
1

This paper has been accepted for publication by IEEE Robotics and Automation Letters

SMART: Self-Morphing Adaptive Replanning Tree
Zongyuan Shen James P. Wilson Shalabh Gupta⋆ Ryan Harvey

Abstract—The paper presents an algorithm, called Self-
Morphing Adaptive Replanning Tree (SMART), that facilitates
fast replanning in dynamic environments. SMART performs risk-
based tree-pruning if the current path is obstructed by nearby
moving obstacle(s), resulting in multiple disjoint subtrees. Then,
for speedy recovery, it exploits these subtrees and performs
informed tree-repair at hot-spots that lie at the intersection of
subtrees to find a new path. The performance of SMART is
comparatively evaluated with eight existing algorithms through
extensive simulations. Two scenarios are considered with: 1)
dynamic obstacles and 2) both static and dynamic obstacles.
The results show that SMART yields significant improvements in
replanning time, success rate and travel time. Finally, the perfor-
mance of SMART is validated by a real laboratory experiment.

Index Terms—Informed replanning, Dynamic environment,
Motion and Path Planning, Autonomous Vehicle Navigation.

I. INTRODUCTION

TYPICAL path planning problems in a static environ-
ment aim to optimize the path between the start and

goal states by minimizing a user-specified cost-function (e.g.,
travel time) [1]. However, many real world applications (e.g.,
airports, factories, malls, offices, hospitals and homes) con-
sist of moving obstacles (e.g., humans, cobots, carts and
wheelchairs). It is envisioned that these applications will
be increasingly witnessing the role of cobots in supporting
humans for various tasks. Fig. 1 shows a factory scenario,
where cobots support the basic operations such as supplying
raw materials and tools, disposing off scrap, and floor clean-
ing [2]. It is desired that these cobots autonomously navigate in
dynamic environments while replanning in real-time as needed
to achieve: 1) high success rates and 2) low travel times.

Replanning strategies are characterized as active or reactive.
The active strategies predict the future trajectories of mov-
ing obstacles [3] to replan the cobot’s path; however, their
performance degrades in crowded environments where these
trajectories are difficult to compute, associate and predict [4].
Therefore, the reactive strategies replan the cobot’s path based
on the current information. In this regard, this paper presents
an algorithm, called Self-Morphing Adaptive Replanning Tree
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Fig. 1. Real-time adaptive replanning in a dynamic factory scenario.

(SMART), that facilitates real-time reactive replanning in
dynamic environments for uninterrupted navigation.

A. Summary of the SMART Algorithm

To initialize, SMART constructs a search-tree using the
RRT* algorithm [5] considering only the static obstacles and
finds the initial path. Subsequently, while navigating, the cobot
constantly validates its current path for obstructions by nearby
dynamic obstacles. If the path is infeasible, SMART performs
quick informed replanning that consists of two-steps: 1) tree-
pruning and 2) tree-repair. In the tree-pruning step, all risky
nodes near the cobot are pruned. This breaks the current
tree and forms (possibly) multiple disjoint subtrees. Next,
the informed tree-repair step searches for hot-spots that lie
at the intersection of different subtrees and provide avenues
for real-time tree-repair. Then, the utilities of these hot-spots
are computed using the shortest-path heuristics. Finally, these
hot-spots are incrementally selected according to their utility
for merging disjoint subtrees until a new path is found.

B. Related Work

This section presents a brief literature review of the reactive
replanning methods in dynamic environments.

1) Tree-based Methods: Several tree-based replanning
methods exist based on different tree pruning and repair
strategies. Extended RRT (ERRT) [6] removes the entire tree
when the current path is obstructed and grows a new tree by
biasing samples to the previous path. Dynamic RRT (DRRT)
[7] prunes all infeasible nodes and their successors and re-
grows the goal-rooted tree biased towards the trimmed area.
Multipartite RRT (MPRRT) [8] maintains multiple subtrees
resulting from node pruning, then reroots the main tree at
the cobot’s position and reconnects the disjoint tree roots to
the main tree by forest biasing. RRTX [9] utilizes a graph to
explore the area. When the obstacle information changes, it
remodels the search-graph by rewiring cascade and repairs a
shortest-path-to-goal subtree to find a new path. Horizon-based
Lazy RRT* (HLRRT*) [10] checks the path feasibility within a
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Table I: Comparison of key features of SMART with other tree-based reactive replanning algorithms.

