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Abstract— Task-oriented grasping (TOG) refers to the prob-
lem of predicting grasps on an object that enable subsequent
manipulation tasks. To model the complex relationships be-
tween objects, tasks, and grasps, existing methods incorporate
semantic knowledge as priors into TOG pipelines. However,
the existing semantic knowledge is typically constructed based
on closed-world concept sets, restraining the generalization to
novel concepts out of the pre-defined sets. To address this
issue, we propose GraspGPT, a large language model (LLM)
based TOG framework that leverages the open-end semantic
knowledge from an LLM to achieve zero-shot generalization
to novel concepts. We conduct experiments on Language Aug-
mented TaskGrasp (LA-TaskGrasp) dataset and demonstrate
that GraspGPT outperforms existing TOG methods on different
held-out settings when generalizing to novel concepts out of the
training set. The effectiveness of GraspGPT is further validated
in real-robot experiments. Our code, data, appendix, and video
are publicly available at https://sites.google.com/view/graspgpt.

I. INTRODUCTION

Tool manipulation is a fundamental skill for household
robots. To achieve successful tool manipulation and ac-
complish specific goals, the robot must, in the first place,
grasp the tool in a task-oriented manner, i.e., perform task-
oriented grasping [1], [2]. For instance, accurately gripping
the handle of a knife to slice an apple into pieces or securely
holding the tip of the blade of the knife during a handover.
Considering the vast number of object classes and tasks in
open-world operating environments like offices and kitchens,
it is challenging to model the complex relationships between
object classes, tasks, and grasps due to the diverse and
dynamic nature of open-world environments. Practically, one
can expect the robot to be trained on a limited set of examples
and generalize the learned TOG skills to novel object classes
and tasks beyond the training examples.

To achieve such a goal, recent works have proposed incor-
porating semantic knowledge into TOG pipelines to enable
robots to adapt to various situations. Semantic knowledge
provides high-level abstractions of open-world environments
and captures the underlying relationships between concepts.
For instance, Song et al. [3] construct a semantic knowledge
base (KB) with a pre-defined set of concepts and constraints
with Bayesian Networks. Recently, Murali et al. [4] con-
tribute the largest and the most diverse TOG dataset, named
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Fig. 1. (a) GraspGPT prompts an LLM to acquire language descriptions
about the novel concept(s) in a natural language instruction given by the
user. (b) Language descriptions connect the novel concept to its related
concepts described during training, enabling the generalization of task-
oriented grasping skills from known concepts to novel concepts.

TaskGrasp dataset, and build a knowledge graph (KG) based
on the concepts collected in the dataset. Although these
methods have demonstrated their generalization abilities to
concepts pre-defined within the KB, they still operate under
the closed-world assumption and cannot handle novel con-
cepts out of the KB. This limitation is critical as a household
robot must deal with open-end object classes and tasks.

The recent advancements in large language models
(LLMs) [5], [6] have brought about significant progresses
in various robot tasks [7]–[10]. These LLMs are trained
with internet-scale text corpora. Thus, robots can seamlessly
extract and harness open-end semantic knowledge from
LLMs to plan actions in unseen scenarios. In this letter,
we follow the same spirit and introduce GraspGPT, an
LLM-based TOG framework. GraspGPT distinguishes itself
from previous TOG methods by not being constrained to a
closed-world concept set. Instead, it leverages the open-end
semantic knowledge about object classes and tasks from an
LLM to achieve zero-shot generalization to novel concepts
out of the training set. Specifically, we focus on two types
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of concepts: object class and task. As is shown in Figure
1 (a), when presented with a novel concept in a language
instruction, GraspGPT first prompts an LLM to acquire a
set of natural language description paragraphs of the concept.
These description paragraphs connect the novel concept to
its related concepts described during training, as depicted
in Figure 1 (b). Subsequently, the robot can generalize the
learned TOG skills from known concepts to novel con-
cepts out of the training set. Evaluation on the contributed
TOG dataset named Language Augmented TaskGrasp (LA-
TaskGrasp) dataset demonstrates that GraspGPT outperforms
existing TOG methods under different held-out settings. We
further deploy GraspGPT on a Kinova Gen3 robotic arm to
validate its effectiveness in real-world robotic applications.

In summary, our contributions are two-fold:
• We propose GraspGPT, an LLM-based TOG framework

that leverages the open-end semantic knowledge from
an LLM to achieve zero-shot generalization to novel
concepts out of the training set.

• We present a pipeline to automatically generate lan-
guage descriptions of concepts with an LLM and con-
tribute a language augmented TOG dataset named LA-
TaskGrasp dataset.

II. RELATED WORK

A. Task-Oriented Grasping

The ability to perform task-oriented grasping is essential
for household robots as it is the first step towards tool
manipulation. Data-driven approaches have achieved success
in solving TOG problems to some extent. Dang et al. [11]
and Liu et al. [12] propose novel semantic representations
of grasp contexts for task-oriented grasp pose prediction.
These methods learn class-task-grasp relationships purely
from data without any external knowledge sources, thus
achieving unsatisfying performance.

More recent works [3], [4], [13], [14] have proposed incor-
porating semantic knowledge as priors into TOG pipelines.
Song et al. [3] construct a semantic KB with a set of tasks,
object classes, actions, constraints, and reason over the KB
using Bayesian Networks. Similarly, Ardón et al. [13] and
Antanas et al. [14] build KGs relating pre-defined seman-
tic attributes using probabilistic logic approaches. Despite
these advancements, a significant bottleneck that hinders
the generalization to a broader range of object classes and
tasks is the need for large-scale TOG datasets. Motivated by
this dilemma, Murali et al. [4] contribute the largest and
the most diverse TOG dataset, named TaskGrasp dataset,
and build a KG based on the concepts collected in the
dataset. More importantly, they propose the state-of-the-art
TOG algorithm GCNGrasp, which builds upon the semantic
knowledge encoded in the KG, to generalize to concepts
within the KG. However, the major limitation of GCNGrasp
is its inability to directly handle novel concepts out of
the graph. This limitation is critical as a household robot
must deal with open-end object classes and tasks in real-
world applications. In this letter, we address this problem by

leveraging the open-end semantic knowledge from an LLM
to generalize learned TOG skills to novel concepts.

B. LLMs in Robotics

Recent advances in LLMs have motivated the robotics
community to harness the semantic knowledge embedded in
these models for a wide range of robotic applications, such as
tabletop manipulation [10], navigation [15], [16], and mobile
manipulation [7], [17].

Huang et al. [9] first propose to decompose high-level
tasks into mid-level plans with LLMs for robot decision
making. To enable LLM-based robots to act properly in real-
world applications, Ahn et al. [7] ground LLMs through
affordance functions of pre-trained skills. Meanwhile, Huang
et al. [18] extend previous work to include closed-loop
feedback for both mobile and tabletop manipulation with a
collection of perception models. Liang et al. [10] re-purpose
LLMs to directly generate policy code running on real-world
robots. More recent works [19], [20] combine multi-modal
reasoning with LLMs for object rearrangement tasks. While
aforementioned methods primarily consider LLMs for high-
level task and motion planning, GraspGPT directly grounds
the semantic knowledge from an LLM to grasping actions,
which opens up the potential for optimizing other low-level
policies (e.g., manipulation, navigation) with an LLM.

III. PROBLEM FORMULATION

We assume access to an object class set C = {ci}Kc
i=1 and

a task set T = {tj}Kt
j=1, where Kc and Kt are numbers

of object classes and tasks, respectively. Based on C and
T , we consider the problem of learning task-oriented grasp
pose prediction for a parallel-jaw gripper given the partial
point cloud of an object Xo ∈ RN×3 and a natural language
instruction I specifying an object class c and a task t,
where N is the number of points. During training, we have
c = ci ∈ C and t = tj ∈ T . The challenge for real-world
robotic applications is that c or t can be novel concepts (i.e.,
out of the training set) from open-world concept sets Cow
and Tow during inference, where C ⊂ Cow and T ⊂ Tow.
To enable the generalization of TOG skills from known to
novel concepts, GraspGPT incorporates open-end semantic
knowledge by prompting an LLM to generate a set of object
class description paragraphs Lc for c and a set of task
description paragraphs Lt for t.

Mathematically, we aim to estimate the posterior distri-
bution P (G|Xo, I, Lc, Lt), where G represents the space of
all task-oriented grasp poses. Following the convention in
prior work [4], [21], the estimation process is factorized
into two steps: (1) task-agnostic grasp sampling P (G|Xo)
and (2) task-oriented grasp evaluation P (S|Xo, I, Lc, Lt, g),
where S is the score (probability of success) for each g ∈ G.
Each grasp pose g is represented by (R, T ) ∈ SE(3), where
R ∈ SO(3) represents the 3D orientation and T ∈ R3

represents the 3D translation. Since the first step is well-
studied by previous works, we directly apply off-the-shelf
task-agnostic grasp sampler from [22] to obtain a set of grasp
pose candidates, and focus on solving the second step.



Fig. 2. (a) An overview of GraspGPT framework: when presented with a novel concept, such as a novel object class or task, in the natural language
instruction, GraspGPT first prompts an LLM to acquire a set of language description paragraphs of the concept. Subsequently, GrasGPT evaluates the
task compatibility of grasp candidates based on the multi-modal inputs from the sensors and an LLM. (b) The detailed structure of task-oriented grasp
evaluator: the module is a customized transformer decoder that injects semantic knowledge from an LLM into the natural language instruction.

IV. GRASPGPT

A. Overview

An overview of the proposed GraspGPT framework is
presented in Figure 2 (a). We begin by outlining the method-
ology for data generation in Section IV-B. We then detail the
strategy for obtaining feature representations of multi-modal
inputs in Section IV-C. Finally, we describe how to perform
task-oriented grasp evaluation in Section IV-D.

B. Data Generation with an LLM

The data generation pipeline is designed based on
TaskGrasp dataset that comprises Kc household object
classes and Kt everyday tasks. To construct the Language
Augmented TaskGrasp (LA-TaskGrasp) dataset, we employ
an LLM to generate language descriptions for each object
class ci and task tj , which will be described first. We then
present the procedure for generating language instructions.

Language Description Generation The key idea behind
GraspGPT is to leverage the language descriptions from an
LLM to establish connections between novel and known
concepts. According to Rosch’s theory [23] of cognitive
representations of semantic categories, a concept shares
similar geometry, function, or effect descriptions with its
related concepts. Inspired by [4], the similarity between
concepts can be described by (1) directly prompting the LLM
(e.g., “Describe what verbs are similar to cut:”) and (2)
comparing the descriptions of two concepts (e.g., “Describe
the geometry of a cup/bowl:”). In essence, the ability to relate
concepts in this way is guaranteed by the fact that LLMs are
trained on internet-scale data, enabling them to capture a
broad range of linguistic patterns and semantic information.

To obtain Lci for object class ci, we design two prompt
sets: (1) property prompt set, each of which asks a property
of ci, and (2) similarity prompt set, each of which asks
classes sharing a similar property with ci. Here, properties
can be shape, geometry, function, etc. Similarly, to obtain

Ltj for task tj , we design: (1) affordance prompt set, each
of which asks object classes that afford tj , and (2) relevance
prompt set, each of which asks semantically or physically
relevant tasks to tj . For each prompt set, we equally define
Np prompts. To generate language descriptions of concepts,
we recursively query the LLM to generate Na different
answers per prompt. Examples of generated language de-
scriptions are presented in Table I. We then orderly combine
answers from each prompt to obtain complete description
paragraphs of a concept, resulting in Na

2Np description
paragraphs. However, we have empirically observed that
using only a subset of these paragraphs is sufficient for
training due to the information redundancy. Each paragraph
has an approximate length of 4-6 sentences. A complete
list of prompts used to construct LA-TaskGrasp dataset and
more examples of language descriptions can be found in the
appendix. GraspGPT is not restricted to concepts defined
in LA-TaskGrasp dataset, as it can incorporate open-end
semantic knowledge from an LLM. It is a primary advantage
over existing methods.

Language Instruction Generation To efficiently generate
language instructions during each training loop, we employ a
template-based generation strategy. Following our prior work
[24], we begin with M templates from [25], such as “Use the
[obj] to [task]”. Each template requires an object class label
ci and a task label tj . To further enrich the vocabulary and
grammatical diversities, we perform template augmentation
using an LLM (e.g., “rewrite the following sentence in a
different grammatical format:”) to generate M+ additional
templates, such as “hold the [obj] in your hand and [task]”
and “grip the [obj] in a [task]ing-friendly manner”. For a
complete list of M +M+ templates used in LA-TaskGrasp
dataset, please refer to the appendix. During each training
loop, we randomly sample ci and tj from C and T , and a
template to generate a natural language instruction without
human effort.



Class Property Description Similarity Description

Mug
“The mug is cylindrical in shape, with a slightly rounded
base leading up to straight walls which eventually taper

slightly towards the rim.”

“Mugs typically have a cylindrical shape with a slightly tapered
“top and a curved handle; objects with similar shapes include

bottles and vases.”

Task Affordance Description Relevance Description

Sweep
“Household objects that can be used to sweep include

brooms, dustpans and mops.”
“Verbs that are semantically close to sweep include

cleane, purify, and eradicate.”

TABLE I. EXAMPLES OF OBJECT CLASS AND TASK DESCRIPTIONS IN LA-TASKGRASP DATASET.

C. Multi-Modal Feature Representation

To incorporate semantic knowledge about concepts in the
form of language descriptions into GraspGPT framework,
we transform them along with other sensory inputs into
their feature representations. Therefore, two encoders are
introduced: one for embedding point cloud data and the
other for embedding language data.

Object and Grasp Encoder To model the relative spatial
relationship between a 6 DoF (Degree of Freedom) grasp
pose and Xo, we adopt a joint embedding strategy. Following
Mousavian et al. [21], we first approximate the robot gripper
with six control points Xg defined in the object frame and
concatenate them to the object point cloud Xo to form a
joint point cloud. A binary feature vector is then added to
the joint point cloud, indicating that each point belongs to
the object or the gripper. Finally, the joint point cloud is
embedded with PointNet++ [26] (denoted as PN++), which
consists of three set abstraction layers:

FX = PN++(Concat([Xg, Xo], dim = 0))

The resulting point cloud embedding FX ∈ R1024 is later
fused with language embeddings.

Language Encoder In order to relate known and novel
concepts, GraspGPT necessitates the ability to digest a large
variety of linguistic elements in language descriptions. For
instance, in the case of an affordance description of the task
“pour”:

“Household objects that support the function of pouring
include utensils such as pitchers, cups, and ladles, as well
as containers with pouring spouts, to aid in the transfer of

liquid or other items from one vessel to another.”

GraspGPT must be able to comprehend object classes (e.g.,
pitchers, cups, ladles), entity taxonomy (e.g., utensil, con-
tainer, vessel, liquid), actions (e.g., transfer), and relations
(e.g., from ... to ...). While training a dedicated language
encoder from scratch is a common choice, it would require
a significant amount of training data and is meanwhile time-
consuming. We, therefore, opt for a BERT [27] pre-trained on
a large corpus of text data to encode both language descrip-
tions and instructions. The pre-trained BERT outputs word
embeddings for a task description paragraph Ftd ∈ RTtd×768,
an object class description paragraph Fod ∈ RTod×768, and a
language instruction FI ∈ RTI×768, where Ttd, Tod, and TI

denote the maximum lengths (with zero-padding) for each
language sequence, respectively. The language encoder is
frozen during training.

D. Task-Oriented Grasp Evaluation

After obtaining the feature representations of all elements,
we next present a multi-modal fusion module for task-
oriented grasp evaluation, which can be represented below:

S = TGE(FX , FI , Ftd, Fod)

where TGE is the task-oriented grasp evaluator, and S is
the score for the candidate grasp pose g.

Task-Oriented Grasp Evaluator TGE is implemented as
a customized Transformer decoder [28]. It is analogous to
a sequence-to-sequence model commonly used in machine
translation, which converts sequences from one domain to
another. In our problem, the robot is unable to comprehend
novel concepts out of the training set. We utilize TGE to
translate a novel concept using its description paragraphs,
and connect the novel concept to its related concepts de-
scribed during training.

The architecture of TGE is depicted in Figure 2 (b).
The translation process incorporates contextual information
from language descriptions into their corresponding concept
in I . Both training and inference follow the same compu-
tational procedure. Specifically, we begin by transforming
word embeddings from the pre-trained language encoder
to a lower dimension space and obtain F̃td ∈ RTtd×128,
F̃od ∈ RTod×128, and F̃I ∈ RTI×128. TGE consists of two
layers, one for incorporating object class knowledge F̃od and
the other for incorporating task knowledge F̃td. Each decoder
layer aims to learn a function as below:

ϕtd : RTI×128 × RTtd×128 → RTI×128

ϕod : RTI×128 × RTod×128 → RTI×128

where the outputs of ϕtd and ϕod are language instruction
word embeddings augmented with contextual knowledge.
Two decoder layers share a similar design. The computa-
tional procedure of ϕ∗d can be represented as follows:

F̃I = LN(F̃I + MHA(F̃I , F̃∗d))

F̃I = LN(F̃I + FFN(F̃I))

where ∗d can be either td or od; LN, MHA, and FFN denote
layer normalization, multi-head attention, and feedforward
network, respectively; MHA consists of eight cross-attention



heads in our implementation. The computation of each cross-
attention head can be represented as:

A = Softmax(
QIK

T
∗d√

128
)V∗d

where A is the attended word embeddings. QI , K∗d, and
V∗d are transformed from F̃I and F̃∗d as follows:

QI = Qproj(F̃I),K∗d = Kproj(F̃∗d), V∗d = Vproj(F̃∗d)

where Qproj, Kproj, and Vproj are projection matrices. The
intuition is to reconstruct F̃I by all elements in F̃∗d weighted
by their normalized correspondence. