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Abstract— This paper presents a novel approach for safe
control synthesis using the dual formulation of the navi-
gation problem. The main contribution of this paper is in
the analytical construction of density functions for almost
everywhere navigation with safety constraints. In contrast to
the existing approaches, where density functions are used for
the analysis of navigation problems, we use density functions
for the synthesis of safe controllers. We provide convergence
proof using the proposed density functions for navigation
with safety. Further, we use these density functions to de-
sign feedback controllers capable of navigating in cluttered
environments and high-dimensional configuration spaces. The
proposed analytical construction of density functions overcomes
the problem associated with navigation functions, which are
known to exist but challenging to construct, and potential
functions, which suffer from local minima. Application of the
developed framework is demonstrated on simple integrator
dynamics and fully actuated robotic systems. Our project page
with implementation is available at https://github.com/
clemson-dira/density_feedback_control

I. INTRODUCTION

Safe navigation of mission-critical systems is of utmost
importance in many modern autonomous applications. Au-
tonomous vehicles and industrial robots are all critical ap-
plications in which there exists a need for navigation that
adheres to safety constraints. Over the past decades, the
general approach to the navigation problem has consisted of
formulating compositions of the system that complies with
the safety certification of the original system. This tradition-
ally implies a hierarchical architecture that decomposes the
navigation problem into planning and control [1].

The planning problem involves defining a collision-free
trajectory in the feasible configuration space given an initial
and final configuration. These are typically implemented
through sample-based planners such as rapidly-exploring
random tree search (RRT) and probabilistic roadmaps (PRM)
[2], [3]. These sample-based methods are observed to be
probabilistically complete through iterative samples of lo-
cally safe and feasible paths. Asymptotically optimal vari-
ations of these planners have been developed in [4], where
the convergence rate for optimality is improved in [5], [6].

Designing controllers to track these trajectories from the
plan while satisfying dynamic and safety constraints is not
so simple. Traditional methods, such as inverse dynamics,
rely on the exact cancellation of the nonlinearities to track
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Fig. 1: Navigation framework using density where (a) defines
the navigation problem, (b) shows the density for navigation,
and (c) shows occupancy measure, which physically denotes
the duration of system trajectories occupying the set.

a resulting linear system through closed-loop control [7].
However, they do not guarantee safety in the presence
of unsafe regions. More recently, control barrier functions
(CBFs) have been introduced to provide safety certificates
for the controller [8]. However, CBFs only provide safety,
so augmentation of CBFs with control Lyapunov functions
(CLFs) is needed to guarantee convergence and safety [9].

This framework of hierarchical navigation has seen great
success in many robotic applications [10]; however, a natural
issue of hierarchical navigation is the evaluation of safety
certificates from the planning to the control level, which
increases in complexity for large-scale systems [11].

A natural proposal is to jointly solve the navigation
problem without the hierarchical structure. Artificial poten-
tial field based methods have attempted to solve the joint
problem by the sum of attractive and repulsive potentials
[12]. However, the existence of local minima is a well-
known issue [13], [14]. In [14], [15], a class of analytical
potential functions, known as navigation functions (NFs), are
introduced, which guarantees almost everywhere (a.e.) con-
vergence while adhering to safety constraints. This method
relies on a range of problem-specific tuning parameters to
guarantee a.e. convergence. Moreso, complex safety con-
straints arising from arbitrarily shaped obstacles are limited
by the possible mapping to a model sphere world. Recent
works have proposed using altered NF or conformal mapping
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to navigate complex unsafe sets [16]–[18]; however, these
methods are nontrivial and physically unintuitive.

The navigation problem can alternatively be formulated in
the dual space of density. In [19], a navigation measure was
introduced to provide a convex formulation for synthesizing
safe controllers. In the continuous-time setting, the density
function was used as a safety certificate for the analysis and
synthesis using the sum of squares optimization method [20].
Similarly, density-based approaches are also used for the
convergence analysis of existing navigation algorithms [21],
[22]. More recently, convex data-driven approaches based on
the linear transfer Perron-Frobenius and Koopman operators
are used for solving the optimal navigation problem with
safety constraints [23], [24]. In contrast to using the convex
dual formulation for navigation, we provide an analytical
construction of density functions for navigation. In particular,
the analytical construction of navigation density can be
viewed as the dual construction of the classical NFs from
[14]. However, unlike [14], the construction is not restricted
to navigation in the sphere world environment.

