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Exploring the Mutual Influence between
Self-Supervised Single-Frame and Multi-Frame
Depth Estimation
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Abstract—Although both self-supervised single-frame and
multi-frame depth estimation methods only require unlabeled
monocular videos for training, the information they leverage
varies because single-frame methods mainly rely on appearance-
based features while multi-frame methods focus on geometric
cues. Considering the complementary information of single-
frame and multi-frame methods, some works attempt to leverage
single-frame depth to improve multi-frame depth. However, these
methods can neither exploit the difference between single-frame
depth and multi-frame depth to improve multi-frame depth
nor leverage multi-frame depth to optimize single-frame depth
models. To fully utilize the mutual influence between single-frame
and multi-frame methods, we propose a novel self-supervised
training framework. Specifically, we first introduce a pixel-wise
adaptive depth sampling module guided by single-frame depth
to train the multi-frame model. Then, we leverage the minimum
reprojection based distillation loss to transfer the knowledge from
the multi-frame depth network to the single-frame network to
improve single-frame depth. Finally, we regard the improved
single-frame depth as a prior to further boost the performance of
multi-frame depth estimation. Experimental results on the KITTI
and Cityscapes datasets show that our method outperforms
existing approaches in the self-supervised monocular setting.

Index Terms—Deep Learning for Visual Perception; Visual
Learning; Deep Learning Methods.

I. INTRODUCTION

EPTH estimation is an essential and challenging problem
in 3D vision, which can be applied in a wide range of
applications such as autonomous driving [1f] and augmented
reality [2]. Although active depth sensors e.g. Lidar and
binocular cameras-based methods [3|] exist, monocular depth
estimation (MDE) methods that only use a single RGB camera
to estimate depth still attract much attention due to their
flexibility and low cost.
In the past years, many deep learning-based MDE methods
[4]-[8] have emerged. Among these methods, self-supervised
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methods [6], [8]] that use unlabeled monocular video sequences
as training data to eliminate the dependence on ground-truth
depth made exciting progress. Early self-supervised methods
[6]-[8]] mainly focus on single-frame depth estimation, which
refers to inferring the corresponding depth map given a single
image. Whilst flexible, single-frame approaches ignore that
more than one frame may be available at test time in many
practical applications. Therefore, a few recent works [_8]—[11]
take multiple frames as input for depth estimation. Different
from single-frame methods, these multi-frame methods mainly
utilize the geometric matching features between multiple
frames. Considering that dense feature matching is easily af-
fected by occlusions, moving objects, and textureless regions,
these methods try to utilize the single-frame information to
improve multi-frame depth estimation unilaterally and show
promising results.

However, these “one-way” methods do not take full ad-
vantage of the “mutual” influence between single-frame depth
estimation and multi-frame depth estimation due to ignoring
the two issues: (1) the potential benefits of the difference
between single-frame depth and multi-frame depth, and (2) the
effect of multi-frame depth on single-frame depth estimation.
Since current multi-frame depth methods [10], [12] usually
predict more accurate depth than single-frame methods [7],
[13]], the output of multi-frame depth models can be regarded
as pseudo labels. Then we can model the uncertainty of single-
frame depth using the difference between single-frame depth
and multi-frame depth. Based on the above idea, we propose
the Pixel-wise Adaptive Depth Sampling (PADS) module to
determine the depth candidates used for multi-frame depth es-
timation, in which the single-frame depth is used to determine
the geometric center of sampling range following [10], [L1],
and the difference between single-frame depth and multi-frame
depth is used to determine the width of the sampling range.
In this way, we improve the efficiency of depth sampling and
form effective cost volumes for more accurate multi-frame
depth estimation. Regarding the second issue, we adopt the
multi-frame depth model as the teacher to train another single-
frame depth network via distillation learning. To alleviate the
impact that the teacher model generates inaccurate labels, we
combine the photometric loss [7] and the distillation loss to
form a minimum reprojection based distillation loss, ignoring
the pseudo labels with large reprojection errors. Thus, the
single-frame depth network also produces better results.

To allow these two ideas to work in a compatible manner,
we further propose a novel self-supervised training framework.



Specifically, an uncertainty map is iteratively updated using the
PADS module when training the teacher model and then fixed
at test time. After distillation learning, the learned uncertainty
map and the improved single-frame depth are further regarded
as the input of the PADS module to determine the sampling
range for cost volume generation so that the multi-frame
network also benefits from the improved single-frame network.

In summary, the contributions of the paper are as follows:

o A novel self-supervised distillation learning framework
for MDE that fully utilizes the mutual benefits between
self-supervised single-frame and multi-frame depth esti-
mation.

o A pixel-wise adaptive depth sampling module to use the
single-frame depth and the difference between single-
frame depth and multi-frame depth as priors for multi-
frame depth estimation.

o A distillation loss based on the minimum reprojection
error to filter out the multi-frame depth predictions that
may have large errors.

e A new state of the art on the KITTI and Cityscapes
datasets in self-supervised monocular depth estima-
tion. The code and models will be available at
https://github.com/xjixzz/MISM.

