
1

Concentric Tube Robot Redundancy Resolution via
Velocity/Compliance Manipulability Optimization

Jia Shen*, Yifan Wang*, Milad Azizkhani, Deqiang Qiu, and Yue Chen

Abstract—Concentric Tube Robots (CTR) have the potential
to enable effective minimally invasive surgeries. While extensive
modeling and control schemes have been proposed in the past
decade, limited efforts have been made to improve the trajectory
tracking performance from the perspective of manipulability
, which can be critical to generate safe motion and feasible
actuator commands. In this paper, we propose a gradient-
based redundancy resolution framework that optimizes veloc-
ity/compliance manipulability-based performance indices during
trajectory tracking for a kinematically redundant CTR. We effi-
ciently calculate the gradients of manipulabilities by propagating
the first- and second-order derivatives of state variables of the
Cosserat rod model along the CTR arc length, reducing the
gradient computation time by 68% compared to finite difference
method. Task-specific performance indices are optimized by
projecting the gradient into the null-space of trajectory tracking.
The proposed method is validated in three exemplary scenarios
that involve trajectory tracking, obstacle avoidance, and external
load compensation, respectively. Simulation results show that the
proposed method is able to accomplish the required tasks while
commonly used redundancy resolution approaches underperform
or even fail.

Index Terms—Concentric Tube Robot, Manipulability, Redun-
dancy Resolution

I. INTRODUCTION

CONCENTRIC Tube Robots (CTR) consist of concentri-
cally aligned, pre-curved elastic tubes, and are capable

of generating dexterous motions. The dexterity and compact
dimension of these devices make them ideal for a variety
of minimally invasive surgical applications [1]. Extensive
research has been conducted on the mechanics modeling of
CTR, aiming to characterize the mapping from the joint-
space input to robot configuration. The most widely adopted
approach combines the Cosserat rod model with geometric
concentric constraints of tubes [2], [3]. This approach de-
scribes the spatial evolution of robot states with a system of
ordinary differential equations (ODEs), resulting in a boundary
value problem (BVP) that can be numerically solved by

This research is supported by Georgia Tech faculty startup grant and
McCamish Blue Sky Grant. Corresponding author: Yue Chen.

J. Shen, Y. Wang, and M. Azizkhani are with the Department of Mechanical
Engineering, Georgia Institute of Technology, Atlanta 30332 USA (e-mail:
{jshen359, wangyf, mazizkhani3}@gatech.edu.)

D. Qiu is with the Department of Radiology and Imaging Sciences, Emory
University, Atlanta 30338 USA (e-mail: deqiang.qiu@emory.edu)

Y. Chen is with the Department of Biomedical Engineering,
Georgia Institute of Technology/Emory, Atlanta 30332 USA (e-mail:
yue.chen@bme.gatech.edu)

* Jia Shen and Yifan Wang contributed equally to this paper.
This work has been submitted to the IEEE for possible publication.

Copyright may be transferred without notice, after which this version may
no longer be accessible.

nonlinear root-finding algorithms. The Cosserat-based model
has been used to formulate and solve problems of stability
analysis [4], stiffness modulation [5], and force sensing [6].

Despite significant advancements over the past decade,
achieving reliable trajectory tracking with CTR still presents
a significant technical challenge, primarily due to the difficul-
ties in accurately solving the complicated inverse kinematics
[7]. This statement remains particularly true when CTRs are
required to operate in complex scenarios, such as being in
close proximity to singular configurations or when secondary
tasks like obstacle avoidance and carrying external loads are
necessary. The Jacobian-based resolved rate controller and
many of its variations have been widely adopted to partially
address this problem. Recent progress includes the efficient
Jacobian calculation via forward integration approach [8], and
redundancy resolution for secondary task optimization such as
joint limit avoidance [9], and instability avoidance [10]. The
damped least squares approach [11] can be used to prevent un-
desirable behavior of the robot under ill-conditioned Jacobians,
but the additional regulation term may drive the robot away
from the desired trajectory, leading to unwanted behavior.
Note that the external force disturbances may cause significant
deflections of the CTR in unfavorable configurations, which
can contribute to inaccurate trajectory tracking.

The velocity/compliance manipulability is a crucial perfor-
mance measure to evaluate the robot singularity and force
capacity for a given configuration [12], which is essential for
the safe and efficient manipulation of CTR in confined en-
vironments or having contacts. The concept of manipulability
was originally proposed for rigid-link robots [13] to determine
whether the posture is compatible with task requirements.
Despite the significant structural differences between CTR
and rigid-link robots, the concept of manipulability can be
generalized to CTR [14]. A unified force/velocity manipula-
bility index for CTR was proposed in [12] to estimate the
optimal direction for a better force/velocity transmission ratio.
However, there have been limited efforts to address the tra-
jectory tracking problem by considering CTR manipulability.
One of the most recent studies used the gradient projection
method, which tries to reshape the unified compliance/velocity
manipulability ellipsoid into a sphere along the trajectory to
avoid instability [15]. However, this method only considers
the velocity manipulability at the tip for instability avoidance,
and the Hessian is approximated using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, which introduces errors
that may cause unstable performance and slow down the
optimization process [16].

In this paper, we present a gradient-based redundancy

ar
X

iv
:2

30
5.