The main contribution of this paper is in providing an-
alytical construction of density functions used for solving
the safe navigation problem. The density function has a
physical interpretation, where the measure associated with
the density is a measure of occupancy of the system tra-
jectories in any set of the state space as shown in Figure
1. We exploit this occupancy-based physical interpretation
of the density function in the construction of the navigation
density functions. Unlike NFs, the density formulation can
represent arbitrary shapes of the obstacle sets. We prove that
the proposed density function can navigate almost all initial
conditions from the initial set to the target set while avoiding
the obstacle set. We show navigation results for simple
integrator dynamics in complex environments as well as
high-dimensional configuration spaces. Similarly, navigation
results for obstacle avoidance involving robotics systems
such as the two-link planar robotic arm manipulator are
presented.

The rest of the paper is organized as follows. Section
II discuss the preliminaries and the problem formulation.
Section III discusses the construction of density functions,
and Section IV discusses the properties of density functions
for the navigation problem. This is followed by application
to robotic systems in section V and conclusive remarks about
the results in section VI.

II. NOTATIONS AND PROBLEM STATEMENT

Notations: The following notations will be used in this
paper. Rn denotes the n dimensional Euclidean space, x∈Rn

denotes a vector of system states, u∈Rn is a vector of control
inputs. Let X ⊂ Rn be a bounded subset that denotes the
workspace for the robot. X0,XT ,Xuk ⊂ X, for k = 1, . . . ,L
denote the initial, target, and unsafe sets, respectively. With
no loss of generality, we will assume that the target set is
a single point set and located at the origin, i.e., XT = {0}.
Xu =∪L

k=1Xuk defines the unsafe set and Xs :=X\Xu defines
the safe set. We will denote by X1 := X\Bδ , where Bδ is

the δ neighborhood of the origin for arbitrary small δ . We
use C k(X) to denote the space of all k-times differentiable
functions of x. We use M (X) to denote the space of all
measures on X and m(·) to denote the Lebesgue measure.
1A(x) denotes the indicator function for set A⊂ X.

The formal statement of the navigation problem that we
solve in this paper is stated as follows.

Problem 1: (Almost everywhere navigation problem) The
objective of this problem is to design a smooth feedback con-
trol input u = k(x) to drive the trajectories of the dynamical
system

ẋ = u, (1)

from almost every initial condition (w.r.t. Lebesgue measure)
from the initial set X0 to the target set XT while avoiding
the unsafe set Xu.

Assumption 1: We assume that there exists a feedback
controller that solves the a.e. navigation problem as stated
above.

III. CONSTRUCTION OF DENSITY FUNCTION

The a.e. navigation problem, as stated in Problem 1, is
solved using the navigation density function. The construc-
tion of the navigation density is inspired by the work of
[19], [25], [26]. The navigation measure, as introduced in
[19], has a physical interpretation of occupancy, where the
measure of any set is equal to the occupancy of the system
trajectories in the set, as shown in Figure 1. Hence, zero
occupancy in a set implies system trajectories not occupying
that particular set. So by ensuring that the navigation measure
is zero on the obstacle set and maximum on the target set, it is
possible to induce dynamics whereby the system trajectories
will reach the desired target set while avoiding the obstacle
set. We exploit this occupancy-based interpretation in the
construction of analytical density functions.

We start with the construction of the unsafe set, where
the boundary of the unsafe set is described in terms of the
zero-level set of a function. Let hk(x) be a continuous scalar-
valued function for k = 1, . . . ,L such that the set {x ∈ X :
hk(x) ≤ 0}, is connected with only one component. Thus,
the unsafe set Xuk is defined using the function hk(x) as
follows

Xuk := {x ∈ X : hk(x)≤ 0}. (2)

Next, we define a transition region Xsk , which encloses
the unsafe set Xuk . Let sk(x) be a continuous scalar-valued
function for k = 1, . . . ,L such that the set {x ∈ X : sk(x) =
0} defines the boundary of this transition region. Then the
transition region can be defined by the following set

Xsk := {x ∈ X : sk(x)≤ 0}\Xuk . (3)

The proposed navigation density function is assumed to
be of the form

ρ(x) = ∏
L
k=1 Ψk(x)
V (x)α

. (4)



Here, the function V (x) is the distance function that measures
the distance from state x to the target set, (i.e., the origin),
and α is a positive scalar. In this paper, we assume V (x) to be
of the form V (x) = ∥x∥2. Additionally, Ψk(x) is a smooth
C ∞ function that captures the geometry of the unsafe set
Xuk and can be constructed using the following sequence of
functions. We first define an elementary C ∞ function f as
follows

f (τ) =

{
exp(−1

τ
), τ > 0

0, τ ≤ 0
, (5)

where τ ∈R [27]. Next, we construct a smooth version of a
step function f̄ from f as follows

f̄ (τ) =
f (τ)

f (τ)+ f (1− τ)
. (6)