II. RELATED WORKS
A. Single-Frame Depth Estimation

Single-frame depth estimation refers to inferring the corre-
sponding pixel-wise depth from a single image, which is an ill-
posed problem because there are an infinite number of possible
3D scenes that can correspond to the same image. Early single-
frame depth estimation studies [4]], [14] focused on supervised
methods, which suffer from collecting ground truth depth. To
avoid the heavy work of collecting labels, Garg et al. [35]
proposed the first self-supervised single-frame depth estima-
tion model supervised by view synthesis loss from rectified
stereo image pairs. Zhou et al. [6] extended the self-supervised
stereo training into a more general form, i.e., self-supervised
monocular training, which jointly estimates depth and poses
to form view synthesis loss only using unlabeled monocular
videos. Monodepth2 [7] further improved the training loss to
alleviate the problems caused by occlusions and stationary
pixels and provided a strong baseline for the following works
including our method.

Following [[7], more powerful or efficient network architec-
tures [[12], [15]] and more effective data augmentation strategies
[13] have been proposed to improve single-frame depth. In
addition, other tasks such as flow estimation [16], bird’s-eye-
view scene layout estimation [[17], and semantic segmentation
[18], [[19] were introduced to provide extra information for
single-frame depth estimation. Furthermore, some works [20],
[21] attempted to use knowledge distillation to improve the
results of depth estimation, and we will review these works in
Section II-C.

B. Multi-Frame Depth Estimation

In contrast to single-frame methods, multi-frame depth
estimation methods can exploit consecutive multiple frames at

test time. Among them, some works e.g. [2] iteratively finetune
the pretrained single-frame network at test time for global
temporal consistency, which suffers from the running speed. A
second group of works e.g. [22] introduce recurrent networks
to exploit temporal information for online depth estimation but
are limited by implicitly geometric reasoning.

To explicitly reason about the geometry, deep learning-based
multi-view stereo (MVS) methods [23]-[25] adopt plane-
sweep stereo architectures to build 3D cost volumes from
the features of multiple 2D images via differentiable warping.
However, these methods focus on simple static scenes and
assume that the camera pose is known in advance, which limits
their applicability in more complex scenarios.

To infer the depth from multiple images with unknown
poses, Watson et al. [8]] proposed a self-supervised model
with the improved multi-view plane-sweep stereo architecture.
Manydepth [8] leverages the estimated single-frame depth to
update the minimum and maximum depth values of the whole
scene to alleviate the scale ambiguity, and provides supervision
for the multi-frame depth network in the region where match-
ing costs do not work. Based on [§]], [9] disentangles object
motions to overcome the mismatching problem using dynamic
category segmentation masks and single-frame depth, and [26]]
uses an attention-based matching mechanism to improve multi-
frame matching for cost volume generation. More recently,
[10] leverages the single-frame depth and the magnitude
of the estimated velocity as prior information to determine
the search space for multi-frame depth and further uses an
additional uncertainty-based network to fuse the single-frame
depth and multi-frame depth. Similar to [10]], [11] also utilizes
the single-frame depth as prior depth but fuses the single-
frame and multi-frame information in a multi-scale manner.
However, none of these works exploit the mutual influence
between single-frame and multi-frame depth estimation in a
comprehensive way as our method.

C. Knowledge Distillation

Knowledge distillation was originally proposed to compress
a large model into a lightweight model without a large per-
formance drop via the teacher-student architecture, which has
been applied to many vision tasks [27], including MDE [45]].
As for self-supervised depth estimation, research on applying
distillation learning to self-supervised MVS methods [24], [|25]]
or self-supervised stereo training methods [28[|-[30]] has been
going on for several years. However, until recently, a few
works [20], [21]], [31] started to exploit knowledge distillation
to improve single-frame depth estimation in the self-supervised
monocular setting. Among these methods, [31] learns two
task-dependent uncertainty maps to weight the pseudo label
loss and self-supervised photometric loss respectively for more
accurate single-frame depth, and [20]] selects the optimal pre-
diction from multiple predictions of the multi-stream ensemble
network to help train the student network. Nevertheless, both
of these two works ignore temporal information. Closest to
our model in spirit is the work of Petrovai et al. [21], which
leverages a self-distillation training strategy to distill the high-
resolution pseudo labels with the 3D consistency filtering
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Fig. 1.

Overview of our pipeline. First, we train the teacher model consisting of Single-frame Depth Network (S-DepthNet), PoseNet, and Multi-frame

Depth Network (M-DepthNet), in which the Pixel-wise Adaptive Depth Sampling (PADS) module generates the hypothesized depth Dj,ypotr for Group-wise
Correlation (GwC) based cost volume generation from single-frame depth D} and pixel-wise sampling width adjuster J, and simultaneously updates § with
Dj" and Dy . Then, the trained teacher model generates pseudo labels to guide the student model with the distillation loss. Last, the trained student model
replaces the S-DepthNet and PoseNet of the teacher model to help M-DepthNet to produce better results during inference.

strategy. Instead of leveraging temporal information to distill
pseudo labels via post-processing as [21]], we directly use
the multi-frame depth estimation network to generate pseudo
labels for training the single-frame depth network and the
trained single-frame depth network is further used to boost
the performance of multi-frame depth estimation.

III. METHOD

In this section, we first introduce the overall pipeline. Then,
we introduce the paradigms for self-supervised single-frame
and multi-frame depth estimation. After that, we describe the
PADS module, which provides effective hypothesized depth
for cost volume generation of multi-frame depth estimation.
Finally, we introduce the distillation learning to train the
student model with the supervision from photometric loss and
pseudo labels generated by the teacher model.