06
19

4v
1

 [
cs

.R
O

]
 1

0
M

ay
 2

02
3

2

Fig. 1. A CTR with three precurved tubes. The base rotation, translation, and
exposed length of i-th tube are denoted as αi, βi, and γi, respectively.

resolution framework for CTR that optimizes motion/force
capability along any task-required direction during trajectory
tracking. We develop the derivative propagation method for
the gradient of manipulability, enabling efficient calculation
and online trajectory tracking as needed. Furthermore, we
propose several task-specific performance indices based on
velocity/compliance manipulability, which are optimized by
gradient projection. The performance of the redundancy reso-
lution framework is demonstrated through simulations of a
three-tube CTR, where the robot is controlled to follow a
desired trajectory while utilizing the redundant degrees of
freedom (DoFs) to accomplish secondary tasks, including
singularity avoidance, obstacle avoidance, and stiffness modu-
lation. This paper is organized as follows: Section II provides
an overview of the CTR model and manipulability indices.
The derivative propagation method is presented in Section III.
Section IV details the redundancy resolution with task-specific
performance indices. The simulation results are presented in
Section V, followed by the conclusion in Section VI.

II. PRELIMINARIES

A. Review of CTR Mechanics Model

The use of Cosserat rod theory for modeling the mechanics
of CTR is a widely accepted approach [2]. This section
provides a brief overview of the CTR mechanics model, and
Table 1 summarizes the nomenclature used in this paper. We
refer the reader to [8] for detailed derivation.

As shown in Fig.1, the shape of a CTR is described as a
differentiable spatial curve parameterized by its arc length s.
A material frame is assigned to each tube such that the origin
of the frame moves along the curve at s, and the z-axis of the
frame aligns with the tangent of the curve. Assuming that all
tubes conform to the same curve, the position of all material
frames w.r.t. the fixed reference frame is given by p(s) and
the orientation of the i-th tube is given by Ri(s). To simplify
notation, we use R1(s) = R(s). It then follows that Ri(s) =
R(s)Rz(θi(s)), where Rz(θ) denotes the rotation around z-axis
for angle θ . The curvature of the i-th tube at s represents the
rate of change of Ri(s) w.r.t. s, ui(s) =

(
Ri(s)T R′i(s)

)∨.
Consider an n-tube CTR with wrench w= [FT LT]T applied

to the tip. The tubes are assumed to have planar precurvature

TABLE I
NOMENCLATURE

Notation Definitions
i Tube index, the innermost tube is i = 1.
s Arc-length parameter for the central axis
li Length of the i-th tube
ls,i Length of the straight part of the i-th tube
αi Rotation angle of the i-th tube
βi Translation length of the i-th tube
se,i Arc-length parameter at the end of the i-th tube:

se,i = βi + li
st,i Arc-length parameter at the transition from the straight to

the precurved part of the i-th tube: st,i = βi + ls,i
γi Exposed length of the i-th tube, γi = se,i− se,i+1

q q = [α1 β1 ... αn βn]
T Actuation vector

p(s) Position vector of material frames w.r.t. the reference frame
Ri(s) Rotation matrix of the i-th material frame w.r.t. the refer-

ence frame
ui(s) Curvature of the i-th tube w.r.t. the i-th material frame
mi(s) Internal moment of the i-th tube w.r.t. the reference frame
mb(s) Total internal moment w.r.t. the first material frame
θi(s) Rotation angle from the first tube to the i-th tube
F External force applied to the tip of CTR
L External moment applied to the tip of CTR
e3 Unit vector of z-axis: [0 0 1]T

E Young’s Modulus
G Shear Modulus
Ii Second moment of area of the cross-section of the i-th tube
Ji Polar moment of inertia of the cross-section of the i-th tube
cθ , sθ Concise notations of cosθ and sinθ

∂x, ∂ 2
x,y Concise notations of

∂

∂x
and

∂ 2

∂x∂y
(·)∧ Mapping of a vector in R3 and R6 to the corresponding

element in so(3) and se(3), respectively.
(·)∨ Inverse operation of (·)∧

(·)xy R3 to R2, extraction of the first two dimension
(·)′ Derivative w.r.t. arc-length parameter s
⊗ Tensor product between a tensor and a matrix that contracts

the specific dimensions, e.g.
if W = U⊗V, then Wi, j,m = ∑

k
Ui, j,k ·Vk,m

u∗i (s) = [κi,0,0]T . It is also assumed that there are no shear
and extension in the tubes and no friction between the tubes,
which is widely adopted in the literature [2], [3]. Cosserat
rod model of CTR describes the evolution of the curve and
internal moment by a system of ODEs consisting of geometric
constraints, moment equilibrium, and linear constitutive laws
as follows:

p′ = Re3 (1a)
R′ = Rû1 (1b)
θ
′
i = uiz−u1z , i = 2...n (1c)

u′iz =−
κiEIi

GJi
uiy , i = 1...n (1d)

mb
xy
′
= (−û1mb− ê3RT F)xy , (1e)

The unknown variables on the right-hand side are given by

mb
z = G

n

∑
i=1

Jiuiz (2a)

u1xy =
1

(∑n
i=1 EIi)

(mb
xy +

n

∑
i=1

[cθi sθi]
T EIiκi) (2b)

uiy = [−sθi cθi]u1xy (2c)

3

We can write (1) in a compact form:

g′(s) =
[

R(s) p(s)
01×3 1

]′
= gζ̂ (y) (3a)

y′ = f(s,y,R,w) (3b)

where ζ = [vT uT]T is the body twist of the material frame
w.r.t. s, and y = [θ2 ... θn u1z ... unz mb

x mb
y]

T . The above ODE
is constrained at the robot base and the end of each tube.
The initial conditions at the robot base are given by geometric
constraints determined by q and uiz:

p(0) = [0,0,0]T (4a)
R(0) = Rz(α1−β1u1z(0)) (4b)
θi(0) = αi−α1− (βiuiz(0)−β1u1z(0)) (4c)

The boundary constraints come from the moment equilibrium
at the end of each tube, which can be summarized into a vector
form:

0 = b(x) = [GJ1u1z(se,1)− eT
3 RT L ,

u2z(se,2), ...,unz(se,n) ,

mb
xy(se,1)−

(
RT L

)
xy]

T .