Here, f̄ serves as the elementary function for representing
zero and nonzero occupation through density. Furthermore,
the form of the elementary function, f̄ , is chosen to ensure
that the gradient of the density function is well-defined.
To incorporate more general geometric information about
the environment, we define a change of variables such that
φk(x) = f̄

(
hk(x)

hk(x)−sk(x)

)
. The resulting function Φk(x) take the

following form,

Φk(x) =


0, x ∈ Xuk

φk(x), x ∈ Xsk

1, otherwise.
(7)

Finally, the function Ψk(x) is defined as

Ψk(x) = Φk(x)+θ , (8)

where θ > 0 is some positive parameter. The parameters θ

and α are introduced in the construction of the navigation
density. The physical significance of these parameters and
the assumption made on these parameters and functions are
stated in the following remark.

Remark 1: • The distance function V (x) can be modi-
fied to adapt to the geometry of the underlying config-
uration space. For a Euclidean space with x ∈ Rn, we
pick V (x) = ∥x∥2.

• The parameter α is used to control the sharpness of the
distance function and is used in the proof of the main
convergence results.

• The function Ψk(x) is a θ shifted version of inverse
bump function Φk(x) and hence strictly positive i.e.,
Ψk(x)≥ θ > 0 for k = 1, . . . ,L.

• Ψk(x) makes a smooth transition from θ to 1+θ in the
transition region Xsk .

• The transition region, Xsk , acts as a sensing region for
system trajectories where they start to react to the unsafe
set. We refer to the transition region as the sensing
region for the rest of this paper.

• hk(x) = 0 defines the boundary of the unsafe set and
sk(x) = 0 defines the boundary of the sensing region.
Refer to Figure 2 for an illustrative example. In the
simplest case, the function sk(x) can be chosen to

Fig. 2: Ψ(x) for (a) Xu as a circle (h(x) = ||x||2− r2
1 ≤ 0)

and transition region boundary as an ellipse (s(x) = ||ax||2−
r2

2 = 0 where r2 > r1 and a is a scaling vector), (b) Xu as
a rounded square (h(x) = ||x||4 − r4

1 ≤ 0) and a transition
region (s(x) = a2x2

1 + b2x2
2cx1 − r2

2 where r2 > r1; a,b,c are
parameters) defined using equation (4), (c-d) 3D view of (a)
and (b) respectively.

be synonymous to hk(x), such that hk(x)− sk(x) = σ

(where σ > 0 is a constant) uniformly scales the unsafe
set to form a sensing region.

We assume explicit bounds on the functions Ψk, V , and
their derivatives which follow from the construction of the
density function in equation (4). It is important to emphasize
that it is not necessary to estimate these bounds, but the
existence of these bounds is used as part of the proof of the
main results of this paper.

Assumption 2:
1) We assume that the distance between the initial set, the

target set, and the unsafe sets are all bounded away
from zero by some positive constant, say ζ .

2) For x ∈ Xuk , let

V k
min = min

x∈Xuk

V (x)> 0. (9)

Since the distance between the unsafe set and the target
set is bounded away from zero, the above quantity is
well-defined and greater than zero.

3) Furthermore, m(Xuk), i.e., the Lebesgue measure of the
unsafe set, is assumed to be finite, with θ satisfying
the following inequality for any given ε > 0,

θ ≤
V k

min
m(Xuk)

ε, k = 1, . . . ,L. (10)

cV ≤V (x)≤ c̄V , cVx
≤
∣∣∣∣ ∂V
∂x j

∣∣∣∣≤ c̄Vx ,

∣∣∣∣∣∂ 2V
∂x2

j

∣∣∣∣∣≤ c̄Vx2



∣∣∣∣∂Ψ

∂x j

∣∣∣∣≤ c̄Ψx ,

∣∣∣∣∣∂ 2Ψ

∂x2
j

∣∣∣∣∣≤ c̄
Ψ2

x
, j = 1, . . . ,n.

Further, by construction, both the first and second
derivatives of Ψ w.r.t. x j are zero outside the transition
region

4) Outside the transition region and in X1, we assume

∂ 2V
∂x2

j
≤ d̄V 2

x
, V ≤ d̄V∥x∥2,

∣∣∣∣ ∂V
∂x j

∣∣∣∣≥ dVx
∥x∥ j = 1, . . . ,n.

