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Abstract—This letter considers existing leaderless distributed
controllers that achieve three types of planar multirobot for-
mation. Concretely, these formations are equal to a reference
configuration up to translation (type F1), shape-preserving
transformation (type F2) and affine transformation (type F3).
As contribution, we show that a linear combination of these
controllers maintains their convergence properties, while also
allowing specific control of the formation during the trajectory.
This latter control is not possible when using the individual
controllers separately, and is interesting in practical cases. As
an example scenario, we study rotation-and-resizing formation
maneuvers, where the goal is to achieve an F1 formation while
remaining close to an F2 formation in the transient period. We
show that, in this scenario, our combined controller produces
trajectories approximating shortest-path shape-preserving ma-
neuvers, which are desirable for efficiency and safety. We validate
the controller in this and other scenarios using simulations and
experiments with physical mobile robots.

Index Terms—Multi-robot systems, distributed robot systems,
autonomous agents.

I. INTRODUCTION

MAINTAINING a formation is useful in multirobot tasks
such as collective navigation, transport of an object,

or monitoring of a phenomenon. Formation control [1] thus
remains an important problem that has been addressed via
various strategies [2]–[4]. A group of existing distributed
formation control approaches (e.g., in [5]–[13]) rely on a
core formulation where the control actions depend linearly
on inter-robot relative positions. With these approaches, if
robot interactions are captured by a static formation graph
and a single-integrator robot model is considered, then the
multirobot team’s dynamics can be expressed via a constant
Laplacian (or Laplacian-like) matrix.

In this letter, we consider three types of leaderless con-
trollers in this group. Each type achieves asymptotically a
planar formation of a corresponding type, which we call F1,
F2 and F3. Given a reference configuration of the team, these
types (illustrated in Fig. 1) consist in planar formations equal
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Fig. 1. (a): A reference formation of four robots. (b): Illustration of three types
of formation (F1, F2, F3), equal to the reference one up to different types of
geometric transformation: Translation (T), Shape-Preserving (SP) and Affine
(A). In this letter, we consider three existing individual controller types that
achieve F1, F2 and F3 formations, respectively. Our idea is to use a linear
combination of these controllers. The resulting combined controller allows
reaching a formation type while (unlike the individual controllers) controlling
the formation type during the trajectory: for example, the team can reach an
F1 formation while staying close to an F2 formation during the trajectory, or
it can reach an F2 formation while staying close to an F3 one.

to that reference up to translation (F1), shape-preserving trans-
formation (F2), and affine transformation (F3). The controllers
we consider for F1 formations are based on a Laplacian matrix
[5]–[7]; for F2 formations, they are based on a complex-valued
Laplacian matrix or the equivalent real-valued matrix [8]–[10];
for F3 formations, they are based on a stress matrix [11]–[13].

We call these existing controllers individual controllers.
What we propose in this letter is a combined controller,
defined as a linear combination of individual ones for different
formation types. When using the combined controller, the team
will still reach a formation of type F1 or F2 asymptotically,
while (unlike with the individual controllers) staying close to
the other formation types (F2, F3) during the trajectory. This
ability to accommodate multiple formation specifications is the
most notable feature of the combined controller. Staying close
to an F2 formation can, e.g., prevent damage to an object being
transported [14], [15], and avoid inter-robot collisions during a
task. Staying close to an F3 formation enables high flexibility
in the team’s configuration [12], [13] while still keeping an
orderly layout of the robots that can facilitate their interactions.

We present a formal analysis of the combined controller
based on the properties of the matrices associated with the
individual controllers. Moreover, we study in depth a particular
scenario: rotation-and-resizing maneuvers. In this scenario,
our controller produces team trajectories that approximate
shortest-path shape-preserving trajectories, which are desirable
for efficiency and safety. Our approach is simple as it preserves
the linear structure of the individual controllers, e.g., [5]–
[13]. It is, however, more versatile than them in terms of the
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behaviors it can generate. We validate the combined controller
in simulations with single-integrator agents and in experiments
with physical unicycle robots.

Next, we discuss related work where multiple formation
controllers were combined. The studies [14]–[16] focused
specifically on deformable object handling with a multirobot
team. They used a core formation shape control term (F2)
and added an affine formation term (F3) to gain closer
control over the deformation during the task. Further terms
were also employed to regulate the formation translation,
rotation and scale. These studies considered a centralized
setup (i.e., a complete formation graph). In comparison, here
we focus on studying the general combination of existing
distributed controllers and the problem of rotation-and-resizing
maneuvers. The work [17] proposed a unification of formation
controllers in a similar spirit to what we do here, with a
leader-based scheme and a non-linear underlying formulation
using sliding mode control. In [17], the unified controller was
used by the leaders to make the full team achieve an affine,
translational or rigid formation in finite time. In contrast, our
combined controller is used by the full team in a leaderless
approach, and it consists in a direct combination of linear
controllers. In addition, we study specifically the trajecto-
ries for the case of rotation-and-resizing maneuvers. In [18],
distance-based and barycentric coordinates-based controllers
were combined to obtain a globally convergent rigid-formation
controller. Our work encompasses more types of formations
and studies formation maneuvers. The article [19] exploits
double-integrator dynamics and combines distance-based and
consensus controllers. Differently from our work, the resulting
behavior is flocking with controlled shape.