(5)

where the vector x = [qT wT yu(0)T]T contains the indepen-
dent system inputs q and w, as well as the unknown initial
variables yu(0) = [u1z(0) ... unz(0) mb

x(0) mb
y(0)]

T . Equations
(3)-(5) form a BVP that can be solved using shooting method,
which uses nonlinear root-finding algorithms to iteratively
search for the yu(0) that satisfy b(x) = 0. In each iteration,
b(x) is obtained by solving an initial value problem (IVP)
consisting yu(0) together with equations (3)-(4).

B. Manipulability Analysis

To characterize the robot versatility of moving in the task
space, the notion of velocity manipulability ellipsoid (VME)
is proposed in [13]. It is defined as

VME := {ξ | ξ = Jq̇, ||q̇||= 1} (6)

where J =
[(
(dq1g)g−1

)∨
...
(
(dqng)g−1

)∨] is the spatial
Jacobian that maps a unit sphere of joint space velocity to the
ellipsoid of task space velocity. The velocity manipulability
index (VMI) µv is then defined to be the volume of the VME:

µv =
√

det(JJT) (7)

Similarly, the compliance manipulability ellipsoid (CME) is
defined as

CME := {ξ | ξ = Cẇ, ||ẇ||= 1} (8)

where C =
[(
(dw1g)g−1

)∨
...
(
(dw6g)g−1

)∨] is the compli-
ance matrix of the robot. And the compliance manipulability
index (CMI) µc is defined as:

µc =
√

det(CCT) (9)

Note that VMI and CMI are functions of J and C, re-
spectively. To optimize the manipulability using redundancy
resolution, we need to calculate the gradients of J and C
w.r.t. q, i.e. the Hessians. However, for the Cosserat rod

models, a closed-form expression of J and C usually are not
available. A feasible way to compute their gradient is using
finite difference but it can be computationally expensive. To
reduce the heavy computational load, we propose an efficient
method for calculating the Hessian below.

III. DERIVATIVE PROPAGATION FOR THE HESSIAN

Our calculation of the Hessian adopts the idea of derivative
propagation, which essentially combines the propagation of
system state variables together with their derivatives into a
new system of ODEs. In [8], an augmented IVP was defined
which, in addition to (1), includes the propagation of first-
order derivatives of state variables along the arc length, to
efficiently compute the Jacobian of the CTR. We extend this
derivative propagation technique to second-order derivatives,
allowing the calculation of the Hessian by solving a single
IVP after solving the BVP for yu(0), which facilitates the
manipulability optimization for redundancy resolution.

We first find the formulation for the Jacobian and com-
pliance matrices. The changes in actuation variables q and
external wrench w contribute to the spatial twist ξ =

(
ġg−1

)∨,
where ġ denotes the time derivative of g:

ξ = Jq̇+Cẇ (10)

Now, consider g(s) and b as the solution to the IVP formed
by (3)-(4). Since they are fully determined by x, their total
derivatives consist only of their partial derivatives w.r.t. each
component of x. For g(s), since it stays on SE(3), we consider
the spatial twists given by [17]:

E = [Eq Ew Eu] =
[(
(∂x1g)g−1)∨ ...

(
(∂xN g)g−1)∨] (11)

And we can obtain ξ for the g(s) as an IVP solution by
using the chain rule:

ξ = Eq q̇+Ew ẇ+Eu ẏu(0) (12)

The partial derivatives of b are given by

B = [Bq Bw Bu] = [∂x1b ... ∂xN b] (13)

Observe that, for the real system, g(s) should always remain
as a solution to the BVP (3)-(5) while varying with q and w.
This requires yu(0) to vary in a way that it compensates the
variations in q and w, such that b(x) = 0 always holds. This
constraint is obtained by taking the time derivative of (5):

0 = ḃ = Bq q̇+Bw ẇ+Bu ẏu(0) (14)

Using (14) to eliminate the ẏu(0) in (12) results in the
expression of (10) by partial derivatives:

ξ = (Eq−EuB†
uBq)q̇+(Ew−EuB†

uBw)ẇ (15)

from which we obtain the Jacobian and compliance matrices:

J = Eq−EuB†
uBq, C = Ew−EuB†

uBw (16)

where B†
u is the pseudo-inverse of Bu.