We have used lower bar, c, d, and upper bar, c̄, d̄,
notations to help define the lower and upper positive
bounds on functions. The subscripts for c and d signify
the corresponding functions.

IV. ALMOST EVERYWHERE NAVIGATION USING
DENSITY FUNCTIONS

Given the construction of ρ(x) in (4), we design a con-
troller for navigation as the positive gradient of the density
function ρ(x), i.e.,

ẋ = k(x) = ∇ρ(x)

=

(
− α

V α+1
∂V
∂x

L

∏
k=1

Ψk(x)+
1

V α

∂

∂x

L

∏
k=1

Ψk(x)

)⊤
. (11)

Remark 2: We make following modification to (11) to
ensure that the vector field is well-defined and the origin is
locally asymptotically stable in Bδ . ẋ =

[
1− f̄ (τ)

]
∇ρ(x)−

f̄ (τ)x where, f̄ is as defined in (6). With this modification,
we will continue to work with (11) with the assumption that
the origin is locally asymptotically stable in Bδ for (11).

The main result of the paper is given in the following
theorem.

Theorem 1: Under Assumptions 1 and 2, the dynamical
system (11) will solve the a.e. navigation problem as stated
in Problem 1.

Proof of this main theorem is differed to the Appendix.
The feedback controller design for the a.e. navigation prob-
lem is illustrated in pseudo-code in Algorithm 1.

Algorithm 1 Density-based Navigation Algorithm

Input: X0,Xu,XT
Ψ(x)← 1
Define V (x) according to configuration
for Xuk in Xu do

Define hk(x) and sk(x) (see Remark 1 and 3)
Form Ψk(x) from hk(x) and sk(x) (see equation 7)
Ψ(x) ← Ψ(x)×Ψk(x)

end for
ρ(x) = Ψ(x)

V (x)α

u = ∇ρ(x)

The rest of the section showcases the navigation results
using the controller designed from the analytical density
function. We first show the characteristics of the proposed
controller, which validates the a.e. navigation properties.
Then, we extend our feedback controller to a more complex

environment. Lastly, a comparison of our algorithm to NFs
is presented.

A. Characteristics of Density Functions

In this example, we demonstrate the a.e. navigation prop-
erties of the proposed controller. The navigation problem is
defined with the target set at XT = (4,−3) and the unsafe
set Xu, which is constructed using a circular inverse bump
function with h(x) = ||x||2−r2

1 and s(x) = ||x||2−r2
2 with r1 = 2

and r2 = 3. Hence, Xsk for the inverse bump function is
defined on the domain 2 < ∥x∥< 3.

Figure 3a illustrates the a.e convergence of the proposed
controller with initial conditions set defined by a line at
the top left of the environment boundary. The blue contour
lines represent the level sets of the density function. For
this example, all the initial conditions starting on the set
{X0 ⊂X : m(X0) = 0}, which is polar opposite of the target
set, cannot converge. This set of initial conditions constitutes
a measure zero set. Furthermore, these initial conditions are
attracted to a saddle point, implying the existence of local
maxima (shown in Figure 3b). Note that the existence of a
saddle point will imply the existence of local maxima. Any
other trajectory starting from an initial condition perturbed
from the zero-measure set converges to the target set XT
while avoiding the obstacle set Xu. Furthermore, we look
at the characteristics of initial conditions starting outside
the sensing region, defined as a state x such that s(x) ≥ 0
(trajectory A), and within the sensing region, defined as a
state x such that 0 < h(x) < s(x) (trajectory B), shown in
Figure 3c. The gradients of the density function ρ(x) are such
that trajectory A starts to react as it enters the sensing region
while trajectory B is repelled outward towards the boundary
of the sensing region before converging to the target set (see
Figure 3d).

B. Complex environment

One of the main features of our proposed navigation
density is that it can incorporate complex shapes of the
obstacle set, which is captured in terms of the unsafe set
by some appropriate function hk(x). The unsafe set Xu ∈ R2

in Figure 4a is constructed using an implicit function that
geometrically represents a circle, an ellipse, an oval, and a
bowtie. We show that the initial conditions starting along
the boundary converge to the goal at the center while safely
avoiding obstacles. The proposed controller can also satisfy
a.e navigation in complex maze-like environments. Figure
4b shows a trajectory finding a tight feasible region between
two obstacles while navigating to the target set. Furthermore,
this can be easily extended to navigation problems in higher
dimensions. Figure 4c shows all trajectories starting from a
plane converging to the target set while avoiding obstacles
represented as 3D spheres. Figure 4d shows navigation with
unsafe sets composed of two tori, an unbounded cylinder, and
a sphere. We note that unlike [16], [17], the construction of
the density function naturally admits any complex shapes.