We end the introduction with a discussion of multirobot ma-
neuvering. This problem has most commonly been addressed
using leader robots [12], [13], [20], [21], the principle being
that the leaders’ motions dictate the maneuver for the full
team, and the follower robots adapt to the leaders’ motions.
Our approach enables leaderless maneuvers, which has the
advantage of avoiding heavy reliance on leader performance.
Leaderless maneuvers have been addressed using purposely
designed mismatches in the formation’s prescribed distances
[2] and angles [22], or by modifying the complex-Laplacian
coefficients [23]. Compared to [2], [22], [23], our work
accommodates multiple formation types and focuses on the
properties of the team’s trajectories.

II. PROBLEM SETUP

A. Notation and preliminary concepts

The norm ||·|| we use is the Euclidean one. The symbols 1n

and In denote a column vector or n ones and the n×n identity
matrix, respectively. ⊗ denotes the Kronecker product. We
define S = [(0, 1)T, (−1, 0)T], i.e., a counterclockwise rotation
of π/2 rad, and T = In ⊗ S ∈ R2n×2n. For a set of n points
in the plane vi ∈ R2 for i ∈ N = {1, ..., n}, we define the
stack vector collecting them as v = [vT

1, ..., v
T
n]

T ∈ R2n. gv

denotes the centroid of v: gv = (1/n)(1n⊗I2)
Tv. K = (In−

(1/n)1n1
T
n) ⊗ I2 denotes a centering matrix such that vz =

Kv denotes the translated version of v with zero centroid.

We consider a team of n > 2 robots lying on a planar, 2D
space. We denote the robots’ current positions, in a given fixed
arbitrary reference frame, by a stack vector q(t) ∈ R2n. The
initial time for the control system is t = 0. We will sometimes
omit the variable t, for compactness. The robot dynamics are
assumed to be single-integrator, i.e., we have q̇ = u, where
u = [uT

1, ..., u
T
n]

T ∈ R2n is the team control input for which
we will design a control law. We define a static undirected
formation graph G = (N , E) to model the interactions between
robots. Each vertex in N corresponds to a robot. An edge (i, j)
in E means that the control law of robot i uses the relative
position of j, and viceversa. Our work is based on the idea of
reaching a desired formation of the team. For this, we define
a reference configuration, or reference formation, by a set of
n constant and distinct positions collected in c ∈ R2n. For
convenience and without loss of generality, we assume gc = 0.
An example reference formation is shown in Fig. 1 (a).

B. Formation types
As already mentioned, we define three types of formation,

all based on the reference configuration c. We refer again to
Fig. 1 for a graphical illustration. An F1 formation is equal
to c up to translation. An F2 formation is equal to c up to
a shape-preserving transformation consisting of translation,
rotation and uniform scaling. An F3 formation is equal to c up
to translation, rotation, arbitrary scaling in the two axes, and
shearing; in other words, up to an affine transformation [12].
Let us formally define these formations. We consider that the
team is in a formation of type Fi if the configuration q is in
the set Si. The sets Si are defined as

S1 = {q ∈ R2n : q = c+ 1n ⊗ r, r ∈ R2}, (1)

S2 = {q ∈ R2n : q = (In ⊗H)c+ 1n ⊗ r, r ∈ R2, (2)

H = [[h1, h2]
T, [−h2, h1]

T] ∈ R2×2},
S3 = {q ∈ R2n : q = (In ⊗G)c+ 1n ⊗ r, r ∈ R2, (3)

G ∈ R2×2}.
Remark 1: We do not assume H and G to be invertible and,

in particular, the definitions (2), (3) allow H = 0 and G = 0
respectively (which would correspond to achieving consensus).
Note that this is also true for the individual controllers we
consider [8]–[13]. The cases where these matrices are zero
correspond to configurations having measure zero and do not
occur in practice, as detailed in the cited references. Note that
H in (2) encodes rotation and uniform scaling, as will be
detailed in Sec. IV-A. As in [8]–[10], the F2 formations we
consider, and hence the shape-preserving transformations we
consider, do not include reflections.

C. Problem statement
The general problem we consider is designing a distributed

controller u such that the multirobot team eventually reaches
a formation of type F1 or F2. Within this general problem, the
main focus of our work is on an additional, more specific goal:
keeping the team close to a formation of a different type (F2
or F3) in the transient period. To this end, we will build upon
existing individual controllers for F1, F2 and F3 formations,
and propose a novel combination of them.
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D. Supporting lemmas

We state two lemmas that are instrumental in supporting
our approach. Although these lemmas are known results, we
provide their proofs in the Appendix, for completeness.