SMART ERRT(’02) [6] DRRT(’06) [7] MPRRT(’07) [8] RRTX(’16) [9] HLRRT*(’19) [10] EBGRRT(’20) [11] MODRRT*(’21) [12]

Main Tree
Root Goal Cobot position Goal Cobot position Goal Cobot position Cobot position Goal

Pruning
Strategy

Prunes risky nodes
in LRZ. Adds back
after replanning

Prunes the
entire tree

Prunes all risky
nodes and their
successors

Prunes all risky
nodes

Assigns infinite
cost to risky
nodes

Prunes all risky
nodes and their
successors

Prunes risky path
nodes and non-
path successors

Prunes all risky
nodes

Post-pruning
Structure Multiple subtrees None Single subtree Multiple subtrees Graph Single subtree Two subtrees Multiple subtrees

Replanning
Strategy

Reconnects disjoint
subtrees at hot-
spots in an
informed manner

Grows a new
tree by sample
biasing

Regrows remaining
tree by sample
biasing

Regrows the main
tree by sample
biasing

Graph rewiring
cascade and repairs
shortest-path-to-
goal subtree

Regrows remaining
tree by sample
biasing and lazy
collision checking

Regrows the main
tree towards goal
tree by sample
biasing

Reconnects subtree
roots to main tree
by feasible
straight lines

Sampling
Strategy

Exploits previous
structure; standard
sampler if necessary

Waypoint bias,
goal bias and
standard sampler

Trimmed-area bias,
goal bias and
standard sampler

Forest bias,
goal bias and
standard sampler

Standard
sampler

GMM-based bias,
goal bias and
standard sampler

Waypoint bias,
goal bias and
standard sampler

None

user-defined time-horizon, and prunes all infeasible nodes and
their successors resulting in a single tree, then regrows this tree
by biasing samples using a Gaussian mixture model (GMM).
Efficient Bias-goal Factor RRT (EBGRRT) [11] prunes the
infeasible path nodes and their non-path successors resulting in
a main tree rooted at the cobot’s position and a goal tree, then
it grows the main tree towards the goal tree. Multi-objective
Dynamic RRT* (MODRRT*) [12] connects multiple disjoint
tree roots to the goal-rooted tree using feasible straight lines.

There are several differences between SMART and the
aforementioned algorithms. First, most algorithms perform
node feasibility checking around all detected dynamic obsta-
cles, except HLRRT* which validates the path in a local user-
defined horizon. SMART not only restricts path validation but
also tree-pruning to the cobot’s neighborhood. Second, some
of the above algorithms grow a single (ERRT, DRRT, and
HLRRT*) or a double (EBGRRT) tree-structure after pruning,
resulting in repeated exploration of the already-explored area.
In contrast, SMART leverages on the maximal tree structure
with multiple disjoint subtrees which are incrementally merged
during replanning. Third, with the exception of MODRRT*,
all above algorithms apply standard sampler for replanning,
which could lead to wasteful and slow tree growth. In contrast,
SMART performs informed tree-repair at hot-spots. Table I
shows a comparison of the key features of SMART and other
tree-based reactive replanning algorithms.

2) Probabilistic Roadmap-based Methods: The main idea
is to construct a road map assuming an obstacle-free space
and then update it when the obstacle information is available
[13]. Both tree-based and probabilistic roadmap based methods
have the same time complexity of the processing phase, but the
tree-based methods have lower complexity of the query phase,
thus making them more suitable for dynamic environments.

3) Search-based Methods: D* Lite [14] and Lifelong plan-
ning A* [15] repair an A*-like solution on an underlying
graph when the edge costs change given the updated obstacle
information. In contrast, SMART finds the hot-spots for fast
tree-repair and allows for random sampling if necessary.

4) Other Methods: Some optimization-based methods were
proposed such as covariant Hamiltonian optimization for mo-
tion planning (CHOMP) [16], which use functional gradient
techniques to improve the quality of an initial path. Some
papers proposed the idea of an escape trajectory as a con-

tingency plan in danger situations [17], [18]. A concept of
inevitable collision state was proposed in [19], where a future
collision cannot be avoided. In contrast, SMART identifies
critical regions where there is a collision risk and deletes the
nodes within. Moreover, velocity obstacle based methods [20]
and reinforcement learning based methods [21], [22] have also
been proposed for incremental planning.

C. Contributions

The paper makes the following contributions:
• Development of the SMART algorithm based on fast

informed-replanning for real-time dynamic environments.
• Comprehensive comparison to existing algorithms.
• Validation using simulation and experimental tests.

