depth)a 90.72 0.49 0.61 0.21
Our approach (Stereo Depth) 90.88 0.41 0.80 0.24

GT Depth+ GT Transformation (Oracle)b 92.90 0.42 0.57 0.17
a SS = Self-Supervised; b GT = Ground Truth;

Using metrics introduced in Sec. IV-B, we evaluate our
approach against different approaches, described in detail in
the following subsections. As can be seen in Table I, our
final approach outperforms all other methods and achieves
performance comparable to that of the oracle. This is despite
the oracle being trained with ground truth data. Table I
also demonstrates that our pipeline is not dependent on one
particular approach for depth prediction. It works equally
well for both the self-supervised neural depth estimation
network [24] and the stereo based classical approach [25].
Moreover, in case of the latter approach, our network is
capable of handling inaccurate or noisy depth estimates.
We now discuss details of the various model configurations
described in Table I.

1) Baseline: This is the simplest approach with the model
being trained on the on-trajectory images only. As shown in
in Table I, this method has the lowest performance. This is
because, at inference time, the model may cause the ego-
vehicle to diverge from its driving lane, resulting in the
vehicle being exposed to laterally displaced images. Since
the model is only trained on on-trajectory images, it would
not be able to correct off-trajectory motion and bring itself
back on track. Accumulated displacements will cause the
ego-vehicle to diverge and eventually lose track or crash.

2) Three-camera Method: The performance of the base-
line model can be improved by collecting off-trajectory
images by mounting multiple cameras at different positions
on the ego vehicle. In this model configuration, we adapt
the strategy of [8] by mounting three cameras on the ego
vehicle, where each camera is placed with a 0.5-meter
lateral displacement. The middle camera would capture on-
trajectory images and the other two would capture off-
trajectory images. Thus, this model is trained with three times
more samples than the baseline model.

Although the performance of this model in terms of RC
and IC is better than the baseline model, the improvement
is only marginal. The reason is that the images from the
additional cameras are only at an offset of 0.5 m from the
on-trajectory position. Therefore, if the ego-vehicle diverges
beyond this limit at inference time, it will have difficulty
recovering. A solution for further improvement could be to
place the additional cameras at further distances. But this is
difficult, as the distance between the cameras is constrained
by the width/dimensions of the car. Moreover, adding more
cameras could lead to higher costs and synchronisation
challenges.

3) Our approach (Self-Supervised / Stereo Depth): We
demonstrate the performance of our method described in Sec.
III with different depth estimation methods, which affect the
quality of rendered off-trajectory images. In particular, we
consider depth maps from a self-supervised network [24]
and from a classical Semi-Global Block Matching (SGBM)
method [25]. To determine relative transformation of the
target vehicle with respect to the ego-vehicle we use the
pre-trained model of [22].

As shown in Table I, the performance of our model is
far superior to both the baseline and three-camera models.
Meanwhile, its performance is comparable to the oracle. Due
to image rendering, we are able to provide our network with
significantly higher number of off-trajectory views than the
baseline or three-camera methods. At the same time, our
solution does not require additional sensors or the car to
physically move off-trajectory. This can be viewed as the
strength of our method and attributed to high performance
against other approaches.

4) Ground Truth Depth + Ground Truth Transformation
(Oracle): Here, the ground truth depth and ground truth
relative transformation of the target vehicle collected from
the CARLA simulator are used to train the model. Since
the method fully relies on the ground truth measurements,
it is defined as the Oracle. Nonetheless, based on Table I,
the performance of this model is marginally better than our
method, despite the fact that our approach is trained without
ground truth labels.

D. Additional Experiments

We conduct an ablation study and further experiments to
elaborate and assess different aspects of our method.

1) Impact of Involving Ground Truth (GT) Data: As men-
tioned in Sec. IV-C.4, we view the model trained with GT
depth map and GT transformation as the Oracle. However,



the GT data (collected in the CARLA simulator) might
not always be accessible. Therefore, we perform additional
experiments and investigate the extent to which the perfor-
mance of our model is affected if the GT measurements are
not available during training. Two variations for “GT Depth”
and “GT transformation” models in Table I are adopted.