Lemma 1: If A ∈ R2n×2n is symmetric negative semidefi-
nite then under q̇ = Aq, q converges globally asymptotically
to the orthogonal projection of q(0) onto ker(A).

Lemma 2: Given two symmetric negative semidefinite ma-
trices A ∈ R2n×2n and B ∈ R2n×2n, ker(A + B) =
ker(A) ∩ ker(B).

III. PROPOSED COMBINED FORMATION CONTROLLER

A. Individual controllers

We propose to use a linear combination of individual
controllers of three types. Each type is designed to reach a
formation of type F1, F2, F3, so we will use these same
identifiers for the controller types. The controllers are designed
for single-integrator dynamics. We denote them by uFi = q̇
for i ∈ {1, 2, 3}, and express them as

uF1 = A1(q− c), (4)
uF2 = A2q, (5)
uF3 = A3q. (6)

A1, A2 and A3 ∈ R2n×2n are constant (negated) Laplacian-
like matrices associated with the underlying formation graph.
b = −A1c ∈ R2n in (4) represents a constant bias bi ∈ R2

for each robot i, determined by the relative positions of i’s
graph neighbors in the reference formation [5, Sec. I-D.6].
For uniformity when combining these controllers, we make
A1, A2 and A3 have unit Euclidean norm, normalizing them.
Next, we make two assumptions about these matrices.

Assumption 1: A1, A2 and A3 are symmetric negative
semidefinite matrices.

Assumption 2: The kernels K1 = ker(A1), K2 = ker(A2)
and K3 = ker(A3) are as follows:

K1 = {q ∈ R2n : q = 1n ⊗ r, r ∈ R2}, (7)
K2 = S2, (8)
K3 = S3. (9)

Notice the kernels Ki coincide with the sets Si, except for
the c added for S1. There are existing controllers that have
the proposed forms (4), (5), (6) and can satisfy Assumptions
1 and 2. Specifically, for uF1 we can use a consensus-
based formation controller [5], [6], which achieves an F1
formation. For uF2 we can use a formation controller based on
a complex Laplacian (or an analogous formulation) [8]–[10],
which achieves an F2 formation. For uF3 we can use an affine
formation controller [11], which achieves an F3 formation.

We assume the formation graphs for the individual con-
trollers are static and undirected, and we denote them by
G1 = (N , E1) for uF1, G2 = (N , E2) for uF2 and G3 =
(N , E3) for uF3. The graph requirements are different for
different formation types. Examples of these requirements are:
connectedness for F1, rigidity-related constraints for F2, and
universal rigidity for F3. Requirements also vary for different
controllers within a formation type.

B. Proposed combined controller

As mentioned, we propose a combined controller, defined
as a linear combination of the individual controllers:

u = w1uF1 + w2uF2 + w3uF3, (10)

where w1 ≥ 0, w2 ≥ 0, w3 ≥ 0 are scalar weights. Notice that,
from Assum. 2, c is in K2 and K3. Therefore, A2c = A3c = 0
and we can express equivalently (10) as

u = A(q− c), with A = w1A1 + w2A2 + w3A3. (11)

From Assum. 1, A is symmetric negative semidefinite. Let us
denote KA = ker(A). Observe from expressions above that
K1 ⊂ K2 ⊂ K3. Using this and Lemma 2, it is clear that if
w1 > 0, KA = K1, and if w1 = 0 and w2 > 0, KA = K2.

C. Implementing the combined controller

As A1, A2 and A3 have a Laplacian-like structure, the
individual controllers [5], [6], [8]–[11] and hence, the com-
bined one (10), (11) too, can be implemented by every robot i
using the relative positions, qj −qi, of its graph neighbors j.
Robot i can compute its control ui by measuring, via sensing
or communications, these relative positions at run time, and
applying the corresponding coefficients from the matrices and
the bias bi. As implementing the combined controller requires
the capability to implement the individual ones, we assume G
is such that E1 ⊆ E (if w1 > 0), E2 ⊆ E (if w2 > 0) and
E3 ⊆ E (if w3 > 0). Each individual controller (i) has its
own minimum required number of graph edges and (ii) can
still be implemented with more edges than the minimum. For
simplicity and resource efficiency, one option is to use the
same graph for all individual controllers, chosen as the graph
with most edges among the graphs required for each individual
controller. We do this in our tests (Sec. V).

Note that the controller does not need absolute position
measurements. For an F1 controller, the robots have to express
their relative position measurements with respect to a common
reference of orientation [1]. For F2 and F3 controllers, the
robots do not need a common reference of orientation as
long as they measure relative positions expressed in their own
coordinate frames, as noted, e.g., in [8]–[10], [12].

D. Analysis and types of behavior

Lemma 3: If Assumptions 1 and 2 hold, under controller
(11) with w1 ≥ 0, w2 ≥ 0, w3 ≥ 0, the centroid gq is
invariant. This holds for any c, including c = 0.