Fig. 3: (a) Trajectories converge to the target set (green)
while avoiding the unsafe set (gray) with a.e. convergence,
(b) Initial conditions along the zero-measure set (black)
converge to a saddle point (purple), (c) Trajectories starting
at A (s(x) > 0) and B (in Xsk ) converge to the target set,
(d) Trajectories starting from A and B follow the same path
near the boundary of s(x).

Fig. 4: (a) Trajectories converge to the target set (green)
while avoiding arbitrary obstacles (gray), (b) Trajectory
finding a narrow feasible region around obstacles, (c) Nav-
igation in a spherical grid, (d) Navigation through two tori,
unbounded cylinder, and sphere.

Fig. 5: Comparison of density functions and NFs for random
initial conditions. The sensing region for the density function
is defined by s(x) = a2x2

1 + b2x2
2cx1 − r2 (r, a,b,c are pa-

rameters). For (a) r = 2.5, trajectories don’t converge, while
setting (c) r = 4.5 leads to all trajectories converging. NFs
with their corresponding tuning parameter for convergence
(b) κ = 1 and (d) κ = 10 lead to trajectories not converging.

C. Comparison to Navigation Functions

In this section, we compare the a.e. convergence prop-
erty of artificial potential field NF to the proposed density
functions in a complex environment as shown in Figure 5.
More specifically, we compare the tuning of s(x) for a.e.
convergence in the density function formulation shown in
equation (4) to the tuning of κ ∈ R for a.e. convergence in
NFs proposed in [14, Ch. 3, p. 36],

ψk(x) =
||x−xg||2

||x−xg||2 +β (x)1/κ
, (12)

where xg is the desired goal location, β (x) is an obstacle
function and κ is a tuning parameter.

Although a domain is not necessary in the density formula-
tion, NFs do require a radially bounded sphere world. Hence,
we define an appropriate bounded sphere world of radius 25.
The authors note that NFs do not make any claims about
tuning κ for a.e. convergence other than the sphere world
and its extensions [14], [17], but for the sake of comparison,
we look at an environment with a C-shaped unsafe set. We
then look at initial conditions that lie inside the C-shaped
unsafe set with the target set defined outside the cavity of
the unsafe set.

Figures 5a and 5b show that the trajectories do not con-
verge to the goal for all random initial conditions for small
values in tuning parameter in either the density function
formulation or the artificial potential field NF formulation.



This is expected in NF as only large κ in a sphere world
guarantees a.e. convergence. Likewise, the density formula-
tion sees the same results. However, tuning s(x) such that the
density function formulation has a.e. convergence property
is intuitive, as stated below in Remark 3. This is shown in
Figure 5c, where tuning s(x) to be larger than the C-shaped
unsafe sets results in all system trajectories converging to the
target set. Note, no explicit mapping to a simplistic unsafe set
(e.g., circle) is required, where the same cannot be stated for
NFs (even with high κ), which does not give a.e. convergence
results for complex unsafe sets. This can be seen in Figure
5d, where some trajectories exit the unsafe set and converge
to the goal (by taking a large curvature path) while others
get trapped inside the cavity of the unsafe set.

Remark 3: The tuning parameter in the design of the
navigation density functions are α , and sk(x). The tuning
of α depends on the rate of convergence of the trajectories.
Although a large value of α is required for a.e. navigation
(as shown in Appendix), in practice, even small values of α

(between 1 to 10) have shown to work. The tuning of sk(x) is
physically intuitive, as it signifies the sensing region. Hence,
a sensing region that encompasses the unsafe set with a
sufficiently curved convex set has worked in the simulations.

V. APPLICATION TO ROBOTIC SYSTEMS

We consider cases which are highly important in appli-
cation, with specifics to robotic systems. These cases, con-
strained control, stochastic settings, and fully actuated multi-
body systems are considered in the subsequent sections.

A. Constrained Control w/ Density Function

The case of controlling the magnitude of the controller
defined in (11) is highly crucial in practical systems due to
actuation limits. Although, the magnitude of the controller
can be implicitly controlled through the tuning of α , as
change in α changes the sharpness of V (x), hence change in
gradient of density (i.e. change in magnitude of control), we
consider explicitly defining control constraints. In particular,
we consider a system with constraints in the following form

ẋ = u = ∇ρ(x), u ∈ [−umax,umax], (13)

where umax is the bound on control. Without formality, we
constrain the control when ||u||∞ > umax by normalizing the
control

ū =
u
||u||∞

umax, (14)

where ū is the constrained control.

B. Performance of Density Function w/ Noise

We consider the performance of our controller in a
stochastic setting where noise is entered through the control
input

ẋ = u+w u ∈ [−umax,umax], (15)

where w ∈N (µ,Σ) is the gaussian white noise with mean
µ = 0 and covariance Σ. Figure 7 showcases the navigation
problem with control noise for varying levels of covariance.

Fig. 6: Constrained control w/ navigation density

Fig. 7: Density function w/ gaussian white noise of µ = 0
and (a) Σ = 10−3× I2 (b) Σ = 5×10−3× I2

We see that the feedback controller is capable of invariance
while converging towards the goal with noise. Although the
invariance of our control law is not guaranteed, we see that
up to a certain bound on the noise, the control performance
is robust.

C. Fully Actuated Robotic System

We also extend the density function presented in Section
III to a general class of fully actuated robotic systems. For
a robot with n joints and n rigid links, the system’s dynam-
ics can be expressed using the Euler-Lagrange equations.
Consider an unconstrained system where M(q) is the inertia
matrix and H(q, q̇) represents the Coriolis and gravity effects
on the system, q ∈ S1×S1. Then the corresponding system
is represented as follows

M(q)q̈+H(q, q̇) = u. (16)

We then take a similar approach outlined in [15] in which
there exists an equivalent ”planning” system defined by
q̇ = ∇ρ(q) and a control law given by u = ∇ρ(q)+d(q, q̇)
(d(q, q̇) is a dissipative term and q̇⊤d(q, q̇)< 0), where the
system defined in (16) tracks the planning system asymptot-
ically [15]. For a general robotic system such as the system
defined in equation (16), d(q, q̇) can be selected such that
it cancels out the nonlinearities of the system similar to the
inverse dynamics approach. Therefore, we define a density-
based inverse dynamics controller given by

uρ = M(q)q̈d +H(q, q̇)+M(q)

(
Kp∇ρ(e)−Kvė

)
, (17)



Fig. 8: (a) Robot (red) converges to the goal (π,0) starting
from equilibrium (0,0) while avoiding obstacles (gray). (b)
state trajectories of the robot and (c) control inputs for
executing the swing-up maneuver.

where e := q−qd, ė := q̇− q̇d, qd is the desired reference
trajectory to follow, and Kp and Kv are positive definite
gain matrices. Figure 8a shows a fully actuated two-link
planar robotic arm executing a swing-up maneuver with
Kp = diag([1,1]), Kv = diag([10,10]) and V (q) = (1−
cos(q1)(1− cos(q2)). The mass and length of each link
are set to unity. The task space obstacles (circular with a
radius of 0.2) are mapped to joint space and approximated
using inverse bump functions. The reference trajectories
are obtained in joint space based on the planning system
q̇ = ∇ρ(q). The corresponding state and control trajectories
are shown in Figures 8b and 8c, respectively. It is seen that
the density-based inverse dynamics controller drives the two-
link manipulator to the upright position while avoiding the
obstacle set.

VI. CONCLUSIONS

This work provides an analytical construction for the
navigation density. Moreso, we prove that the navigation
density solves the almost everywhere navigation problem.
The proposed navigation density can be viewed as dual to
the popular navigation function and is derived based on the
occupancy-based interpretation of the density function. The
navigation density has a few advantages compared to naviga-
tion functions. Unlike navigation functions, which are hard
to construct, navigation density can be easily constructed.
Furthermore, the density function formulation can incorpo-
rate arbitrary shapes of the unsafe set. We provide simulation
results for navigation using density function in complex and
high dimensional environments as demonstrated. Lastly, we
also demonstrate the application of the density function for
control on a robotic system with safety constraints.

VII. APPENDIX

The proof of Theorem 1 relies on the following Lemma.
Lemma 1: Consider the navigation density function as

given in equation (4), then under Assumption 2, we have

∇ · (k(x)ρ(x))≥ 0, a.e. x ∈ X, (18)
∇ · (k(x)ρ(x))≥ ξ > 0 for x ∈ X0, (19)

where k(x) = ∇ρ(x) is the feedback control input as given
in equation (11).
Proof: We have

∇ · (k(x)ρ(x)) = ρ(x)∇ ·k(x)+ ∂ρ

∂x
∂ρ

∂x

⊤
. (20)