Specifically, “GT Depth + 3D Object Detector” utilizes
ground truth dense depth maps from the CARLA simulator
for image rendering. Meanwhile “SS Depth + GT Transfor-
mation” uses ground truth position and orientation of the
target vehicle from the CARLA simulator. This information
is then directly used for the control label generation using
MPC as described in Sec. III-A.2.

The first 4 rows of Table II show the evaluation results of
4 models trained with and without ground truth depth map
and ground truth transformation, where the performance is
compared to the Oracle. “GT Depth + 3D Object Detector”
model demonstrates that using 3D object detections instead
of the ground truth transformation labels for training the
CNN module does not negatively influence the performance.
Moreover, the performance of the “SS Depth + GT Transfor-
mation” model also indicates that the depth map predicted by
the self-supervised model is sufficiently accurate and com-
pares well with the GT depth map. Thus, the images rendered
using self-supervised depth maps would look similar to those
rendered using GT depth. In the last two rows of Table II, we

TABLE II: Evaluation results of methods with or without
ground truth data.

Models RC ↑ IC ↑ MTE ↓ CD ↓

GT Depth+GT transformationa 92.90 0.42 0.57 0.17
GT Depth+3D Detector 91.13 0.46 0.62 0.19

SS Depth+GT transformation 90.42 0.51 0.54 0.19
Our approach

(SS Depth+3D Detectorb) 90.72 0.49 0.61 0.21

Our approach
(with Transformation labels) 100 0.19 0.85 0.10

Our approach
(with MPC controller) 91.30 0.13 0.78 0.13

a GT = Ground Truth; b SS = Self-Supervised;

investigate the performance of the transformation (CNN) and
control (MLP) modules independently. To test for the MLP,
we use the actual transformation labels obtained directly
from the simulator as input, instead of the transformation
labels predicted by the CNN. Likewise, to test for the CNN,
we feed the predicted transformation output to an MPC
controller, instead of the MLP. The results show that the MLP
behaves very well when provided with precise transformation
labels. It reaches 100 RC score, implying that the gap in RC
performance likely comes from the limitations of the CNN
architecture which can possibly be reduced in the future by
using a more powerful architecture. However, note that the
IC and MTE metrics are worse off. Similarly, replacing the
MLP with MPC does not show any significant performance
enhancement. This demonstrates that the MLP is already
achieving performance at par with the MPC, given the noisy
labels from the transformation module.

2) Choice of Point Cloud Source for 3D Object Detection:
As described in Sec. III-A.1 our method utilises point clouds
from the LiDAR sensor as the input to the object detection
algorithm for determining the state of the target vehicle.
MPC then utilizes this state to generate the training labels
for the CNN network. In this experiment, we investigate
the accuracy of 3D object detection using point cloud data
from different sources other than LiDAR such as stereo
cameras. For this, we utilize the same pre-trained 3D object
detector [22] and test it on both LiDAR scans (Ours) and
point clouds generated from stereo images. In particular,
we consider two stereo approaches, namely SGBM [25] and
CDN [24]. As it can be observed in Table III, LiDAR scans
are more accurate for the 3D object detection task when
compared to the image-based depth prediction methods.
Therefore, it validates our choice of LiDAR point cloud as
inaccuracies in 3D detection would significantly deteriorate
the control labels from the MPC for our training. It is
however important to note that due to the sparsity of LiDAR
point clouds, they cannot be used to synthesize images.
Hence, image-based depth estimation methods are needed
for image generation as elaborated in Section III-B

TABLE III: Mean Squared Error of Object Detection with
Different Point Cloud Sources

Point Cloud Source MSEx
a↓ MSEy

b↓ MSEθ
c↓

SGBM [25] 1.50 3.00 0.24
CDN [24] 4.89 3.97 0.77

LiDAR (Ours) 0.18 0.05 0.04
a lateral MSE b longitudinal MSE c rotational MSE

3) Performance on Different Levels of Perturbation:
We also tested the stability and robustness of our model
against the baseline by applying external force with different
intensity levels in random directions to the ego vehicle as per-
turbations. The external force can be according to Fperturb =
2 ·L ·mego, where L represents the level of perturbation and
mego is the mass of the ego vehicle.

The external forces are added to the ego vehicle for
three continuous frames every 40 frames. Applying such
perturbation would cause the vehicle to diverge from its
normal path. The subsequent 37 frames allow the model to
recover from this divergence thereby leading the vehicle back
to follow the target vehicle again. As shown in Fig. 3, the
route completion of our method remains almost unchanged
despite the increasing level of perturbation. However, the
performance of the baseline model decreases dramatically.
This experiment demonstrates that our model trained with
rendered off-trajectory images is capable to deal with unex-
pected perturbations.

4) Performance in Different Target Velocity & Acceler-
ation ranges: In our method, the target vehicle velocity
& acceleration are crucial variables for successful vehicle
pursuit. The ego-vehicle being controlled should closely
match the target vehicle’s velocity & acceleration. This
means that the velocity of the ego-vehicle should rise (or
drop) with the increase (or decrease) in the target vehicle’s
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Fig. 3: Average Route Completion (RC) under different
perturbation levels. Unlike the baseline, our model maintains
high accuracy & consistency with increasing perturbations.

velocity. Otherwise, the ego-vehicle would either not be able
to keep up with the target or collide into it.

Fig. 4: The mean velocity (left) and acceleration (right) dif-
ference between target and ego vehicle for different ranges.

To assess the adaptability of all models to different tar-
get velocity & acceleration ranges, we calculate the mean
velocity/acceleration difference between the target and ego
vehicles within different ranges. Hence, the locations of
target and ego vehicles over each trajectory are first matched
with each other by the closest distance, then the veloc-
ity/acceleration differences are computed. As seen in Fig. 4,
both our models with Self-Supervised and Stereo Depth show
a lower velocity/acceleration difference in comparison to the
Baseline and Three camera model. In fact, they demonstrate
performance comparable to that of the Oracle.

5) Computational Analysis: We further test the runtime
performance of our model during inference (online perfor-
mance). When tested on a low-end GPU GeForce MX250
with 384 cores, our method achieves an inference speed
of 42 frames per seconds (fps), which can be considered
for a real-time application system. In contrast, running the
object detection method and MPC optimization at inference
time would lead to a slower runtime. In fact, the 3D object
detector alone yields only 1.5 fps.

V. LIMITATIONS

We assume that we are only following one target vehicle
which is seen at all times. If the target vehicle briefly moves
beyond the field of view of the camera or is completely
occluded by another vehicle then the model would strug-
gle to follow the target even if it appears back later. An

option to address this in future work is to integrate tracking
based Vehicle Re-Identification techniques from works such
as [30]. For this, our architecture would need to be slightly
modified to take in the template of the target vehicle too.
Moreover, with this solution, a single target vehicle to be
followed can be selected among the multiple vehicles in the
scene. Another limitation is that we assume no uncertainty
or drop in the communication of velocity value between two
vehicles. A solution to the noisy or missing target vehicle
velocity reading is to apply approaches such as the Kalman
filter [31].

VI. CONCLUSIONS

In this paper, we proposed a car-following framework for
training a network without the need for supervised steering
labels. The steering labels are implicitly determined from
model predictive control. This is done in conjunction with
applying a 3D object detector to extract the relative location
and orientation of the target vehicle with respect to the ego-
vehicle. Given a single RGB image and velocities of both
vehicles, we train a two-stage network comprising of a CNN
and an MLP to estimate optimal lateral and longitudinal
control values for the ego-vehicle while it performs the
task of following the target. Meanwhile, additional off-
trajectory images are rendered and included in the training
data to enhance the robustness of the model to inaccuracies
in estimated control commands. We extensively test our
method on the CARLA simulator and show the effectiveness
of our pipeline. Additional experiments are performed to
quantitatively verify robustness and computational efficiency
of our method.

Although the emphasis of the work was on the car-
following task only, we believe the proposed approach can
be extended to a multi-vehicle platooning application. We
believe our work can serve as an intermediate step from
vehicle pursuit to a fully autonomous driving and inspire
future work in the same direction.
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[17] Q. Khan, I. Sülö, M. Öcal, and D. Cremers, “Learning vision based
autonomous lateral vehicle control without supervision,” Springer
Nature Applied Intelligence, 2023.

[18] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by
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