For gradient-based redundancy resolution, we calculate the
derivatives of Jacobian and compliance matrix w.r.t. q, i.e.
the Hessians, using the same technique. Treating J and C

4

as functions of solutions to the IVP and taking the time
derivatives yields:

J̇ = ∂qJ⊗ q̇+∂wJ⊗ ẇ+∂uJ⊗ ẏu(0)

Ċ = ∂qC⊗ q̇+∂wC⊗ ẇ+∂uC⊗ ẏu(0)

Eliminating the ẏu(0) using (14), the derivatives of J and C
that satisfy the BVP are given by:

J̇ = dqJ⊗ q̇+dwJ⊗ ẇ, Ċ = dqC⊗ q̇+dwC⊗ ẇ (17)

where the Hessians used for redundancy resolution are

dqJ = ∂qJ−∂uJ⊗(B†
uBq), dqC = ∂qC−∂uC⊗(B†

uBq) (18)

To obtain the partial derivatives in the above equations, we
further define the derivatives of E and B as D = ∂xE and
A = ∂xB, and take the derivatives of (16) w.r.t. x:

∂xr J = Dq,r−Du,rB†
uBq−EuB†

uAu,rB†
uBq−EuB†

uAq,r

∂xr C = Dw,r−Du,rB†
uBw−EuB†

uAu,rB†
uBw−EuB†

uAw,r
(19)

where the r-th page of tensors D and A are denoted as

Dr = [Dq,r Dw,r Du,r] = [∂xrEq ∂xr Ew ∂xrEu]

Ar = [Aq,r Aw,r Au,r] = [∂xrBq ∂xr Bw ∂xrBu]
(20)

We can observe from (16), (18) and (19) that, calculating
the Jacobian and compliance matrices and the corresponding
Hessians requires calculating B, E, A, and D. While E and
D are derivatives of g(s) and can be obtained from initial
conditions since they exist along the robot length, B and A are
evaluated only at se,i and cannot propagate with s. However,
note from (5) that b is a function of y(se,i) and g(se,i), hence
we can obtain B and A by propagating the derivatives of y(s)
and g(s) w.r.t. x. Denote the first- and second-order derivatives
of the state vector y w.r.t. x as:

V = ∂xy, U = ∂
2
x,xy

Then B and A can be obtained by taking derivatives of
b(x) and plugging in values of V and U at se,i. Note that
the first-order partial derivatives E, V and the second-order
partial derivatives D, U are themselves functions of s, they
can be calculated by integrating along the arc length through
a new set of ODEs. Since g and y are piecewise continously
differentiable, we have the relationship V′ = (∂xy)′ = ∂x(y′).
Hence the k-th column of matrices E′ and V′ are given by:

E′k =
(
∂xk(g

′) ·g−1 +∂xk g · (g−1)′
)∨

=
(

g ·∂xk ζ̂ ·g−1
)∨

V′k = ∂yf ·Vk +∂xk f+∂vec(R)f ·vec(∂xk R)
(21)

where the partial derivative of ζ and R can be obtained
by ∂xk ζ = ∂yζ · Vk, ∂xk R = ([03×3 I3×3]Ek)

∨R, and vec()
reshapes a matrix into a column vector. Denoting (21) as
[(E′)T (V′)T]T = f1(s,y,R,w,E,V), the ODEs for the second-
order derivatives are derived by taking the derivative of f1 w.r.t.
x. The r-th page of tensors D′, U′ is given by:[

Dr
Ur

]′
= ∂yf1 ·Vr +∂xr f

1 +∂vec(R)f1 ·vec(∂xk R)

+∂vec(V)f1 ·vec(Ur)+∂vec(E)f1 ·vec(Dr)

(22)

Fig. 2. Flow chart of steps for calculating the Hessians via derivative
propagation.

Combining (21) and (22) with (1) gives an augmented
system of ODEs:

g′(s) = gζ̂ (y) (23a)
y′(s) = f(s,y,R,w) (23b)[

E(s)
V(s)

]′
= f1(s,y,R,w,E,V) (23c)[

D(s)
U(s)

]′
= f2(s,y,R,w,E,V,D,U) (23d)

where (23d) is the concise form of (22). Using initial values
calculated by taking the first- and second-order derivatives of
(4) w.r.t. x, (23) can be solved as an IVP.

Note that at the end of each tube or at positions where
the precurvature or stiffness of tubes has discontinuity, partial
derivatives V, E, U, D are discontinuous since they are contin-
uous functions of stiffness and precurvature. Their transition
functions at these positions can be obtained by taking the
derivatives of the transition functions of y and g. The arc length
when these discontinuities appear is denoted as si, representing
either se,i or st,i. Transitions of y and g are given by:

y+(s,x)|s=si = h(y−(s,x))|s=si (24a)
g+(s,x)|s=si = g−(s,x)|s=si (24b)

where − and + denote the state vector immediately before
and after the transition point, respectively, and h() is the
transition function of y that enforces boundary conditions
(5) and static equilibrium at transition points si. Define the
elements in vector x excluding βi as φ j ∈ x\βi. To take the
first- and second-order derivatives of equation (24a) over βi
and φ j, we note that si is a linear function of βi, hence
dβiy|s=se,i = ∂βiy+∂sy ·dβise,i = ∂βiy+∂sy and we have

∂φ j y
+ = ∂yh(∂φ j y

−),

∂βiy
+ = ∂yh(∂βiy

−+∂sy−)−∂sy+,

∂
2
βi,φ j

y+ = ∂
2
y,yh(∂ 2

βi,φ j
y−+∂

2
s,φ j

y−)−∂
2
s,φ j

y+,

∂
2
βi,βi

y+ = ∂
2
y,yh(∂ 2

βi,βi
y−+2∂

2
s,βi

y−+∂
2
s,sy
−)

−2∂
2
s,βi

y+−∂
2
s,sy

+

(25)

The transition conditions for derivatives of g takes a similar
form. When the forward integration of (23) passes through
transition points, the above conditions are used to properly
transition the augmented state variables in (23).

By solving the IVP (23), we obtain V,E,U,D, from which
we can calculate B, A. Then B,A,E,D are plugged into (16),
(19), and (18) to obtain J, C and their gradients. While the

5

finite difference method requires solving several BVPs or
IVPs, the derivative propagation method only needs to solve
an augmented IVP and therefore reduces the computational
load. The overall procedure of calculating the Hessians is
summarized in Fig.2.

IV. TASK-SPECIFIC REDUNDANCY RESOLUTION

In this section, we present the redundancy resolution scheme
to regulate the robot configuration for effective trajectory
tracking. We incorporate performance index optimization in
the redundancy resolution for tasks including singularity
avoidance, obstacle avoidance, and tracking under external
force. The redundancy resolution proposed in this section can
be used as low-level building blocks for a high-level task and
motion planner.

A. Trajectory Tracking and Joint Limit Avoidance

The primary task in all scenarios we consider is tracking
a desired trajectory designated by either teleoperation or a
motion planner, while avoiding joint limits. Consider points
of interest on the robot where desired twists ξ j,d , j = 1, ...,m
are designated. The primary task can be formulated as:

min
q̇

q̇T W(q)q̇ (26a)

s.t. J j q̇ = ξ j,d , j = 1, ...,m (26b)

where J j is the Jacobian of the jth point of interest, W is an
adaptive positive definite weight matrix.

The cost function (26a) is designed to penalize the velocity
that drives joints to their limits. The joint limit of CTR consists
of limits on the exposed lengths γi (Fig.1), which prevent
withdrawing the inner tube entirely into the outer tube (γi > 0)
or extending the inner tube too much (βi < βi+1). Hence the
weight matrix is defined as W(q) = diag([1,w1,1,w2,1,w3])
so that only βi is regulated. To penalize the joint velocity that
drives the exposed length γi to its limit, the adaptive weight
is defined as [18]:

wi = 1+
∣∣∣∣ (γi,max− γi,min)

2(γi− γ̄i)

2(γi,max− γi)2(γi− γi,min)2

∣∣∣∣ (27)

where γi ∈ [γi,min,γi,max], and γ̄i = (γi,min + γi,max)/2. When γi
approaches the limits, the weight wi approaches infinity and
penalizes γ̇i towards 0.

To solve (26), define the augmented Jacobian [19] as
J = [JT

1 , ...,J
T
m]

T , and the augmented desired twist ξd =

[ξ T
1,d , ...,ξ

T
m,d]

T . The transformation Jw = JW− 1
2 , q̇w = W

1
2 q̇

simplifies (26) into minimizing ||q̇w||2 while satisfying Jwq̇w =
ξd , which has the closed-form solution

q̇ = W− 1
2 J†

wξd = W−1JT (JW−1JT)−1
ξd (28)

where J† = JT
(
JJT
)−1 for a redundant robot.

B. Task-Specific Performance Index

We consider three scenarios and derive the task-specific
performance indices together with their gradient based on
previous derivations.

Scenario 1: When the robot is tracking a desired trajectory
in free space, it is beneficial to maintain a relatively high
VMI to avoid singular configuration. Particularly, if the desired
trajectory is suddenly updated, a sufficient VMI will enable
the robot to follow the new trajectory immediately. It is
also reported that increasing VMI helps avoid the snapping
of the CTR [15]. Here, we consider the VMI of robot tip
and incorporate the joint limit into the VMI by substituting
the original Jacobian in (7) with the weighted Jacobian Jw
defined earlier. Note that when βi approaches its limit, the
corresponding column in Jw is penalized towards 0, effectively
reducing the manipulability generated by βi. For gradient-
based redundancy resolution, the analytical gradient of the
VMI can be derived using Jacobi’s formula:

∂qi µv(q) =
1
2

det(ΓΓΓv)
− 1

2 det(ΓΓΓv)trace(ΓΓΓ−1
v ∂qiΓΓΓv) (29)

where ΓΓΓv = JwJT
w, and the partial derivative ∂qiΓΓΓv :

∂qiΓΓΓv = (∂qiJ)W
−1JT +JW−1(∂qiJ)

T (30)

can be obtained by using the Hessian from (18). Scenario 2:
When navigating through a confined space, the CTR needs to
avoid obstacles that can potentially collide with robot body.
Increasing the robot body VMI would improve the motion
capability of the robot and facilitate obstacle avoidance. We
assume that a map of obstacles is known, and the points of
interest on CTR can be determined by task-specific criteria,
such as selecting the closest point to each nearby obstacle. At
each point of interest, a desired velocity that guides the robot
away from obstacles can be obtained. Denote the unit vector
of the desired direction as ρ , an oriented VMI is defined as
the projection of VME along ρ , and is obtained by:

µ
d
j,v(q,ρ) =

[
ρ

T (J jJT
j)
−1

ρ
]− 1

2 (31)

A weighted whole-body VMI is then defined as:

µo(q) =
p

∑
j=1

c jµ
d
j,v(q,ρ j) (32)

where µd
j,v is the oriented VMI of the j-th point of interest.

The weight c j describes the relative importance of the j-th
point of interest and can be determined as a function of e.g.
the distance between the robot body. The gradient of µd

c is
derived as:

∂qi µ
d
j,v(q,ρ) =

1
2
(ρT

ΓΓΓ
−1
j,v ρ)−

3
2 ρ

T
ΓΓΓ
−1
j,v (∂qiΓΓΓ j,v)ΓΓΓ

−1
j,v ρ (33)

where ΓΓΓ j,v = J jJT
j , and the partial derivative ∂qiΓΓΓv can be

obtained using the Hessian in equation (18)
Scenario 3: When performing certain surgical procedures,

such as suturing or forcep-based biopsy, there is a concentrated
external load w applied to the robot tip that deforms the
robot, potentially leading to undesired behavior. It is usually
desirable to suppress the robot deformation while following

6

the designated trajectory. This can be achieved by minimizing
the compliance in the direction of the external load. Similar to
the definition of the oriented VMI, we denote the unit vector
along the direction of the tip load as ν , and the compliance in
this direction is obtained by the projection of CME along ν :

µ
d
c (q,ν) =

[
ν

T (CCT)−1
ν
]− 1

2 (34)

Its gradient ∂qi µ
d
c (q,ν) can be obtained similar to (33).

C. Redundancy Resolution with Task-Specific Gradient Pro-
jection (TSGP)

The redundancy resolution is conducted such that the
trajectory tracking and joint limit avoidance (28) is firstly
satisfied, then the gradient-based optimization of the task-
specific performance index is performed using the remaining
degrees of freedom. This is achieved by projecting the gradient
of the performance index µ into the null-space of Jw:

q̇w = J†
wξd +α(I−J†

wJw)∇µ (35)

where α is a scalar parameter. A positive α would increase
µ , and a negative α would decrease it. As mentioned in [18],
choosing a suitable gain α across the whole workspace is
critical for TSGP.

In this paper, we adopt the method in our recent work [20]
to find a suitable α that balances the desired velocity and
null-space projection for manipulability optimization.

The final instantaneous joint velocity of the TSGP controller
is given by

q̇ = W−1JT (JW−1JT)−1
ξd

+α
(
I−W−1JT (JW−1JT)−1J

)
W−1

∇µ
(36)

V. SIMULATION STUDY

To evaluate the performance of the algorithms developed
in section III and IV, trajectory tracking simulations were
conducted using a 3-tube CTR to achieve tasks that reflect
the scenarios presented in the previous section. Parameters of
the CTR are given in Table II. We compared the performance
of the proposed TSGP controller with two other widely used
kinematic controllers, namely:

1) The standard resolved-rates (RR) controller given by (28).
2) A generalized damped least-square (DLS) controller.
The DLS controller tries to minimize a quadratic cost

function [9], [10]:

h(q̇) = (Jq̇− ṗd)
T Wt(Jq̇− ṗd)+ q̇T (WD +WJ)q̇ (37)

where Wt , WD, WJ denotes the weight matrix for trajectory
tracking, singularity robustness, and joint limit avoidance,
respectively. The instantaneous joint velocity can be obtained
by setting ∇h = 0:

q̇ =
(
JT WtJ+WD +WJ

)−1 JT Wt ṗd (38)

In this simulation, we used the 3×6 Jacobian for the desired
linear velocity ṗd , and the DLS parameters were set to:
Wt = I3×3, WD = 0.001I6×6, WJ = 0.001W(q). Here, W(q)
is the joint limit weight defined in section IV-A. All algorithms
are implemented in Matlab and run on a 8-core 2.30 GHz
processor.

TABLE II
SIMULATION PARAMETERS FOR TUBES

Tube 1 Tube 2 Tube 3

Inner Diameter (mm) 0.640 0.953 1.400
Outer Diameter (mm) 0.840 1.270 1.600
Straight Section Length (mm) 500 250 100
Curved Section Length (mm) 40 50 50
Curvature (m−1) 20 10 5
Young’s Modulus, E (GPa) 60 60 60
Shear Modulus, G (GPa) 23.1 23.1 23.1
Joint Limit, γi,min (mm) 10 10 10
Joint Limit, γi,max (mm) 200 200 200

TABLE III
COMPUTATIONAL EFFICIENCY FOR THE HESSIAN

Finite Difference Derivative Propagation

ODE solver ode45 ode23 ode113 ode45 ode23 ode113

Time (s) 0.498 0.320 0.293 0.159 0.133 0.125
PDE calls 1645 908 953 95 67 54
Error (%) 0 3.82 1.90 0.0526 1.23 0.649

A. Computational Efficiency for Hessian Calculation

The computational efficiency of the derivative propagation
method is evaluated by randomly sampling 10,000 configu-
rations and calculating the corresponding Hessian. Different
non-stiff ODE solvers provided by Matlab are explored for
accuracy and efficiency. We compare the performance of the
proposed method to that of the finite difference method,
which calculates D and U by applying perturbations to q
and calculating multiple Es and Vs, each from one IVP using
(23a)-(23c). The Hessian calculated by the Runge-Kuta (4,5)
solver (ode45) using finite difference is used as the reference
to evaluate the errors of the derivative propagation. We record
the largest relative error among all elements compared to the
reference Hessians. Since the step length of different solvers
vary, we evaluate the average CPU time together with the
number of calls for the forward integration of (23) for the
derivative propagation method or equations (23a)-(23c) for the
finite difference method. We do not test calculating E and V
using finite difference since this is significantly slower.

As shown in table III, the Hessians by the proposed method
agree with those of the finite difference method very well.
The proposed method reduces the CPU times by 68% and
the number of calls of ODEs by 94% compared to the finite
difference method. In this comparison, we do not consider
parallel computing. While it is straightforward to accelerate
the finite difference by parallel computing, we note that the
calculation of IVP can also be parallelized which can be
used to further accelerate the derivative propagation method.
In our simulation, finite difference using parallel computing
typically results in 0.1s CPU time, while 3 times speedup of
ODE computing for 8 threads is reported in literature [21].
Therefore, we argue that the proposed method is more efficient
given the same amount of computational resources.

7

Fig. 3. Simulation results of tracking a square trajectory in free space. (A) Top view of the trajectories. (B) Side view of the trajectories. (C) The changes
of VMIs and position errors along the trajectory. (D) The changes of joint velocities along the trajectory.

B. Free Space Trajectory Tracking

For the scenario 1 in section IV-B, we used a square
trajectory that contains 90◦ turns and passes through neigh-
borhoods of singularities. For each point along the trajectory,
the controllers are given one iteration (0.5s time interval) to
move the robot toward that point. This setup requires the robot
to maintain a relatively high VMI to avoid singularities and
follow the trajectory closely at sharp turns. Thus, the TSGP
tried to maximize the VMI for this scenario.

Fig.3 gives the simulation results. As shown in Fig.3-(C),
the VMI generated by TSGP is much higher than RR and
DLS throughout the trajectory, leading to reduced tracking
error. The RR controller results in large position errors at
corners of the trajectory, since the robot has low VMIs at
these points and cannot generate large enough velocity in the
desired direction. The low µv generated by RR as in Fig.3-
(C) shows that the robot is close to singularities, which is
also reflected in Fig.3-(D) by large joint velocities generated
by RR due to low motion capabilities. On the other hand,
the DLS controller achieved a relatively higher VMI than
RR and hence fewer spikes in joint velocities. However, this
comes with the cost of an overall higher position error, since
the control law (38) effectively damps the singular values
of the Jacobian and distorts it. The TSGP controller avoids
this issue by performing gradient ascent for VMI in the null-
space of the Jacobian, which preserves the accuracy of the
trajectory tracking task while keeping future Jacobians away
from singularities.

C. Obstacle Avoidance

Corresponding to scenario 2 in IV-B, the robot needs to
achieve online obstacle avoidance while tracking a straight
trajectory in this simulation. Apart from the robot tip, the point
of interest is defined as the closest point on the robot curve
to the obstacle. This point is updated during each iteration by
performing a k-nearest neighbor (KNN) search between the
discretized robot curve and the point cloud representing the
surface of the obstacle. We define the unit vector that is aligned
with the closest point-pair and points towards the robot as k.

Fig. 4. Simulation results of obstacle avoidance. (A) Motion history of
the robot using different controllers. (B) A front view of (A) showing the
trajectories of the CTR shapes. (C) A top view of (A) showing the trajectories
of the closest point on the CTR to the obstacle. (D) The changes of oriented
VMIs along the trajectory. (E) The changes of the robot-obstacle distance
along the trajectory.

Once the shortest distance is below a threshold, the following
obstacle avoidance task is added to (26b):

v = ρ
T Jvq̇, 0 = kT Jvq̇ (39)

where ρ = (Re3)×k, Re3 is the tangent vector of the robot
at the point of interest, v is the magnitude of the obstacle
avoiding velocity, and Jv is the linear velocity Jacobian at the
point closest to the obstacle. For the 6-DoF CTR, the above
task takes 2 DoFs and trajectory tracking takes 3 DoFs, hence
1 DoF is left to optimize the body manipulability in (32).

As shown in Fig.4, a cuboid obstacle is placed to block
the robot. Fig.4-(C) shows the desired velocity direction that
generates a sideward motion of the robot. The TSGP is capable

8

Fig. 5. Simulation results of trajectory tracking under vertical external force.
(A) Motion histories of the robot using different controllers. (B) Zoom-in
view of the robot tip trajectories and the CMEs of different controllers at the
last time step. (C) The changes of oriented CMIs along the trajectory.

of increasing the VMI of the robot at the point of interest, thus
generating enough sideward motion to avoid the obstacle while
following the tip trajectory. However, both the RR controller
and DLS controller failed to avoid the obstacle due to the lack
of sideward motion capability, as shown in Fig.4-(D).

D. Trajectory Tracking under External Load

The last simulation corresponds to the scenario 3 in IV-B.
While tracking a straight trajectory, a constant vertical force
F = [0 0 − 0.25N]T is applied to the tip of the CTR, and
the TSGP controller minimizes the compliance in the vertical
direction, i.e. µd

c (q,−e3) defined in (34), to compensate for
the effect of the external force.

As shown in Fig.5-(A) and (B), the position error of the
TSGP controller is significantly lower than those using RR
and DLS. It can be observed from Fig.5-(A) that the robot
shapes for RR and DLS at the end of the trajectory are visibly
deflected by the external tip force. This corresponds to the
CMEs shown in Fig.5-(B) and the change of µd

c shown in
Fig.5-(C). As the robot moved forward, the TSGP slightly
reduces the compliance in the vertical direction, which can
compensate for the shape deforamtion and trajectory deviation
induced by the external force. By contrast, both RR and DLS
methods lack the capability to follow the desired trajectory
with the external loads.

VI. CONCLUSION

In this paper, we present a redundancy resolution framework
for CTR based on an efficient method for calculating the
gradient of CTR manipulability. Task-specific performance in-
dices based on velocity/compliance manipulability is proposed
for trajectory tracking in different operation scenarios. The
proposed derivative propagation method reduces the compu-
tational time for the Hessian by 68% compared to the finite
difference method. Simulation studies were conducted in three
specific scenarios corresponding to avoiding singularity, avoid-
ing obstacles, and overcoming external force. The proposed
redundancy resolution scheme consistently outperformed the
standard resolved-rates and the damped least square method

for trajectory tracking, demonstrating potential in facilitating
teleoperation as well as task planning. Future work includes: 1)
implementing the proposed method for hardware experiments
and evaluating the real-time performance, 2) developing a
high-level planner for autonomous task execution.

REFERENCES

[1] Z. Mitros, S. H. Sadati, R. Henry, L. Da Cruz, and C. Bergeles, “From
theoretical work to clinical translation: Progress in concentric tube
robots,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 5, pp. 335–359, 2022.

[2] D. C. Rucker, B. A. Jones, and R. J. Webster III, “A geometrically
exact model for externally loaded concentric-tube continuum robots,”
IEEE transactions on robotics, vol. 26, no. 5, pp. 769–780, 2010.

[3] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control of
concentric-tube robots,” IEEE Transactions on Robotics, vol. 26, no. 2,
pp. 209–225, 2010.

[4] H. B. Gilbert, R. J. Hendrick, and R. J. Webster III, “Elastic stability
of concentric tube robots: A stability measure and design test,” IEEE
Transactions on Robotics, vol. 32, no. 1, pp. 20–35, 2015.

[5] Q. Xiao, M. Musa, I. S. Godage, H. Su, and Y. Chen, “Kinematics and
stiffness modeling of soft robot with a concentric backbone,” Journal of
Mechanisms and Robotics, vol. 15, no. 5, p. 051011, 2023.

[6] Q. Xiao, X. Yang, and Y. Chen, “Curvature-based force estimation for
an elastic tube,” Robotica, pp. 1–13, 2023.

[7] A. W. Mahoney, H. B. Gilbert, and R. J. Webster III, “A review
of concentric tube robots: modeling, control, design, planning, and
sensing,” The Encyclopedia of Medical Robotics: Volume 1 Minimally
Invasive Surgical Robotics, pp. 181–202, 2019.

[8] D. C. Rucker and R. J. Webster, “Computing jacobians and compliance
matrices for externally loaded continuum robots,” in 2011 IEEE Inter-
national Conference on Robotics and Automation, pp. 945–950, IEEE,
2011.

[9] J. Burgner, D. C. Rucker, H. B. Gilbert, P. J. Swaney, P. T. Russell, K. D.
Weaver, and R. J. Webster, “A telerobotic system for transnasal surgery,”
IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 996–1006,
2014.

[10] P. L. Anderson, R. J. Hendrick, and R. J. Webster III, “Real-Time
Redundancy Resolution for Concentric Tube Robots to Avoid Elastic
Instability,” IEEE International Conference on Robotics and Automation
C4 Workshop, 2017.

[11] C. W. Wampler, “Manipulator inverse kinematic solutions based on vec-
tor formulations and damped least-squares methods,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 93–101, 1986.

[12] M. Khadem, L. Da Cruz, and C. Bergeles, “Force/velocity manipulability
analysis for 3d continuum robots,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4920–4926,
2018.

[13] T. Yoshikawa, “Manipulability of robotic mechanisms,” The interna-
tional journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.

[14] K. Leibrandt, C. Bergeles, and G.-Z. Yang, “Implicit active constraints
for concentric tube robots based on analysis of the safe and dexterous
workspace,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 193–200, 2017.

[15] M. Khadem, J. O’Neill, Z. Mitros, L. Da Cruz, and C. Bergeles, “Au-
tonomous steering of concentric tube robots for enhanced force/velocity
manipulability,” in 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2197–2204, IEEE, 2019.

[16] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.
[17] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to

robotic manipulation. CRC press, 1994.
[18] T. F. Chan and R. Dubey, “A weighted least-norm solution based

scheme for avoiding joint limits for redundant joint manipulators,” IEEE
Transactions on Robotics and Automation, vol. 11, no. 2, pp. 286–292,
1995.

[19] O. Egeland, “Task-space tracking with redundant manipulators,” IEEE
Journal on Robotics and Automation, vol. 3, no. 5, pp. 471–475, 1987.

[20] M. Azizkhani, A. L. Gunderman, A. S. Qiu, A.-P. Hu, X. Zhang, and
Y. Chen, “Design, modeling, and redundancy resolution of soft robot
for effective harvesting,” arXiv preprint arXiv:2303.08947, 2023.

[21] D. Ketcheson and U. bin Waheed, “A comparison of high-order explicit
runge–kutta, extrapolation, and deferred correction methods in serial and
parallel,” Communications in applied mathematics and computational
science, vol. 9, no. 2, pp. 175–200, 2014.

	I Introduction
	II Preliminaries
	II-A Review of CTR Mechanics Model
	II-B Manipulability Analysis

	III Derivative Propagation for the Hessian
	IV Task-Specific Redundancy Resolution
	IV-A Trajectory Tracking and Joint Limit Avoidance
	IV-B Task-Specific Performance Index
	IV-C Redundancy Resolution with Task-Specific Gradient Projection (TSGP)

	V Simulation Study
	V-A Computational Efficiency for Hessian Calculation
	V-B Free Space Trajectory Tracking
	V-C Obstacle Avoidance
	V-D Trajectory Tracking under External Load

	VI Conclusion
	References