Since ρ(x)> 0 and ∂ρ

∂x
∂ρ

∂x
⊤
≥ 0, the proof will follow if we

can show that ∇ ·k(x)≥ 0. We have

∇ ·k(x) =
n

∑
j=1

∂ 2ρ

∂x2
j
. (21)

Letting Ψ(x) = ∏
L
k=1 Ψk(x), we obtain

∂ 2ρ

∂x2
j
=

∂

∂x j

(
− α

V α+1
∂V
∂x j

Ψ(x)+
1

V α

∂Ψ

∂x j

)
=

α

V α

(
(α +1)

V 2

∣∣∣∣ ∂V
∂x j

∣∣∣∣2− 1
V

∂ 2V
∂x2

j

)
Ψ(x)

+
α

V α

(
− 2

V
∂V
∂x j

∂Ψ

∂x j
+

1
α

∂Ψ2

∂x2
j

)
. (22)

It is important to note that the last two terms in the above
expression are non-zero only in the transition region Xsk .
Outside this transition region ∂Ψ

∂x j
= 0 and ∂ 2Ψ

∂x2
j
= 0. To show

that the above quantity is positive outside the transition
region in X1, we use the bounds from Assumption 2. We
have

(α +1)
V

∣∣∣∣ ∂V
∂x j

∣∣∣∣2− ∂ 2V
∂x2

j
≥ (α +1)d̄−1

V d2
Vx
− d̄V 2

x

Thus, by choosing α sufficiently large, the above quantity
can be made positive.

We next show that equation (22) is non-negative in the
transition region. For this, we make use of the following
facts. First, Ψk(x)≥ θ > 0 for k = 1, . . . ,L and hence Ψ(x)
is bounded away from zero. Second, from the construction
of Ψ(x) and V (x) functions there exists uniform bounds on
∂Ψk
∂x j

, ∂ 2Ψk
∂x2

j
, ∂V

∂x j
and ∂ 2V

∂x2
j
. Third, using Assumption 2, we know

that the distance between the unsafe set and the target set is
bounded away from zero by a positive constant ζ and hence∣∣∣ ∂V

∂x j

∣∣∣2 is bounded away from zero. Hence, the following

bounds can be obtained for the ∂ 2ρ

∂x2
j

term

(α +1)
V 2

∣∣∣∣ ∂V
∂x j

∣∣∣∣2 Ψ(x)≥
(
(α +1)c̄−2

V c2
Vx

)
θ ,

1
α

∂ 2Ψ

∂x2
j
≥−

c̄
Ψ2

x

α
,

− 1
V

∂ 2V
∂x2

j
Ψ(x)≥−c−1

V c̄Vx2 θ , − 2
V

∂V
∂x j

∂Ψ

∂x j
≥−2c−1

V c̄Vx c̄Ψx .

Therefore, we have following lower bound for ∂ 2ρ

∂x2
j

∂ 2ρ

∂x2
j
≥ α

V α

((
(α +1)c̄−2

V c2
Vx
−c−1

V c̄Vx2

)
θ

)
+

α

V α

(
−2c−1

V c̄Vx c̄Ψx −
c̄

Ψ2
x

α

)
.



Hence, by choosing α sufficiently large, of order 1
θ

, we can
make the term inside the bracket positive.

To show that equation (19) is satisfied, we again make
use of Assumption 2 and the fact that Ψ(x) = 1, ∂Ψ

∂x j
= 0,

and ∂ 2Ψ

∂x2
j
= 0 for x ∈ X0 and j = 1, . . . ,n. Further,

∣∣∣ ∂V
∂x j

∣∣∣2 is

bounded away from zero. Hence for, x ∈ X0, we obtain

∇ · (k(x)ρ(x)) =∂ρ

∂x
∂ρ

∂x

⊤
+

α(α +1)
V α+2

∣∣∣∣ ∂V
∂x j

∣∣∣∣2
− 1

V α+1
∂ 2V
∂x2

j
≥ ξ > 0.

for some ξ > 0.
Proof of Theorem 1: Using the results of Lemma 1, we

know that the density ρ satisfies

∇ · (k(x)ρ(x)) = g(x) (23)

for some g(x)≥ 0 such that g(x)≥ ξ > 0 for x ∈ X0.
Since ρ(x) satisfies the linear partial differential equation

(23), it follows using the method of characteristics that the
solution ρ(x) can be written in terms of the solution st(x),
of the system ẋ = k(x) as follows [28]

ρ(x) =
Ψ(x)

V α(x)
=
∫

∞

0
g(s−t(x))