D. Organization

The remainder of this paper is organized as follows. Sec-
tion II presents the details of SMART algorithm and Section III
provides the algorithm analysis. Section IV shows the simu-
lation and experimental results. Finally, Section V concludes
the paper with recommendations for future work.

II. SMART ALGORITHM

Let X ⊂ R2 be a region populated by both static and
dynamic obstacles. Let XN ⊂ X be the configuration space
free of static obstacles. Let O = {Oi : i = 1, 2, ...m} be the
set of m dynamic circular obstacles, where ri ∈ R+ is the
radius of obstacle Oi ∈ O, and xi(t) ∈ XN and vi(t) ∈ R+

denote its position and speed at time t ∈ R+, respectively. Let
R be a circular cobot of radius rR ∈ R+, where xR(t) ∈ XN

and vR(t) ∈ R+ denote its position and speed at time t,
respectively. Let (xs, xg) denote the start and goal positions.

A. Initialization

First, a tiling is constructed on the space X as defined below.

Definition II.1 (Tiling). A set C = {cj ⊂ R2 : j = 1, . . . |C|},
is a tiling of X , if its elements, called tiles (or cells), have
mutually exclusive interiors and cover X , i.e.,

• coj ∩ coj′ = ∅,∀j, j′ ∈ {1, . . . |C|}, j ̸= j′

• X ⊆
⋃|C|

j=1 cj ,
where coj denotes the interior of cell cj ∈ C.
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Note: The tiling is used only for searching hot-spots (Sec-
tion II-C). The planning and navigation happens in XN .

SMART is initialized by constructing a RRT* [5] tree T 0 =
(N 0, E0) rooted at the goal xg , where (N 0, E0) denote the sets
of nodes and edges. It is recommended that the tree is created
such that each cell of the tiling has at least one node to ensure
robust and high-quality tree-repair. Each node maintains a data
structure including the information about its position, parent,
children, tree index, cell index and node status as active or
pruned. Initially, all nodes are marked active. Then an initial
path is found using T 0. The path is time embedded to produce
the initial trajectory σ0 : [t0, tf ] → XN , which is a continuous
and bounded function, s.t. σ0(t0) = xs and σ0(tf ) = xg . As
the cobot moves, σ0 could be blocked by dynamic obstacles
O. Thus, the paper presents an informed replanning strategy
consisting of two-steps: 1) tree-pruning and 2) tree-repair.

B. Tree-Pruning

To find a safe trajectory via replanning, it is important
to identify and prune the risky nodes of the tree. Since: 1)
dynamic obstacles far away from the cobot do not pose an
immediate risk, and 2) it is computationally inefficient to do
feasibility checking around all detected obstacles, the paper
presents a local tree-pruning (LTP) strategy described below.

Definition II.2 (Local Reaction Zone). A local reaction zone
(LRZ) is defined for the cobot R, such that LRZR(t) = {x ∈
XN : ||x−xR(t)|| ≤ vR(t)×TRH}, where TRH ∈ R+ is the
reaction time-horizon.

Definition II.3 (Obstacle Hazard Zone). An obstacle hazard
zone (OHZ) is defined for each dynamic obstacle Oi ∈ O, such
that OHZi(t) = {x ∈ XN : ||x−xi(t)|| ≤ vi(t)×TOH + ri+
rR}, where TOH ∈ R+ is the obstacle risk time-horizon.

Definition II.4 (Critical Pruning Region). Let D denote all
obstacles that are intersecting with the LRZ and pose danger
to the cobot such that D = {Oi : LRZR(t) ∩ OHZi(t) ̸= ∅}.
Then, the critical pruning region (CPR) is defined as

CPR(t) =
⋃
D

OHZi(t). (1)

Fig. 2a shows the LTP strategy. The cobot constantly checks
the validity of its current path by checking the path nodes and
edges in LRZ starting from its current position. According to
the LTP strategy, if the current path is invalid, then all tree
portions that fall within the CPR are considered to be risky
for replanning and are thus pruned. If a node is invalid, it is
pruned along with its edges. If an edge is invalid but its two
end nodes are safe, then only this edge is pruned. The parent
and child information of all affected nodes is updated. Tree-
pruning could break the current tree T into disjoint subtrees.

Definition II.5 (Disjoint Subtree). A disjoint subtree is a
portion of the current tree T whose root is either the goal
or a child of a pruned node or edge.

Let T0, T1, ...TK−1 be the K ∈ N+ disjoint subtrees formed
after pruning, where T0 is the subtree rooted at the goal.
Similarly, let N a and N p be the sets of alive and pruned
nodes, respectively, such that N 0 = N a

⋃
N p.

C. Tree-Repair

The tree-pruning step is followed by the tree-repair step,
which is done to find an updated path to the goal. Let tu be
the time instant at which the current path is blocked and the
objective is to find an updated safe trajectory σ : [tu, t

′
f ] →

XN \ CPR(tu), s.t. σ(tu) = xR(tu) and σ(t′f ) = xg .
Fig. 2b-2i show an example of the tree-repair process. For

fast and efficient tree-repair, SMART exploits the previous
exploration efforts by retaining all the disjoint subtrees and
pruned nodes for possible future additions. The tree-repair
process starts by searching for hot-spots, where the nodes of
disjoint subtrees lie in a local neighborhood. Thus, hot-spots
are the candidate cells which provide the opportunities for
tree-repair by reconnecting the node-pairs of disjoint subtrees.

Definition II.6 (Hot-Spot). A cell c ∈ C is a hot-spot if:

1. it contains alive nodes of a) at least two disjoint subtrees,
or b) a single subtree and at least one of its neighboring
cell contains nodes of another disjoint subtree, and

2. the edge connecting at least one node pair corresponding
to the two disjoint subtrees in 1.a) or 1.b) above is not
obstructed by the CPR or static obstacles.

1) Search for Hot-Spots: The search begins in the vicinity
of the damaged path. Thus, the following is defined.

Definition II.7 (Local Search Region). Let n̂ ∈ N p be the
pruned path node closest to the cobot. Let n̂ belong to a cell
cn̂ ∈ C. Then, the local search region (LSR) is defined as the
ℓ×ℓ neighborhood (Sℓ ⊆ C) of cn̂ s.t. ℓ > 1 is an odd number.

The search starts in Sℓ, ℓ = 3. It is a two-step process.

a) Identifying Disjoint Subtrees: The first step is to identify
and label the disjoint subtrees in Sℓ (Fig. 2a). To do this, an
unlabeled node n ∈ N a is picked within Sℓ and assigned a
tree index k ∈ {0, ...K−1}, where index 0 corresponds to the
goal rooted subtree. Then it is backtracked while labeling all
ancestor nodes with the same tree index until reaching either
1) the unlabeled subtree root or 2) a labeled ancestor (or root)
from a previous backtracking. In the second case, all nodes
visited during backtracking are labeled with the same tree
index as that of this ancestor. The above process is repeated
until all nodes inside Sℓ are labeled with their tree-indices.

b) Identifying Hot-Spots: The hot-spots are identified by
searching all cells and their neighbors within Sℓ. Then, a hot-
spot map is constructed on Sℓ as follows.

Definition II.8 (Hot-Spot Map). A hot-spot map is defined on
Sℓ such that hℓ : Sℓ → {1,−1}, where 1,−1 denote hot-spot
and not a hot-spot, respectively.

Let Hℓ ⊆ Sℓ denote the set of all hot-spots in Sℓ (Fig. 2b).
If no hot-spot is found within Sℓ, s.t. hℓ(c) = −1,∀c ∈ Sℓ,
then the search area is expanded to size ℓ = ℓ + 2 and steps
a) and b) are repeated until at least one hot-spot is found.

2) Ranking of the Hot-Spots: The hot-spots Hℓ are ranked
using a utility map (Fig. 2b) to direct repairing to the region
that has the shortest cost-to-come and cost-to-go.



4

(a) The current path becomes invalid in the LRZ.
Thus, the CPR is identified and the local tree inside
the CPR is pruned to form multiple disjoint trees.

(b) The LSR (S3) is formed around the pruned path
node closest to the cobot. Then, the subtree nodes
and hot-spots are identified. Hot-spots are color-
coded with utilities and the highest one is selected.

(c) The tree is repaired by connecting the nodes of
the disjoint subtrees in the neighborhood of the pre-
viously selected hot-spot. Then, the map is updated
and the new highest utility hot-spot is selected.

(d) The tree is further repaired at the selected hot-
spot. Then, the map is updated and the new highest
utility hot-spot is selected.

(e) The tree is further repaired and the map is
updated. Since there are no more hot-spots in S3
and T0 is still disconnected, S3 is expanded to S5.

(f) Hot-spots are identified in S5 and color-coded
with their utilities. The hot-spot with the highest
utility is selected.

(g) The tree is further repaired and the map is
updated; the goal-rooted subtree T0 is connected.

(h) The repaired tree is optimized via a rewiring
cascade, updating the cost-to-go of its nodes.

(i) Finally, the path is replanned. Then, all pruned
nodes are added back and any disjoint trees left are
merged to form a single morphed tree T .

Fig. 2. Illustration of the SMART algorithm: a) tree-pruning and disjoint tree creation, and b)-i) tree-repair and replanning.

Definition II.9 (Utility Map). A utility map is defined on Hℓ

such that Uℓ : Hℓ → R+, where the utility of a cell c ∈ Hℓ is
computed as follows

Uℓ(c) =


1

∥xR(tu)−pc∥2+ min
ni∈Nc∩N0

g(ni)
if Nc ∩N0 ̸= ∅

1
∥xR(tu)−pc∥2+∥pc−xg∥2

else,
(2)

where pc ∈ R2 is the centroid of a hot-spot c ∈ Hℓ; Nc ⊂
N a is the set of alive nodes inside c; N0 ⊂ N a is the set of
nodes of the goal-rooted subtree T0; g(ni) returns the travel
cost from node ni to the goal via the shortest path on T0. In
summary, if the hot-spot contains a node of T0, then its utility
is determined by the heuristic cost-to-come and the actual cost-
to-go; otherwise, it is given by the total heuristic cost.

3) Tree-reconnections: This consists of the following steps:

a. Pick the hot-spot with the highest utility (Figs. 2b-2d and
2f). (If there is no hot-spot in Sℓ after tree-repairing, then
ℓ = ℓ+ 2 and go back to II-C1 (Fig. 2e)).

b. Pick an unexamined node from the selected hot-spot. (If
all nodes have been examined, then go back to a.)

c. Pick an unexamined node belonging to a different subtree
from the selected hot-spot or its local neighborhood. (If
all nodes from different subtrees have been examined,
then go back to step b.)

d. Connect the above node-pair if the edge is feasible
(Figs. 2c-2e and 2g); otherwise, go back to step c.

e. Update the parent-child relationships and subtree indices
(Figs. 2c-2e and 2g): 1) if any node from the node-pair
above belongs to T0, then this node is set as the parent
and all nodes of the connected subtree in Sℓ are assigned
the index of T0 and their cost-to-go are updated, or 2) if
none of the nodes in the node-pair belongs to T0, then
one of them is set as the parent and all nodes of the
connected subtree in Sℓ are assigned its index. A change
in a node’s parent is propagated to all its ancestors.

f. Update the hot-spot and utility maps (Figs. 2c-2e and 2g).
g. Check if T0 is reachable from xR (Fig. 2g). If true, then

a path can be found to the goal; otherwise, go back to c.
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Algorithm 1: SMART
1 {T 0, σ0} ← RRT*(xs, xg ,XN ); // initialization
2 t = t0, T = T 0, σ = σ0;
3 while xR ̸= xg do // goal unreached
4 t← UpdateClock();
5 {xi(t), vi(t)}i=1,..m ← UpdateObstacleState();
6 {xR(t), vR(t)} ← UpdateCobotState();
7 if ValidatePath(σ,LRZR(t), {OHZi(t)}i=1,..m) then
8 Navigate(σ);
9 else

10 σ ← void; // invalid path
11 {T0, ...TK−1} ← TreePruning(T ,CPR(t)); // II-B
12 ℓ← 1,Hℓ ← ∅,Ns ← ∅; // initialize repair
13 while T0 is not reachable from xR do
14 if ℓ < ℓmax then // informed tree-repair
15 ℓ← ℓ+ 2;
16 Hℓ ← HotSpotSearch(Sℓ); // II-C1
17 Uℓ ← ComputeUtility(Hℓ); // II-C2
18 {Ns, T0} ← TreeReconnection(Uℓ,Sℓ);

// II-C3
19 else // standard tree-repair
20 xrand ← SampleFree();
21 Join xrand to all nearby reachable subtrees;
22 if xrand ∈ T0 then Rewire(xrand);
23 end
24 end
25 T0 ← TreeOptimization(T0,Ns); // II-D
26 σ ← PathSearch(xR, xg , T0); // II-D
27 Add N p and disjoint subtrees to T0 to get a single tree T ;
28 end
29 end

Remark 1. If the entire space is exhausted by informed tree-
repair and no path is found using alive samples, then random
sampling and repairing is done for probabilistic completeness.

D. Tree-Optimization and Path Search

During tree-repair, several subtrees were connected to ul-
timately merge with T0. These subtrees are optimized using
rewiring cascade [9] starting from all subtree nodes Ns con-
nected to T0 (Fig. 2h). Then, an updated trajectory σ is found
using T0 (Fig. 2i). After that, all nodes in N p and the roots
of the remaining disjoint trees are reconnected with T0 and a
single tree T is formed. Algorithm 1 describes SMART.

III. ALGORITHM ANALYSIS

Let W denote the minimal cover of the CPR using the tiling
C. Let NW be the set of all nodes in W s.t. N p ⊆ NW ⊆ N 0.
Let n ≥ 1 be the average number of nodes per cell. Let the
neighbors of a node be defined as all nodes in the same and
adjacent cells of that node. Let h be the average number of
node neighbors. Let S ℓ̃, ℓ̃ ≤ ℓmax, be the smallest LSR where
sufficient hot-spots are found to connect the cobot to T 0.

Lemma III.1. The tree-pruning complexity is O(|NW |).

Proof. For tree-pruning, the first step is to identify the CPR for
|D| obstacles that intersect with the LRZ; this has a complexity
of O(|D|). Next, W is determined by querying cells using
the obstacle locations in the CPR; this has a complexity of
O(|W|). Then, the nodes falling inside the W cells are queried
from a data structure and checked for feasibility; this has a
complexity of O(2|NW |). Since SMART uses a search tree,
there are at most |NW | edges that need to be checked; this

(a) Scenario 1: An open space with 10 and 15 dynamic obstacles.

(b) Scenario 2: A factory with both static and dynamic obstacles.

Fig. 3. Simulation testing scenarios.

has a complexity of O(|NW |). Thus, the overall complexity is
O(3|NW |+ |W|+ |D|). Since |NW | ≥ |W| ≥ |D|, the overall
complexity of tree-pruning is O(|NW |).

Lemma III.2. The tree-repair complexity is O(|N 0|+hn|S ℓ̃|).

Proof. The first step in tree-repair is to label each node
in Sℓ by backtracking, which has a worst-case complexity
of O(|N 0 \ N p|) ≤ O(|N 0|). The next step is to find
the sufficient set of hot-spots for tree-repair. The hot-spot
status of any cell c ∈ Sℓ is checked by comparing the
subtree indices of each node in c with up to h neighboring
nodes in Sℓ (Defn. II.6-1). For n nodes per cell, this has a
complexity of O(hn) per cell. Then, the feasibility of the
corresponding edges is checked (Defn. II.6-2). This has a
complexity of O(hn) per cell. Thus, the complexity to check
the hot-spot status of a cell is O(2hn) = O(hn). During the
expansion of Sℓ, it becomes clear with little investigation that
the hot-spot status of a cell is checked a maximum of two
times. Thus, the complexity to find the sufficient hot-spots is
O(2hn|S ℓ̃|) = O(hn|S ℓ̃|). Next, the complexity of computing
utilities for |S ℓ̃| cells (a cell can be a hot-spot up to two
times) is O(2|S ℓ̃|) = O(|S ℓ̃|). Finally, tree-repair is done via
node reconnections. Similar to the hot-spot search, this step
finds all neighboring nodes of different subtrees with feasible
connecting edges. This has a complexity of O(hn) per hot-
spot. For |S ℓ̃| cells that could each be a potential hot-spot up
to two times, this step has a complexity of O(2hn|S ℓ̃|) =

O(hn|S ℓ̃|). Thus, the overall complexity of tree-repair is
O(|N 0|+ (2hn+ 1)|S ℓ̃|) = O(|N 0|+ hn|S ℓ̃|).

Lemma III.3. The tree-optimization complexity is O(h|N 0|).

Proof. In the worst-case scenario, the subtree T0 initially con-
tained only the goal node, and all disjoint subtrees T1, ...TK−1
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(a) Success rate and average replanning time for Scenario 1 with 10 moving obstacles.
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(b) Success rate and average replanning time for Scenario 1 with 15 moving obstacles.

Fig. 4. Comparative evaluation results of success rate and average replanning time for Scenario 1 with a) 10 and b) 15 moving obstacles.

were reconnected to T 0 during tree-repairing. Thus, the
rewiring cascade must propagate through |N 0|−1 nodes. Since
there are h neighbors per node, the overall complexity for tree-
optimization is O(h(|N 0| − 1)) = O(h|N 0|).

Theorem 1. The complexity of SMART is O(h|N 0|).
Proof. From Lemmas III.1-III.3, the complexity is O(|NW |+
hn|S ℓ̃|+(h+1)|N 0|). Since |NW | ≤ |N 0| and n|S ℓ̃| ≤ |N 0|,
the complexity reduces to O(h|N 0|).

Theorem 2. SMART informed replanner is complete with
respect to the sample-based representation of the environment.

Proof. If a path exists using alive nodes N a, then by Defn. II.6
the hot-spot nodes are necessary and sufficient for replanning.
While the incremental hot-spot search guarantees that all hot-
spots will be found, the tree-repair sequentially merges and
relabels all adjacent subtrees at hot-spots. This guarantees that
the cobot will eventually connect to T0 and a path is found.

IV. RESULTS AND DISCUSSION

This section presents the testing and validation results of the
SMART algorithm via: 1) simulation studies on scenarios con-
taining a) dynamic obstacles and b) both static and dynamic
obstacles, and 2) real-experiments in a laboratory.

A. Validation by Simulation Experiments

The performance of SMART is comparatively evaluated
with existing methods (Table I) by extensive simulations.
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(a) Travel time for Scenario 1 with 10 moving obstacles.
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(b) Travel time for Scenario 1 with 15 moving obstacles.

Fig. 5. Comparative evaluation results of travel time of successful
trials for Scenario 1 with a) 10 and b) 15 moving obstacles. The
plots show the median and the 25th and 75th percentile values.

1) Simulation Set-Up: SMART is implemented on a holo-
nomic cobot of radius 0.5m that moves at a speed of vR =
4m/s. For simplicity, the cobot is treated as a point and its
radius is added to the static and dynamic obstacles for collision
checking. The dynamic obstacles of radius 0.5m move along
a random heading from [0, 2π] for a random distance from
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[0, 10m], after which a new heading and distance are selected.
Two different scenarios are considered:

• Scenario 1 with Dynamic Obstacles: This scenario con-
sists of a 32m × 32m space populated with only dynamic
obstacles (Fig. 3a). Two cases are conducted including a) 10
and b) 15 obstacles. Each obstacle moves at the same speed
selected from the set {1, 2, 3, 4}m/s, resulting in 8 different
combinations of the number of obstacles and speeds. For each
combination, 30 different obstacle trajectories are generated to
intersect the cobot, resulting in a total of 240 case studies.
• Scenario 2 with Static and Dynamic Obstacles: This

scenario depicts a real situation (e.g., a factory) with both static
and dynamic obstacles (Fig. 3b). It consisted of a 66m×38m
space with a static obstacle layout and 10 dynamic obstacles.
Each obstacle moves at a different speed selected from the
set {1, 2, 3, 4}m/s. Then, 30 different obstacle trajectories are
generated to intersect the cobot, resulting in 30 case studies.

For each scenario above, 100 trials are performed for each
of the aforementioned cases for each algorithm. All algorithms
were deployed in C++ and run on a computer with 2.60 GHz
processor and 32 GB RAM. For the same trial, a fixed random
seed is used for sample generation for all algorithms, and their
initial search trees are of the same size. A trial is marked as
failed and the travel time is not recorded if the cobot collides
with any obstacle. For SMART, the tiling is generated with cell
size of 1m × 1m. Based on simulation studies, the reaction
time-horizon is set as TRH = 0.8s and an obstacle risk time-
horizon of TOH = 0.4s is added to all dynamic obstacles for
all algorithms. If the cobot moves into an OHZ, then the OHZ
is ignored but the actual obstacle is considered for collision
checking. The goal bias and random sample rates shared by
most algorithms (except RRTX and MODRRT*) are set based
on [10] as 0.1 and 0.2 respectively. All other algorithm-specific
parameters are set based on the corresponding papers.

To consider sensor uncertainties, noise was injected into
the range, the heading angle, and the position of cobot during
simulation. A typical lidar (e.g., RPLIDAR S2L [23]) provides
an accuracy of 0.03m, and a modestly priced compass can pro-
vide an accuracy of 1◦ [24]. Based on these, the uncertainties
were simulated as uniform distributions U[−0.03m,0.03m] and
U[−1◦,1◦] for range and heading, respectively. Similarly, an in-
door localization system (e.g., Hagisonic StarGazer) provides
a precision of 0.02m [25]. Thus, the localization uncertainty
is simulated as a uniform distribution U[−0.02m,0.02m].

2) Performance Metrics: The following metrics are consid-
ered for comparative performance evaluation:

• Replanning time: Time to replan a new path.
• Success rate: Fraction of successful runs out of the total.
• Travel time: Time from start to goal without collision.
3) Simulation Results: Fig. 4 shows the comparative eval-

uation results on Scenario 1. Overall, SMART achieves sig-
nificant improvements over other algorithms in success rate
and replanning time in all case studies. This follows from the
facts that i) tree-pruning not only reduces collision checking
to nearby obstacles but also produces less number of disjoint
trees for repairing, and ii) tree-repair exploits the disjoint
subtrees and facilitates repairing at hot-spots for speedy re-
covery. Fig. 5 shows that SMART achieves the lowest travel
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Fig. 6. Comparative evaluation results for Scenario 2.

times because of i) lowest replanning time and ii) infrequent
replanning. Furthermore, to investigate the value of the tree-
repair step, we present an ablation study, where LRZ is
removed, thus pruning all risky nodes. Fig. 4 and Fig. 5 show
that SMART w/o LRZ still performs significantly better than
all other algorithms in replanning time and success rate.
• Effect of Obstacle Speed: As seen in Fig. 4, while the

replanning time of SMART is minimally affected by obstacle
speed, the success rate dips when obstacle speed is greater
than 2m/s. This is because high-speed moving obstacles have
higher chance to hit the cobot. Moreover, as shown in Fig. 5,
the travel time goes up with the obstacle speed because high-
speed obstacles cause frequent replannings.
• Effect of Number of Obstacles: As seen in Fig. 4, the

replanning time increases slightly with an increase in the
number of obstacles because of more i) disjoint subtrees
for repairing and ii) complex environment with smaller free
space. The success rate dips with obstacle number for high
obstacle speed because longer replanning time and crowded
environment increase collision probability. Similarly, as shown
in Fig. 5, the travel time goes up with obstacle number because
of frequent replannings and complex environment.

Fig. 6 shows the same trend in Scenario 2. As seen, SMART
outperforms all other methods in terms of replanning time,
success rate, and the total travel time.

B. Validation by Real Experiments

The SMART algorithm is further validated by real experi-
ments in a 7m× 7m lab space with both static and dynamic
obstacles. A cobot called ROSMASTER X3 [23] is used that
is equipped with 1) a RPLIDAR S2L lidar [23] with a range of
8m for obstacle detection, 2) MD520 motor with encoder [23]
for detection of rotation angle and linear displacement, and
3) MPU9250 IMU [23] for detection of speed, acceleration,
and orientation. An Extended Kalman Filter [26] is used to
fuse data from the IMU and motor encoder for localization.
The space is tiled with 0.1m × 0.1m cells. The occupancy
grid mapping algorithm [27] is used offline to create a static
obstacle map, while the humans are detected in real-time. The
cobot carries Jetson Nano minicomputer that collects sensor
measurements and runs the SMART algorithm for real-time
replanning, control and navigation. Fig. 7 shows the various
snapshots of an experiment, where the cobot successfully
replans a new path multiple times to avoid obstacles until
reaching the goal, thus revealing the effectiveness of SMART.
The observed replanning time in experiments is ∼ 0.03s.
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(a) Initial path is blocked. Successfully replanned in real time. (b) Current path is blocked again. Successfully replanned in real time.

(c) Current path is blocked again. Successfully replanned in real time. (d) Current path is blocked again. Successfully replanned in real time.

(e) Current path is blocked again. Successfully replanned in real time. (f) Cobot reaches the goal.

Fig. 7. Snapshots of a real experiment in a laboratory with both static and dynamic obstacles. Video available in supplementary documents.

V. CONCLUSIONS AND FUTURE WORK

The paper presents an algorithm, called SMART, for adap-
tive replanning in dynamic environments. To replan a path,
SMART performs risk-based tree-pruning to form multiple
disjoint subtrees, then exploits and repairs them at selected hot-
spots for speed recovery. It is shown that SMART is compu-
tationally efficient and complete. The comparative evaluation
with existing algorithms shows that SMART significantly
improves the replanning time, success rate, and travel time.
Finally, SMART is validated by real experiments.

With further research SMART has the potential for extend-
ing to non-holonomic robots and higher dimensional problems.
The challenges include 1) defining configuration space includ-
ing the rotational space components, 2) identifying efficient
strategies for partitioning and sampling in the configuration
space, and 3) considering the motion constraints in cost
functions and tree reconnections. Further, SMART could be
extended to problems with 1) joint time-risk optimization, 2)
multi-cobot systems, and 3) coverage path planning [28], [29].
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