A. Method Overview

To exploit the mutual influence between single-frame and
multi-frame depth estimation, we propose a two-stage training
pipeline as shown in Fig. [T} In the first stage, we train
the Multi-frame Depth Network (M-DepthNet) in a self-
supervised manner. Following MOVEDepth [10], we addi-
tionally introduce Single-frame Depth Network (S-DepthNet)
and Pose Network (PoseNet) when training M-DepthNet. The
output of S-DepthNet is used as the input of the PADS
module, which generates the pixel-wise depth range for M-
DepthNet. And the output of PoseNet is used to construct cost
volumes via warping. Thus, the three networks together form
the teacher model and can be jointly optimized. In the second
stage, the student model consisting of S-DepthNet and PoseNet
is trained by combing the supervision of the teacher model
and self-supervision, in which pseudo labels only work when
they produce small photometric errors. During inference, the
output of the student model is used to guide the cost volume
generation for M-DepthNet, which helps improve the accuracy
of M-DepthNet.

B. Self-Supervised Single-Frame Depth Estimation

The objective of self-supervised single-frame depth estima-
tion is to minimize the photometric error between the target

image I; and the synthesized image derived from the predicted
target depth map Dj. As shown in the upper left part of
Fig. [1] self-supervised monocular training jointly optimizes
S-DepthNet and PoseNet. S-DepthNet takes [, as input and
outputs the corresponding depth map Dy, while PoseNet takes
I; and the context image I. as input and estimates the ego-
motion T} _,.. Assuming that the camera intrinsic matrix K is
known, then we can project the 2D pixel coordinates (u,v) of
I; to (uc,v.) in I, as follows:

(e, ve) = KTy D} (u,v) K~ (u,0,1)7, (1)

where the conversion between homogeneous and inhomoge-
neous coordinates is omitted for notational simplicity. As in
, we use bilinear interpolation denoted as <> to sample the
context pixel (uc,v.) to obtain the synthesized target image:

Ic—)t(uvv) = IC<(UC,UC)>. ()

Following [32]], we compute the weighted sum of L1 loss and
structural similarity (SSIM) to form the photometric loss:

1—-SSIM(1,, I
Mah) )

where o = 0.15. To address the occlusion problem, we adopt
the per-pixel minimum reprojection loss as in [7], i.e.

Lp = PE(It,ICA)t). (4)

PE(1,, 1) = a||ls— |1 + (1 —«a)

min
ce{t—1,t+1}
Similar to [[7], we also apply the auto-masking strategy to
generate the mask p for removing the stationary pixels from
L,. Following , we also use the edge-aware smooth loss:

Lo = |0ydt e 1041l 419, d¥ e~ 19Tl (5)

where d} is the mean-normalized inverse depth. Like [7], we
also compute the multi-scale photometric loss when multi-
scale depth predictions are available. Thus, the final self-
supervised loss for single-frame depth D; is formulated as:

5-1
o1
Lsety (D7) = 5 ;0 pLy + N Lsim, 6)
where S represents the number of multi-scale depth maps and
Aem is set to 1072 as in [7].



C. Self-Supervised Multi-Frame Depth Estimation

The diagram of the Multi-frame Depth Network (M-
DepthNet) is shown at the bottom of Fig. |1} As in [10], M-
DepthNet takes as input two H x W x 3 images, I; and I,
and uses a shared Feature Network (Feat-Net) to extract the
h x w x C features F; and F. respectively, where h = H/4
and w = W/4. Then, similar to (1)) and (2), the context feature
F, is warped into the target view to obtain the feature volume
FV,._,; according to the estimated relative pose T;_,. and the
hypothesized discrete depth candidates Dyyporn, € RY XX
where N is the number of depth candidates for each pixel.
Next, group-wise correlation [3] is applied to construct the
cost volume CV; € RVNXGxhxw where G is the number of
groups that C'-Channel feature volume F'V,_.; is divided into.
Subsequently, a 3D UNet [33] is used to regularize the cost
volume to obtain the probability volume P; € RY*"xw and
local-max operation [34] is performed to generate the low-
resolution depth map D! € R"*% ag

x+T

Z Dhypotn (1, u,v)

i=x—r

Pt(ia u, U)
Z;::;_r Pt (.77 u, ’U) 7

where z is the index of the maximum value of the 1D vector
Pi(:,u,v) and r is the radius of the local window. Finally,
the convex upsampling layer [35] is used to interpolate the
D! to output the final multi-frame depth map D" € RZ*W,
We can calculate the self-supervised loss Ly f(D ) like @
Thus, the loss function to jointly optimize all networks of the
teacher model is formulated as

Lteacher = Lself(Df) + Lself(D;n)- (8)

D! (u,v)

)

D. Pixel-wise Adaptive Depth Sampling

As described in the previous subsection, generating cost
volume requires sampling the depth candidates Dpypotn- [8]l
iteratively updates the depth range [dyin, dmas| for the whole
scene according to the estimated single-view depth during
training and fixed the two parameters d,,;, and d,,, dur-
ing inference, which is computationally expensive since the
learned depth range needs to cover the depths of all view-
points in the scene. To narrow the depth range for different
views, some approaches [10], [11] take the estimated single-
view depth as the geometric center for depth sampling, and
additionally use one or more predefined hyperparameters to
determine the width of the depth range. Furthermore, [10]
leverages the magnitude of the velocity estimated by PoseNet
to adjust the width of the image-wise depth range but suffers
from the challenging task to estimate the absolute scale of the
predicted velocity before training. More importantly, all these
methods ignore the distribution difference for the width of the
sampling range in the pixel space and fail to provide pixel-
wise adaptive depth range to build efficient cost volumes.

To better exploit the spatial distribution of scene depth,
we propose the PADS module, which adopts a learnable
uncertainty map & € R”*¥ to indicate the pixel-wise relative
width of the sampling range. All elements in § are initialized
to one. Following [10]], [[11]], we also use the single-frame
depth Dy as prior depth to determine the geometric center of

the search space for per-pixel depth candidates. Considering
the difference in the resolution of the predicted depth map
and cost volume, we first downsample D; and Dj" to obtain
Dy L and D" L respectively. Let D,,;, and D,,,, denote the
minimum and maximum depth map with a resolution of h x w,
respectively. Then we can specify the sampling range:

=D} /(1+9),

szn
s, )
Dipae = D;" (1 +9).

When training M-DepthNet, we adopt the exponential mov-
ing average strategy to update § according to the difference

between D" and D}
§ < 0.995 + 0.018, (10)
&' = B(max(D' /Dy, DDy — 1) (1)

Here, § is a hyperparameter greater than 1 to avoid the
estimated multi-frame depth falling on the boundary or even
out of the sampling range. In our setting, S is set to 1.2. The
learned § is visualized as Fig.[3(a), which reflects the estimated
uncertainty distribution of single-frame depth for the target
scene. Similar to [8]], we save § as part of the model weights
after training and keep ¢ fixed during inference.

As in [10], according to D;,;, and D,,,, determined by
(@), we then uniformly sample in the inverse depth space to
obtain Dpypotn, 1.€.

i 1 1

1

Dmam

where i = 0,1, ..., N — 1. Thus, the depth candidates D},y,otn
are used to generate the pixel-wise adaptive cost volume for
multi-frame depth estimation as described in the previous
subsection. Compared to the previous sampling strategies [8]],
[10], the PADS module is capable of adjusting the sampling
range at a finer granularity, which helps improve the accuracy
of multi-frame depth estimation.

Dhypoth (7/) =

E. Distillation Learning

Considering the performance gap between single-frame and
multi-frame depth networks, we further transfer the knowledge
from M-DepthNet to S-DepthNet. As shown in Fig. [T] the
student model is composed of S-DepthNet and PoseNet, and
the outputs of S-DepthNet and PoseNet are Ds and Ttﬁc
respectively. The teacher model generates pseudo labels D"
for supervising the student model.

Since the teacher network might produce results with large
errors for some pixels, it is necessary to filter out the pixels
with large errors. Inspired by [7]], we introduce the minimum
reprojection error to construct distillation loss for filtering
out the multi-frame depth values that generate larger errors
than the student single-frame depth. Given T; ., we can
synthesize the images I°_,, and I7",, according to DS and D"
respectively. Then, we can compare their photometric errors
and generate the mask:

M= [PE(It, Im.,) < PE(I,, f;t)] , (13)



TABLE I
QUANTITATIVE RESULTS ON THE EIGEN SPLIT OF KITTI DATASET WITH THE RAW AND IMPROVED GROUND TRUTH

. Test . ] . The lower the better The higher the better

Method Train | prmes | #Params. MACs  Time | —pcper—siRel RMSE RMSETog| 81 02 03
Monodepth2 [7] M 1 143M  8.0G 14ms || 0.115 0903 4.863 0.193 | 0.877 0.959 0.981
PackNet-SfM [12] M 1 1283M 205.2G 27.4ms || 0.111 0.785 4.601 0.189 | 0.878 0.960 0.982
VADepth [[15] M 1 188M  9.7G  3.0ms || 0.104 0.774 4.552 0.181 | 0.892 0.965 0.983
Ma et al. [19] M+Sem 1 30.3M - - 0.104  0.690 4.473 0.179 | 0.886 0.965 0.984
SD-SSMDE (ResNet50) [21] M 1 - 18.6G - 0.100  0.661 4.264 0.172 | 0.896 0.967 0.985
SUB-Depth [31]] M 1 - - - 0.099  0.695 4.326 0.175 | 0.900 0.966 0.984
E RA-Depth [13] M 1 10.0M 108G 34ms || 0.096 0.632 4216 0.171 ]0.903 0.968 0.985
3 ManyDepth [8] M 2(-1,0)| 269M 151G 52ms [[ 0.098 0.770 4.459 0.I176 [0.900 0.965 0.983
£ DynamicDepth [9] M+Sem | 2 (-1, 0) - - - 0.096  0.720 4.458 0.175 | 0.897 0.964 0.984
Long et al. [[11] M 2(-1,0) - 15.6G - 0.097 0731 4.392 0.176 | 0.901 0.965 0.983
MOVEDepth (ResNetl18) [[10]1 M 2(-1,0)| 282M 202G 5.0ms 0.094  0.704 4.389 0.175 0.902 0.965 0.983
DepthFormer [26] M 2(-1,0)| 287M 174.7G - 0.090  0.661 4.149 0.175  |0.905 0.967 0.984
MOVEDepth (PackNet) [[10] M 2(-1,0)| 1422M 217.3G 28.4ms|| 0.089 0.663 4216 0.169 10.904 0.966 0.984
Ours (ResNet18) M 2(-1,0)| 282M 202G 4.Ims 0.092  0.683 4.331 0.172 0.905 0.966 0.984
Ours M 2(-1,0)| 239M 229G 6.Ims || 0.086 0.613 4.096 0.165 | 0.915 0.969 0.985
Eigen et al. [4] D 1 - - - 0.190  1.515 7.156 0.270  10.692 0.899 0.967
DORN [36] D 1 - - - 0.072 0307 2.727 0.120 | 0.932 0.984 0.994
Adabins [37] D 1 - - - 0.058  0.190 2.360 0.088 0.964 0.995 0.999
NeW CRFs [38] D 1 - - - 0.052  0.155 2.129 0.079 10.974 0.997 0.999
G Monodepth2 7] M I 143M  8.0G - 0.090 0545 3.942 0.137 ]0.914 0.983 0.995
- PackNet-SfM [12] M 1 128.3M  205.2G - 0.078  0.420 3.485 0.121 0.931 0.986 0.996
% RA-Depth [13]F M 1 10.0M  10.8G - 0.074 0362 3.345 0.113  [0.940 0.990 0.997
g Patil et al. [22] M N - 16.9G - 0.087 0495 3.775 0.I33  [0.917 0.983 0.995
£ ManyDepth [8] M 2(-1,00| 269M 151G - 0.070 0399 3.455 0.113 | 0.941 0.989 0.997
Long et al. [[I1] M 2(-1,0) - 15.6G - 0.068 0366 3.338 0.110 | 0.946 0.989 0.997
MOVEDepth (ResNetl18) [[10]1 M 2(-1,0)| 282M  20.2G - 0.065 0.377 3.449 0.112 0.942 0.988 0.996
Ours (ResNetI8) M 21,00 282M 20.2G - 0.064 0369 3.390 0.108 [0.946 0.988 0.996
Ours M 2(-1,0)| 239M 229G - 0.058  0.302 3.070 0.098 0.955 0.992 0.998

All self-supervised methods are tested with the resolution of 192 x 640. “4” means evaluation on the pretrained models from github. The best
scores for each subsection are in bold and the second are underlined. In the “Train” column, we list the training data for each method with D —
ground truth Depth, M — unlabeled Monocular videos, Sem — Semantic labels. In the “Test Frames” column, “N” refers to taking a long sequence
of frames as input to predict the target depth map. In the “Time” column, we list the inference time to generate one depth map by averaging the
inference time of all 697 test images with a batch size of 16.

where [-] is the Iverson bracket. Following [4], we adopt the
scale-invariant error between D}"* and D; as the pseudo-label

based regression loss:

L= [ 32w 02 = (3 dws0)’,

u,v

u,v

(14)

where d(u,v) = (log(D; (u, v)) — log(D(u, v))) M (u, v), n
represents the number of elements with a value of 1 in M, and
v = 1.0. To provide supervision for the pixels where pseudo
labels do not work, we also introduce the self-supervised loss
Lserf(Dy) as in to construct the final distillation loss:

Ldistill = Lself(ﬁf) + /\siLsia (15)

where A\g; = 0.1. In this way, the trained student model pro-
duces more accurate single-view depth than the S-DepthNet of
the teacher model, thanks to the distilled geometric matching
knowledge from the multi-frame network. Ultimately, we use
the distilled student model to guide the M-DepthNet to obtain
better depth estimation at test time.

IV. EXPERIMENTAL RESULTS
A. Datasets

We conduct experiments on the KITTI [[1] and Cityscapes
[39] datasets to verify the effectiveness of our method with the
metrics proposed in [4]]. KITTI is one of the most widely-used
datasets for depth estimation, which covers various outdoor

scenes. We follow [6] to adopt the Eigen split [4] and remove
the static frames, which results in 39810/4424/697 training,
validation, and test images. We also evaluate our model on the
improved depth maps from [40]], containing 652 test images.
As for Cityscapes [39], it is a large dataset that is comprised of
video sequences captured in streets from 50 cities. Following
[6], we train on the 69731 monocular triplets and evaluate
on the 1525 test images. As in [6[], the maximum depth of
evaluation on both datasets is restricted to 80m.

B. Implementation Details

In our experiments, we adopt the HRNet [41] based archi-
tecture in [13]] as S-DepthNet unless otherwise stated, where
the number of output scales S is set to 1. The PoseNet is a
modified ResNetl8 [42] as in [[7]. Both the backbones of S-
DepthNet and PoseNet are initialized with weights pretrained
on ImageNet [43]]. Following [10], we adopt a four-stage FPN
[44] as the Feat-Net, where the number of feature channels
C = 32. As for cost volume generation, both the number of
depth candidates N and the number of groups G are set to
16. Similar to [8]], we set the input resolution as 192 x 640
for KITTI and 128 x 416 for Cityscapes. Following [7]], we
use random color-jitter and flip for data augmentations, and
further apply the random image mask strategy when training
M-DepthNet as in [10]. All experiments are performed on a
single Nvidia RTX 3090 GPU. Our models are implemented in
Pytorch and the batch size is set as 12 and 16 for training and
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MOVEDepth [10] Ours

Fig. 2. Qualitative results on the Eigen test split of KITTI dataset. Rows 2, 4, 6 provide the equivalently colormapped error maps for the metric Abs. Rel.
relative to the improved depth [40], from small (blue) to large (red) errors. The GT depth is interpolated for better visualization. Compared to other methods
[I8]], [10]], our model not only preserves better details for various objects but also predicts depth maps with small errors. White and black boxes highlight the
difference for the predicted depth and error maps, respectively. Best viewed in color and zoom in.

TABLE I
QUANTITATIVE RESULTS ON THE CITYSCAPES DATASET

Method AbsRell  SqRell RMSE| RMSE log|
Monodepth?2 [7] 0.129 1.569 6.876 0.187
InstaDM [ 18]* 0.111 1.158 6.437 0.182
ManyDepth [8] 0.114 1.193 6.223 0.170
Long et al. [|[11] 0.113 1.093 6.119 0.170

DynamicDepth [9]* 0.103 1.000 5.867 0.157
Ours 0.102 0.948 5.788 0.154

All methods are tested with the resolution of 128 X416, except InstaDM
[[18] with a resolution of 256 x 832. “*”” means that the method requires
semantic labels for training.

test respectively. Both the teacher model and student model
are trained with Adam optimizer for E epochs. E is set to
20 for KITTI and 5 for Cityscapes. The initial learning rate
is set to 2 x 10~ for the teacher model and 1 x 10~ for
the student model, dropping by a factor of 10 after () epochs.
Q@ is 15 for KITTI and 1 for Cityscapes. For KITTI, it takes
approximately 13 and 10 hours to train the teacher and student
models, respectively. For Cityscapes, it takes about 5 and 4
hours respectively.

C. Depth Evaluation

To evaluate the performance of our method, we first conduct
a comparison of its performance relative to the state-of-the-
art self-supervised MDE methods on KITTI with the raw
[1] and improved ground truth [40]. As shown in Table
our method establishes a new state of the art in self-
supervised MDE, with competitive model complexity and
inference speed.Compared with the best-performing single-
frame method [13|] and distillation learning based methods
[21], [31], our model improves the performance by more
than 10.4% (on Abs. Rel. with the raw GT). Note that our
method only adopts the same S-DepthNet as RA-Depth, but
does not adopt the data augmentation strategy and the cross-
scale depth consistency loss proposed in [13[]. The multi-frame
depth estimation methods that perform closest to our method

TABLE III
GENERALIZATION PERFORMANCE ON THE CITYSCAPES DATASET

Method AbsRel| SqRel] RMSE| RMSE log|
ManyDepth [8] 0.170 1.789 8.357 0.236
MOVEDepth [10]+ 0.164 1.780 8.678 0.238
Ours 0.150 1.492 7.810 0.216

“t” means evaluation on the pretrained models from github.

are DepthFormer [26] and MOVEDepth [10]. Although neither
using the computationally expensive transformer architecture
[26] nor adopting the velocity-guided depth sampling strategy
and additional depth fusing network [10], our model still
outperforms these methods in all metrics. For a fair com-
parison with [10], we also list the results using the same
ResNet18-based architecture (number of output scales S = 4)
for our method and [10], where our method still performs
better. Furthermore, the bottom half of Table [I] shows that
our method even compares favorably to some single-frame
supervised methods [36], [37], and narrows the performance
gap between self-supervised monocular training methods and
the best-performing supervised approach [38].

In addition, we also present the qualitative results in Fig. 2}
where our method better preserves the shape of objects and
outputs depth maps with smaller errors.

Moreover, we also compare the results with the current
state-of-the-art methods [8]], [9], [11]] on Cityscapes. As shown
in Table our method performs best again, even though
DynamicDepth [9] leverages semantic labels.

D. Generalization Performance

To evaluate the generalization capability across datasets, the
model trained on the KITTI dataset is used to test on the
Cityscapes dataset without finetuning. Table [[IIj compares the
generalization performance with the current self-supervised
multi-frame depth estimation methods [8], [[10], from which
we can see that our method achieves better results. These data
demonstrate that digging into the complementary information



TABLE IV
ABLATION STUDY ON KITTI EIGEN SPLIT FOR MULTI-FRAME DEPTH

L. Min. The lower the better GPU (GB)
PADS | Distill Reproj. | AbsRel SqRel RMSE R log| train* test
Baseline (HRNet18) | 0.090 0.704 4.293 0.171| 15.1 4.2
v 0.088 0.673 4.257 0.169| 15.1 42
v 0.088 0.640 4.196 0.168|15.1/10.4 4.2
v v 0.088 0.655 4.183 0.168(15.1/10.5 4.2
v v 0.087 0.637 4.133 0.166|15.1/10.4 4.2
v v v 0.086 0.613 4.096 0.165|15.1/10.5 4.2
Baseline (ResNet18) | 0.096 0.760 4.499 0.178| 14.7 4.0
v 0.094 0.748 4.457 0.176| 14.7 4.0
v 0.094 0.714 4.379 0.175(14.7/10.2 4.0
v v 0.093 0.684 4.335 0.173|14.7/10.3 4.0
v v 0.092 0.691 4.353 0.172|14.7/10.2 4.0
v v v 0.092 0.683 4.331 0.172|14.7/10.3 4.0
“*”: separate GPU memory required for the two stages of training.
TABLE V
ABLATION STUDY ON KITTI EIGEN SPLIT FOR SINGLE-FRAME DEPTH
. Min. The lower the better
Distill Reproj. AbsRel SqRel RMSE R log ot
Baseline (HRNet18) 0.102 0.741 4470  0.179 | 0.896
v 0.100 0.702 4.328  0.175 | 0.900
v v 0.099 0.676 4.287  0.174 | 0.900
Baseline (ResNet18) 0.115 0.885 4.799 0.192 | 0.876
v 0.111 0.799 4.634  0.185 | 0.880
v v 0.110 0.786 4.603  0.185 | 0.884
SUB-Depth [31]] 0.110 0.821 4.648  0.185 | 0.884

between single-frame and multi-frame may contribute to im-
proving the generalization capability across datasets.

E. Ablation Study

To understand how much each component of our method
contributes to the overall performance of multi-frame depth
estimation, we conduct the ablation experiments on KITTI
with the raw GT depth. In our experiments, the baseline model
is the trained teacher model without distillation learning, in
which single-frame depth is set as the geometric center of
the sampling range and all elements of J are fixed as 0.3
following [T0]. The top half of Table [V] shows that using
the PADS module leads to better scores in all metrics, which
proves the effectiveness of the PADS module. Adopting the
PADS module does not change the computation complexity
but only introduces 7.68K extra parameters of §, which is
negligible compared to the 23.9M parameters of the baseline
model. Thus, using the PADS module requires similar GPU
memory as the baseline. Adopting distillation learning can
achieve greater performance gains than only introducing the
PADS module, which reveals the effect of the proposed two-
stage training pipeline. Combining the distillation learning loss
with the masking strategy based on minimum reprojection
error further brings an improvement in the overall performance
at the cost of a little more GPU memory (10.4 v.s. 10.5)
required for training the student model, which reflects the
necessity to mask out the false labels generated by the teacher
model. Taking all three components together leads to the
most accurate depth predictions and disabling any component
may result in performance degradation. These results suggest
that all these components are compatible with each other
and lead to more utilization of the mutual influence between
single-frame and multi-frame depth estimation. In addition, to

PADS + Distill w/o
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Fig. 3. Visualization results of ablation study. The learned J is visualized in
(a), where high uncertainty corresponding to large sampling range is white,

otherwise black. The error maps of single-frame depth and multi-frame depth
for different settings are visualized as (c) and (d) respectively.
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verify the compatibility of our method with different single-
frame depth network architectures, we adopt the ResNet-based
architecture in [[7] for the ablation study. From the bottom half
of Table [[V] we can observe consistent results and draw the
same conclusion.

Moreover, we perform an ablation study on the single-frame
depth to further analyze the effectiveness of the minimum re-
projection based distillation learning. As listed in Table[V] the
minimum reprojection based distillation learning brings a con-
siderable performance gain for S-DepthNet. When applying
the same backbone (ResNetl8), our method performs better
than the self-distillation method [31]], which demonstrates that
distillation learning from multi-frame depth estimation is more
effective than self-distillation. Considering the performance
gap between the distilled S-DepthNet and the M-DepthNet
(even the baseline), we further use the trained student model
to guide the M-DepthNet to output the final depth map. The
consistent visualization results of the HRNet18-based models
corresponding to the settings of Table V] and Table [V] are
shown in Fig. 3] Taking all results of the ablation study
together, we find that both single-frame depth estimation and
multi-frame depth estimation do help improve each other.

V. CONCLUSION

In this paper, we presented a distillation learning pipeline
for self-supervised MDE so that single-frame and multi-frame
depth networks can benefit from each other. Thanks to the
proposed PADS module and minimum reprojection based dis-
tillation loss, our model achieves state-of-the-art performance
and generalizes better than the previous methods.

However, the performance of our method on Cityscapes
is still limited, which may suffer from more moving objects
compared to KITTI which captures more stationary dynamic
objects. In addition, the generalization performance of our
method is also unsatisfactory. Note that dynamic scenes or new
scenes and cameras not only directly affect M-DepthNet, but



also indirectly affect M-DepthNet by affecting PoseNet. Thus,
further combining S-DepthNet and M-DepthNet to adapt to
highly dynamic scenes or new scenes and cameras might be
worthwhile, especially taking PoseNet into account.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. 1EEE, 2012, pp. 3354-3361.

X. Luo, J.-B. Huang, R. Szeliski, K. Matzen, and J. Kopf, “Consistent
video depth estimation,” ACM Trans. Graph., vol. 39, no. 4, p. 71, 2020.
X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, “Group-wise correlation
stereo network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 3273-3282.

D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” Proc. Adv. Neural Inf.
Process. Syst., pp. 2366-2374, 2014.

R. Garg, V. K. Bg, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in Proc. Eur.
Conf. Comput. Vis. Springer, 2016, pp. 740-756.

T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 1851-1858.

C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging into
self-supervised monocular depth estimation,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019, pp. 3828-3838.

J. Watson, O. Mac Aodha, V. Prisacariu, G. Brostow, and M. Fir-
man, “The temporal opportunist: Self-supervised multi-frame monocular
depth,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., June 2021,
pp. 1164-1174.

Z. Feng, L. Yang, L. Jing, H. Wang, Y. Tian, and B. Li, “Disentangling
object motion and occlusion for unsupervised multi-frame monocular
depth,” in Proc. Eur. Conf. Comput. Vis. Springer, 2022, pp. 228-244.
X. Wang, Z. Zhu, G. Huang, X. Chi, Y. Ye, Z. Chen, and X. Wang,
“Crafting monocular cues and velocity guidance for self-supervised
multi-frame depth learning,” in Proc. AAAI Conf. Artif. Intell., vol. 37,
no. 3, 2023, pp. 2689-2697.

Y. Long, H. Yu, and B. Liu, “Two-stream based multi-stage hybrid
decoder for self-supervised multi-frame monocular depth,” IEEE Robot.
Autom. Lett., vol. 7, no. 4, pp. 12291-12298, 2022.

V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3d
packing for self-supervised monocular depth estimation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2485-2494.

M. He, L. Hui, Y. Bian, J. Ren, J. Xie, and J. Yang, “Ra-depth:
Resolution adaptive self-supervised monocular depth estimation,” in
Proc. Eur. Conf. Comput. Vis. Springer, 2022, pp. 565-581.

A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single
monocular images,” in Proc. Adv. Neural Inf. Process. Syst., 2005, pp.
1161-1168.

J. Xiang, Y. Wang, L. An, H. Liu, Z. Wang, and J. Liu, “Visual attention-
based self-supervised absolute depth estimation using geometric priors
in autonomous driving,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp.
11998-12 005, 2022.

A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff, and M. J.
Black, “Competitive collaboration: Joint unsupervised learning of depth,
camera motion, optical flow and motion segmentation,” in Proc. [EEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 12240-12249.

H. Zhao, J. Zhang, S. Zhang, and D. Tao, “Jperceiver: Joint perception
network for depth, pose and layout estimation in driving scenes,” in
Proc. Eur. Conf. Comput. Vis. Springer, 2022, pp. 708-726.

S. Lee, S. Im, S. Lin, and I. S. Kweon, “Learning monocular depth
in dynamic scenes via instance-aware projection consistency,” in Proc.
AAAI Conf. Artif. Intell., vol. 35, no. 3, 2021, pp. 1863-1872.

J. Ma, X. Lei, N. Liu, X. Zhao, and S. Pu, “Towards comprehensive rep-
resentation enhancement in semantics-guided self-supervised monocular
depth estimation,” in Proc. Eur. Conf. Comput. Vis. Springer, 2022, pp.
304-321.

W. Ren, L. Wang, Y. Piao, M. Zhang, H. Lu, and T. Liu, “Adaptive co-
teaching for unsupervised monocular depth estimation,” in Proc. Eur.
Conf. Comput. Vis. Springer, 2022, pp. 89—-105.

A. Petrovai and S. Nedevschi, “Exploiting pseudo labels in a self-
supervised learning framework for improved monocular depth estima-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., June 2022,
pp. 1578-1588.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

V. Patil, W. Van Gansbeke, D. Dai, and L. Van Gool, “Don’t forget the
past: Recurrent depth estimation from monocular video,” IEEE Robot.
Autom. Lett., vol. 5, no. 4, pp. 6813-6820, 2020.

Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference
for unstructured multi-view stereo,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 767-783.

J. Yang, J. M. Alvarez, and M. Liu, “Self-supervised learning of depth
inference for multi-view stereo,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 7526-7534.

Y. Ding, Q. Zhu, X. Liu, W. Yuan, H. Zhang, and C. Zhang, “Kd-
mvs: Knowledge distillation based self-supervised learning for multi-
view stereo,” in Proc. Eur. Conf. Comput. Vis.  Springer, 2022, pp.
630-646.

V. Guizilini, R. Ambrus, D. Chen, S. Zakharov, and A. Gaidon, “Multi-
frame self-supervised depth with transformers,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., June 2022, pp. 160-170.

J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” Int. J. Comput. Vis., vol. 129, pp. 1789-1819, 2021.

A. Pilzer, S. Lathuiliere, N. Sebe, and E. Ricci, “Refine and distill: Ex-
ploiting cycle-inconsistency and knowledge distillation for unsupervised
monocular depth estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 9768-9777.

X. Ye, X. Fan, M. Zhang, R. Xu, and W. Zhong, “Unsupervised
monocular depth estimation via recursive stereo distillation,” /IEEE
Trans. Image Process., vol. 30, pp. 4492-4504, 2021.

Z. Zhou and Q. Dong, “Self-distilled feature aggregation for self-
supervised monocular depth estimation,” in Proc. Eur. Conf. Comput.
Vis.  Springer, 2022, pp. 709-726.

H. Zhou, S. Taylor, D. Greenwood, and M. Mackiewicz, “Self-
distillation and uncertainty boosting self-supervised monocular depth
estimation,” in Proc. Brit. Mach. Vis. Conf. BMVA Press, 2022, p. 7.
C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 270-279.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assisted Intervention. Springer, 2015, pp. 234-241.
F. Wang, S. Galliani, C. Vogel, and M. Pollefeys, “Itermvs: Iterative
probability estimation for efficient multi-view stereo,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., June 2022, pp. 8606-8615.

Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in Proc. Eur. Conf. Comput. Vis.  Springer, 2020, pp.
402-419.

H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal
regression network for monocular depth estimation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2002-2011.

S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation using
adaptive bins,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., June
2021, pp. 4009-4018.

W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan, “Neural window fully-
connected crfs for monocular depth estimation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., June 2022, pp. 3916-3925.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 3213-3223.

J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger,
“Sparsity invariant cnns,” in Proc. Int. Conf. 3D Vis. 1EEE, 2017, pp.
11-20.

J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu,
M. Tan, X. Wang et al., “Deep high-resolution representation learning
for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 10, pp. 3349-3364, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. leee, 2009, pp. 248-255.

T.-Y. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2117-2125.

J. Baek, G. Kim, and S. Kim, “Semi-supervised learning with mutual
distillation for monocular depth estimation,” in IEEE Int. Conf. Robot.
Autom., 2022, pp. 4562-4569.



	Introduction
	RELATED WORKS
	Single-Frame Depth Estimation
	Multi-Frame Depth Estimation
	Knowledge Distillation

	METHOD
	Method Overview
	Self-Supervised Single-Frame Depth Estimation
	Self-Supervised Multi-Frame Depth Estimation
	Pixel-wise Adaptive Depth Sampling
	Distillation Learning

	EXPERIMENTAL RESULTS
	Datasets
	Implementation Details
	Depth Evaluation
	Generalization Performance
	Ablation Study

	CONCLUSION
	References