∣∣∣∣∂ s−t(x)
∂x

∣∣∣∣dt, (24)

where | · | is the determinant. The proof follows by substi-
tuting the integral formula for ρ(x) from (24) in (23) and
using the fact that

lim
t→∞

g(s−t(x))
∣∣∣∣∂ s−t(x)

∂x

∣∣∣∣= 0. (25)

The limit in (25) goes to zero as ρ(x) is bounded for all x ∈
X1 and using Barbalat’s Lemma. The integrant in (24) defines
a semi-group of linear Perron-Frobenius (P-F) operator, Pt ,
acting on function g(x) and hence can be written compactly
as

[Ptg](x) = g(s−t(x))
∣∣∣∣∂ s−t(x)

∂x

∣∣∣∣ . (26)

Using (26), (24) can be written as

ρ(x) =
∫

∞

0
[Ptg](x)dt. (27)

Furthermore, (25) can be written as

lim
t→∞

[Ptg](x) = 0 =⇒ lim
t→∞

[Pt1X0 ](x) = 0,

where 1X0 is the indicator function for set X0. This impli-
cation follows because g(x)≥ ξ > 0 for all x ∈X0 and from
dominated convergence theorem. For any set A ⊆ X1, we
have ∫

A
[Pt1X0 ](x)dx =

∫
X1

[Pt1X0 ](x)1A(x)dx

=
∫

X1

1X0(x)1A(st(x))dx. (28)

The above follows by using the definition of Pt in (26) and
change of variables in the integration, i.e., y = s−t(x) and

dy= | ∂ s−t (x)
∂x |dx and after relabeling. Note that the right-hand

side of (28) is nothing but∫
A
[Pt1X0 ](x)dx = m{x ∈ X0 : st(x) ∈ A}.

From Lebesgue dominated convergence theorem

0 =
∫

A
lim
t→∞

[Pt1X0 ](x)dx

=
∫

X1

1X0(x) lim
t→∞

1A(st(x))dx = m{x ∈ X0 : st(x) ∈ A}.

Since the above is true for any measurable and positive
Lebesgue measure set A⊆ X1 := X\Bδ for arbitrary small
δ , we obtain

m{x ∈ X0 : lim
t→∞

st(x) ̸= 0}= 0. (29)

We next show that the unsafe set Xuk will be avoided
by trajectories st(x) starting from almost all w.r.t. Lebesgue
measure initial condition x ∈ X0. We have for x ∈ Xuk

ρ(x) =
Ψk(x)

V α
=

θ

V α
. (30)

Following Assumption 2 (equation (9)), we have

ρ(x) =
θ

V α
≤ θ

V k
min

. (31)

Using the above bound on ρ(x), we obtain

G :=
∫

Xuk

∫
∞

0
[Pt1X0 ](x)dtdx =

∫
Xuk

ρ(x)dx≤ θ

V k
min

m(Xuk),

where m(·) is the Lebesgue measure. Utilizing that dy =

| ∂ s−t (x)
∂x |dx, which is described through the definition of Pt

and performing a change of variable y = s−t(x), we can use
the bounds on ρ(x) in (31) for x ∈ Xuk to obtain

G =
∫

X1

1X0(y)
∫

∞

0
1Xuk

(st(y))dtdy≤ θ

V k
min

m(Xuk).

The time integral on the left-hand side is the time spent
by system trajectories starting from the initial set X0 in the
unsafe set Xuk . Let this time be denoted by T (y). Hence, we
obtain ∫

X1

T (y)1X0(y)dy≤ θ

V k
min

m(Xuk).

Following Assumption 2 (equation (10)), we have

θ ≤ ε
V k

min
m(Xuk)

=⇒
∫

X0

T (y)dy≤ ε,

for any given ε > 0.
Choose some η < 1, then using Chebyshev’s inequality

and the fact that X0 ⊂ X1, we have

m{x ∈ X0 : T (y)≥ ε
η} ≤ ε

−η

∫
X0

T (y)dy≤ ε
−η+1.

Since the above is true for arbitrary small ε > 0, we have

m{x ∈ X0 : T (y) =
∫

∞

0
1Xuk

(st(x))dt > 0}= 0. (32)



Now we make use of the continuity property of the flow
st(x) w.r.t. time to show that 1Xuk

(st(x)) = 0 for all t ≥ 0.
Assume not, then there exists γ and t̄ such that 1Xuk

(st̄(x))≥
γ > 0. Then from the continuity of solution st(x) w.r.t. time,
we know that there exists ∆ > 0 such that 1Xuk

(st(x)) > 0
for t ∈ [t̄, t̄ +∆]. This violates (32).
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