Proof: The centroid dynamics is ġq = (1/n)(1n ⊗
I2)

Tq̇ = (1/n)(1n ⊗ I2)
TA(q − c). Note in this expression

that ((1n⊗I2)
TA)T = A(1n⊗I2) = [A(1n⊗[1, 0]T),A(1n⊗

[0, 1]T)]. Clearly, 1n⊗[1, 0]T and 1n⊗[0, 1]T are in K1, K2 and
K3. Therefore, they are in KA. This means A(1n ⊗ I2) = 0,
i.e., (1n ⊗ I2)

TA = 0. Hence, ġq = 0.
Theorem 1: If Assumptions 1 and 2 hold, under the com-

bined controller (11), (i) if w1 = 0, w2 > 0, w3 ≥ 0, q
converges globally asymptotically to an F2 formation equal to
the orthogonal projection of q(0) onto K2; and (ii) if w1 > 0,
w2 ≥ 0, w3 ≥ 0, q converges globally asymptotically to the
F1 formation c+ 1n ⊗ gq(0).
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Proof: (i) u = w2uF2+w3uF3 = Aq with A = w2A2+
w3A3. As seen above, A is symmetric negative semidefinite
and KA = K2 in this case. Therefore, from Lemma 1, under
q̇ = u = Aq, q converges globally asymptotically to the
orthogonal projection of q(0) onto K2.

(ii) We have KA = K1 in this case. Let us first consider the
dynamics without the constant term c, i.e., q̇ = Aq. Due to
centroid invariance (Lemma 3) and to Lemma 1, all the robots
converge to the initial centroid. Notice that this implies that
A is such that limt→∞ eAtv = 1n ⊗ gv for any v ∈ R2n.
Then, consider the trajectory of the actual system q̇ = u =
A(q−c), which is q(t) = c+eAt(q(0)−c). As the centroid
of c is zero, the centroid of (q(0) − c) is gq(0). Therefore,
limt→∞ q(t) = c+ 1n ⊗ gq(0), as stated.

Thm. 1 shows that the combined controller ensures for-
mation convergence. In addition, a key feature is that it
allows further control of the formation during the trajectory.
Specifically, the behaviors enabled by this controller are:

1) If w1 > 0, w2 > 0, w3 = 0: convergence to an F1
formation while staying close to an F2 formation.

2) If w1 = 0, w2 > 0, w3 > 0: convergence to an F2
formation while staying close to an F3 formation.

3) If w1 > 0, w2 = 0, w3 > 0: convergence to an F1
formation while staying close to an F3 formation.

4) If w1 > 0, w2 > 0, w3 > 0: convergence to an F1
formation while staying close to an F2 formation and to
an F3 formation.

These behaviors are illustrated in our validation (Sec. V). As
can be reasoned intuitively, the team will stay closer to an Fi
formation if one increases wi. Behavior 1) in the specific case
of a formation maneuver, for which the initial configuration is
an F2 formation and not any arbitrary configuration, is studied
in detail in Sec. IV. An interesting fact to highlight is that
the combined controller does not alter the final configuration.
Indeed, from Thm. 1, the final configuration depends only on
the initial one, q(0). For a given q(0), if w1 > 0 the individual
controller uF1 and any of the combined ones converge to an
identical F1 formation; and if w1 = 0, w2 > 0, the individual
controller uF2 and the combined one converge to an identical
F2 formation.

IV. EXAMPLE SCENARIO: FORMATION MANEUVERS

This section studies a relevant scenario where the applica-
tion of the combined controller provides important advantages:
executing a formation maneuver to reach an F1 formation
from an initial F2 formation. For this, we will use A =
w1A1 +w2A2, i.e., we take w3 = 0. We start by introducing
some necessary concepts.

A. Shape-preserving transformation and optimal formation
Consider the class of 2×2 real matrices with equal diagonal

entries and opposite off-diagonal entries:

M =

[
m1 −m2

m2 m1

]
, with m1, m2 ∈ R. (12)

Assumption 3: A1 and A2 are block matrices A1 = [Aij1 ],
A2 = [Aij2 ], ∀i ∈ N , ∀j ∈ N , such that every block of size
2× 2 Aij1 , Aij2 has the form (12).

This assumption is satisfied by the matrices used in the
controllers for F1 [5], [6] and F2 [8]–[10] formations. With
standard manipulations one can see that the property stated in
Assum. 3 is preserved under linear combinations and products.
Hence, Ak for every integer k ≥ 0 satisfies the property.
Notice the class (12) includes the zero 2× 2 matrix. Consider
now a nonzero matrix H with the same form:

H =

[
h1 −h2

h2 h1

]
, with h1, h2 ∈ R, h2

1 + h2
2 > 0. (13)

For a vector x ∈ R2n of n point positions with zero centroid,
xH = (In ⊗ H)x ∈ R2n is a vector of n point positions
with zero centroid and which are rotated (by θ ∈ (−π, π])
and uniformly scaled (by s ∈ R>0) relative to x, since

H = s

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, with

{
s =

√
h2
1 + h2

2

θ = atan2(h2, h1).

A transformation of the form (13) is shape-preserving, because
rotation and uniform scaling actions do not change a shape.
Now, let us define the optimal F2 formation, p, as the
closest (in norm) configuration to q where the team is in an
F2 formation. Referring to (2), to determine p we need to
compute the optimal translation and the optimal transformation
of c with the form (12). The optimal translation is the one that
makes the centroid equal to the centroid of q, gq [10]. All
through Sec. IV, we consider, without loss of generality, that
gq(t) = 0 ∀t; more details are given in Sec. IV-F. Hence, the
centroid of p is zero. In addition, the optimal transformation
matrix is [10]

Hg =

[
h1g −h2g

h2g h1g

]
, h1g =

qTc

cTc
, h2g =

qTTc

cTc
, (14)

where Hg , if it is nonzero, is a shape-preserving transforma-
tion (13). The optimal F2 formation is, hence,

p(t) = (In ⊗Hg(t))c. (15)

Since (In ⊗Hg)c = h1gc+ h2gTc, using (14) we have

p = h1gc+ h2gTc =
qTc

cTc
c+

qTTc

cTc
Tc. (16)

Now, we can use the facts that (qTc)c = ccTq and
(qTTc)Tc = TccTTTq to obtain

p(t) =
ccT +TccTTT

cTc
q(t). (17)

This useful expression relates p and q linearly and will be
exploited in our analysis presented in subsequent sections.

B. Definition of a maneuver

We define a rotation-and-resizing maneuver (or, simply, a
maneuver) as a trajectory of the multirobot system moving
from a beginning (cb) to an ending (ce) configuration, both
having the same centroid, and both having the same shape as
c. We define the configurations as cb = (In ⊗ Hb)c, ce =
(In ⊗He)c, where Hb and He have the form (13). Without
loss of generality, we specifically take He = I2, i.e., ce = c.
Therefore, cb is an F2 formation and ce is an F1 formation.
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In concrete terms, for a generic variable representing n
positions x ∈ R2n, a maneuver is a trajectory x(t) such that
x(0) = cb and limt→∞ x(t) = c. We disregard antipodal
maneuvers, i.e., those for which He = κHb for a κ < 0. Such
extreme maneuvers can be accomplished by dividing them into
a sequence of smaller sub-maneuvers.

C. Shortest-path shape-preserving maneuvers

Next, we give our definitions of two relevant properties
a maneuver can have. A maneuver is shortest-path if every
robot moves along a straight line, and never reverses direction.
A maneuver is shape-preserving if the team keeps the same
shape, i.e., xz(t) = (In ⊗ H(t))c ∀t ≥ 0, with H(t)
of the form (13). Shortest-path maneuvers are efficient as
their associated energy consumption is low. Shape-preserving
maneuvers make it easier to ensure safety, as the relative
positions of every pair of robots evolve in a tightly coordinated
way. We are interested in a class of maneuvers that satisfy the
two discussed properties at once. This class is defined by the
following set of trajectories of x:

x(t) = β(t)(cb − c) + c, t ≥ 0, (18)

where β(t) ∈ R satisfies the following three conditions:

β(0) = 1, lim
t→∞

β(t) = 0, β(tb) ≤ β(ta) ∀tb > ta ≥ 0.

(19)
Notice that (18) is a convex combination that represents a line
joining cb and c.

Proposition 1: Any trajectory having the form defined by
(18)-(19) is a shortest-path shape-preserving maneuver.

Proof: The trajectory is shortest-path as, for robot i,

xi(t) = β(t)(cbi − ci) + ci, β(t) ∈ [0, 1] ∀t ≥ 0, (20)

and since β(t) cannot increase as time progresses, the motion
is always forwards (i.e., towards ci). To see that the maneuver
is shape-preserving, we express (18) as

x(t) = β(t)
(
(In ⊗Hb)c− c

)
+ c =

(
In ⊗Hβ(t)

)
c, (21)

where Hβ(t) = (1 − β(t))I2 + β(t)Hb. Notice gx(t) = 0,
i.e., xz(t) = x(t),∀t ≥ 0. One can see that Hβ(t) can
only become zero if the maneuver is antipodal, a case we
disregarded. Therefore, Hβ(t) has the form (13) and, from
the definition above, the maneuver is shape-preserving.

D. Maneuvering using the combined controller

Next, we show that using (11) for maneuvering, (i) the
trajectory of the optimal F2 formation p is a maneuver of the
class defined by (18)-(19) and (ii) the trajectory of the team,
q, can approximate the trajectory of p.

1) Trajectory of p: We give an auxiliary result (Prop. 2,
proven in the Appendix), and then the main result (Thm. 2).

Proposition 2: If Assumptions 1, 2 and 3 hold and w1 > 0,
w2 ≥ 0, w3 = 0, then: (i) cTeAtTc = (Tc)

T
eAtc = 0, and

(ii) (Tc)
T
eAtTc = cTeAtc.

Theorem 2: If Assumptions 1, 2 and 3 hold and q(0) = cb,
under controller (11) with w1 > 0, w2 ≥ 0, w3 = 0, the

trajectory of p is a shortest-path shape-preserving maneuver
with the form

p(t) = βp(t)(c
b − c) + c, with βp(t) =

cTeAtc

cTc
. (22)

Proof: We first substitute in the expression of p (17) the
trajectory of q under q̇ = A(q− c), taking q(0) = cb:

p(t) =
ccT +TccTTT

cTc
(eAt(cb − c) + c). (23)

Defining Hb = [(h1b, h2b)
T, (−h2b, h1b)

T], notice that we have
cb = h1bc+h2bTc. We substitute cb−c = (h1b−1)c+h2bTc
in (23). As (Tc)Tc = 0, we have

p(t) =
1

cTc

[
c
(
(h1b − 1)cTeAtc+ h2bc

TeAtTc+ cTc
)

+Tc
(
(h1b − 1)(Tc)TeAtc+ h2b(Tc)TeAtTc

)]
.

Using Prop. 2, one directly finds the trajectory (22). Let us
now show (22) is a shortest-path shape-preserving maneuver.
Notice β̇p(t) = 1

cTc
d
dt (c

TeAtc) = 1
cTc

cTAeAtc. Recall A is
symmetric negative semidefinite from Assum. 1, and note eAt

is symmetric positive definite as A is symmetric. Hence, as
A and eAt clearly commute, we conclude AeAt is symmetric
negative semidefinite. Therefore, β̇p(t) ≤ 0. Also, as seen in
the proof of Thm. 1, part (ii), A is such that limt→∞ eAtv =
1n⊗gv for any v ∈ R2n. This implies eAtc converges to zero
asymptotically, and therefore limt→∞ βp(t) = 0. Note, then,
that βp(t) satisfies βp(0) = 1, β̇p(t) ≤ 0, and limt→∞ βp(t) =
0. Hence, (22) is of the class defined by (18)-(19) and, from
Prop. 1, it is a shortest-path shape-preserving maneuver.

2) Trajectory of q: To quantify how closely q(t) approxi-
mates p(t), we express the error between the two next.

Proposition 3: If Assumptions 1, 2 and 3 hold and q(0) =
cb, under control (11) with w1 > 0, w2 ≥ 0, w3 = 0, q
converges asymptotically to c and its error relative to p is

e(t) = q(t)− p(t) =

(
eAt − cTeAtc

cTc
I2n

)
(cb − c), (24)

with e(0) = 0 and limt→∞ e(t) = 0.
Proof: q converging to c follows from Thm. 1, part

(ii). One gets (24) by using (22) and the trajectory q(t)
when q(0) = cb. e(0) = 0 follows directly from (24).
limt→∞ e(t) = 0 follows from noticing that p(t) is a
maneuver (Thm. 2) and therefore p converges to c.

E. Effect of the weights w1, w2

Ideally, we would like to maintain e(t) at zero during the
trajectory. This can be achieved by choosing w1 = 0. However,
w1 = 0 is not a feasible choice: it implies the robots remain
static, as q(0) = cb is an F2 formation and hence the F2
control term, for any w2 ≥ 0, produces no motion. With
w1 > 0, w2 > 0, as w2/w1 → ∞ makes e(t) → 0 we can
reduce ||e(t)|| during the trajectory by choosing a higher ratio
w2/w1. This strengthens shape preservation (i.e., closeness to
an F2 formation). In choosing w1 and w2 to increase w2/w1,
one should take into account that reducing w1 makes the
advancement towards c slower, while increasing w2 makes the
behavior more sensitive to perturbations. An important point
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is that our expression (24) can be readily used at the design
stage to choose w1 and w2 to fit given specifications. We leave
a deeper treatment of design considerations for future work.

F. Centroid preservation and team translation

Recall the centroid gq is invariant under our controller
(Lem. 3) and, hence, during a maneuver. Preserving the
centroid is advantageous for rotation-and-resizing maneuvers:
it reduces the area occupied by the team and the distances
traveled by the robots during the motion. Achieving a motion
involving rotation, resizing and translation is possible by
adding a translation control term to the controller we propose.
Another point to note is we used cb and ce with zero centroid
for simplicity of exposition, but the centroid can have any
value. If gq = gcb = gce is nonzero, we can express
q = qz + 1n ⊗ gq (and analogously for cb and ce). Clearly
1n⊗gq is in KA, so the controller produces the same motion
considering either q or the zero-centroid qz .

V. EXPERIMENTAL VALIDATION

We present results from several scenarios. A video of our
tests is also provided as supplementary material. As uF1 we
use a standard Laplacian-based controller [5, eq. 6]. As uF2

we use the controller [10, eq. 11], which is based on a graph
structured in triads. As uF3 we use the controller [11, eq. 2].
We remark that other controllers (satisfying Assumptions 1, 2
and 3) can be used. We define the following distance functions
that will be useful to illustrate the performance:

d1(t) = ||(I2n −P1)q(t)− c||,
d2(t) = ||(I2n −P2)q(t)||,
d3(t) = ||(I2n −P3)q(t)||. (25)

Pi denotes the orthogonal projection matrix onto Ki. Hence,
di(t) expresses the distance from q(t) to an Fi formation.
As p(t) is the closest (in norm) F2 formation to qz(t) (Sec.
IV-A), we can also express d2(t) = ||qz(t) − p(t)||. Hence,
d2(t) = ||e(t)||, noting that one should use qz(t) instead of
q(t) in (24) if the centroid of q(t) is not zero.

A. Simulation

We first validate our method in three simulation scenarios
run in MATLAB for a seven-robot formation. The results
are illustrated in Fig. 2. The reference formation with
numbered robots is illustrated in top-left of the figure.
The graph we consider for all controllers is the same:
G = Gi with i = 1, 2 and 3 with edge set E =
{(1, 2), (1, 3), (2, 3), (2, 4), ..., (6, 7), (6, 1), (7, 1), (7, 2)}.
The robots are single integrators and we use controller (11).

Scenario 1 is a rotation-and-resizing maneuver (Sec. IV).
We use w1 = 0.4, w2 = 20, w3 = 0, and cb = sbRb(θb)c with
sb = 1.3, θb = −80 deg. We compare the performance with the
individual F1 controller. Notice d1 evolves similarly in the two
cases. Some robots have equal velocity norm due to symmetry.
The combined controller produces shorter paths and, as shown
by d2, it keeps the team closer to an F2 formation. Testing with
w2 equal to 0, 1, 10, 20, 50 and 100 we obtain peak values of

d2 of 0.51, 0.31, 0.12, 0.07, 0.04 and 0.02m respectively, i.e.,
a higher w2 reduces d2.

Scenarios 2 and 3, discussed next, illustrate the results of
Sec. III. In scenario 2, we consider reaching an F2 formation
starting from an F3 formation. We choose w1 = 0, w2 =
5, w3 = 70. This time, the combined controller eventually
reaches an F2 formation while the team configuration stays
close to an affine transformation of c (i.e., an F3 formation):
this allows maintaining an orderly arrangement of the robots
during the motion. We also test the individual F2 controller,
for which the peak value of d3 over time is 0.27m. This is
reduced to 0.06m when using the combined controller.

In scenario 3, we consider a deformed initial shape and we
use w1 = 1, w2 = 10, w3 = 10, i.e., we combine all three
controllers. We compare again the individual F1 controller
and the combined one. We use velocity saturation so that the
maximum velocity is the same for the two controllers. Without
saturation, the maximum norm of the initial velocity among
all robots with the combined controller would be 2.08m/s.
The evolution of d1 is similar for both controllers but, as
expected, the team stays closer to F2 and F3 formations with
the combined controller, as the d2 and d3 curves illustrate.
Indeed, the individual controller reduces d2 to 5% of its initial
value in 16.06 sec, whereas with the combined controller this
occurs considerably faster (2.62 sec), i.e., the team gets close
to the desired shape early on and remains close to it thereafter,
not allowing unpredictable shape evolutions.

B. Experiments with physical robots

Finally, we report tests done in the Robotarium [24] with
a team of six mobile robots executing a rotation-and-resizing
maneuver (Sec. IV). The results are illustrated in Fig. 3. We
choose cb = sb Rb(θb) c with sb = 0.8, θb = −60 deg. We
run two tests using (11), one with the individual F1 controller
(w1 = 1.6, w2 = 0, w3 = 0) and the other with the combined
controller (w1 = 0.8, w2 = 8, w3 = 0). We use the same
graph (see bottom-left of Fig. 3) for both tests. The weights
chosen provide a similar convergence time in both cases. As
the robots are unicycles, the single-integrator velocities of our
controllers are transformed into the corresponding linear (υ)
and angular (ω) unicycle velocities by the Robotarium’s own
conversion algorithms. In the two tests, all the robots have
the same heading initially. Moreover, we make them all stop
moving when the errors associated with both d1 and d2 fall
below a certain threshold.

Observing intermediary configurations during the task, one
notices that the individual controller (w2 = 0) fails to pre-
serve the shape during the motion and causes a considerable
deformation. This is also manifested by the evolution of d2.
This fact would be problematic for certain applications such
as object manipulation. In comparison, the proposed combined
controller preserves the shape much more closely. It also uses
lower velocities and shorter paths to complete the task. Even
though the unicycle kinematic constraints have a visible effect
on the obtained motions, the core features of the proposed
single-integrator controller are maintained. Thus, these tests
demonstrate the applicability of the proposed controller on
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Fig. 2. Simulation results. Each row (1, 2, 3) corresponds to the scenario of the same number. For each row, the five plots from left to right are: robot
paths (individual controller), robot velocity norms (individual controller), robot paths (combined controller), robot velocity norms (combined controller), and
distances to formations. In the path plots, the initial positions are marked with solid circles and the final ones with hollow circles. For visualization purposes,
several lines joining robot positions are shown to represent the outline of the initial and final configurations.

physical robots and under the non-ideal conditions and pertur-
bations of a real-world scenario.

VI. CONCLUSION

We have presented a distributed control approach for planar
multirobot formations based on combining individual con-
trollers for different formation types. Notable features of
our approach are its versatility and its ability to control the
transient performance. We exemplified the latter by using the
approach to execute efficient leaderless formation maneuvers.
Future work directions include: (i) extending our design
to other robot dynamics (e.g., unicycles), (ii) studying the
robustness to noise, and (iii) addressing other team missions.

APPENDIX

Proof of Lemma 1: As A is real and symmetric, we can
express A = UDUT where U is orthogonal and its columns
are the orthonormal eigenvectors of A, and D = diag(λi)
with λi ∈ R, ∀i ∈ {1, ..., 2n} the eigenvalues of A in
increasing order. The system under the considered dynamics
follows the trajectory q(t) = eAtq(0). Note that eAt =

eU(Dt)UT

= UeDtUT, where eDt = diag(eλit). λi are all
real and non-positive as A is negative semidefinite.

If λi < 0, eλit → 0 monotonically as t → ∞, whereas if
λi = 0, eλit = 1t = 1 ∀t. Therefore, ||q|| remains bounded
and, when t → ∞, eDt → diag(0, ..., 0, 1, ..., 1). The number
of ones, k, in this matrix is equal to the dimension of ker(A).
Hence, when t → ∞, eAt → P = VVT where V ∈ R2n×k

contains the last k columns of U and is an orthonormal basis
of ker(A). This means P is the orthogonal projection matrix
onto ker(A). Hence, q(t → ∞) = Pq(0) is the orthogonal
projection of q(0) onto that kernel.

Proof of Lemma 2: (i) Consider a q ∈ R2n such that
q ∈ (ker(A) ∩ ker(B)). This implies Aq = 0 and Bq = 0,
i.e., (A + B)q = 0. Hence, q ∈ ker(A + B). (ii) Consider
a q ∈ R2n such that q ∈ ker(A + B). This implies
qT(A+B)q = 0, i.e., qTAq+qTBq = 0. Since A and B are
symmetric negative semidefinite, this means qTAq = 0 and
qTBq = 0. As A is symmetric negative semidefinite, there
is a real symmetric positive semidefinite matrix G such that
A = −GTG. We can now see that qTAq = −qTGTGq =
−||Gq||2 = 0. This implies Gq = 0, and Aq = −GTGq =
0. Therefore, q ∈ ker(A). Using an identical reasoning,
q ∈ ker(B). Hence, q ∈ (ker(A) ∩ ker(B)).

Proof of Prop. 2: (i) Let us denote the n2 blocks of size 2×2
of Ak, k ≥ 0, by Akij . Every such block has the form (12),
from Assum. 3. Also, as A is symmetric (Assum. 1), Ak is
symmetric for any integer k ≥ 0. Defining Sij = cT

iAkijScj
∈ R for any two i ∈ N , j ∈ N , we can express

cTAkTc =
∑
∀i

Sii +
∑
∀i

∑
∀j>i

(Sij + Sji). (26)

As Ak is symmetric, for every block Akii the two off-diagonal
entries are necessarily zero, to satisfy the form (12). We thus
have Akii = akiiI2 for some akii ∈ R, and hence Sii =
cT
iAkiiSci = akiic

T
iSci = 0 ∀i. For i ̸= j, we write

Sji = cT

jAkjiSci = (cT

jAkjiSci)
T = cT

iS
TAT

kjicj . (27)
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Fig. 3. Experimental results. Top-left: distances to formations. Bottom-left: initial configuration for the two tests, with the graph edges marked as solid lines.
The remaining four plots in the first row are for the individual controller, and they show, from left to right: an intermediary configuration, final configuration
with robot paths, linear and angular unicycle velocities. The remaining four plots in the second row are for the combined controller, and they show, from left
to right: an intermediary configuration, final configuration with robot paths, linear and angular unicycle velocities.

We can apply on the rightmost term of (27) that AT

kji = Akij

(due to symmetry of Ak), and two identities that are easy to
check: ST = −S and SAkij = AkijS. One thus sees that
Sji = −Sij . It follows from (26) that cTAkTc = 0. As
eAt is a weighted sum of the powers Ak, we conclude that
cTeAtTc = 0. Transposing and noting that eAt is symmetric
(because A is symmetric), we see (Tc)

T
eAtc = 0 too.

(ii) Notice (Tc)
T
eAtTc = cT(TTeAtT)c. Recall that T =

In ⊗ S, i.e., T is block-diagonal with every 2 × 2 diagonal
block equal to S. Then, notice every block (i, j) of size 2× 2
of AkT (respectively, TAk) is equal to AkijS (respectively,
SAkij). Since, as noted above, AkijS = SAkij , we have
AkT = TAk. Therefore, eAtT = TeAt, and TTeAtT =
TTTeAt. Noticing that TTT = I2n, the result follows.
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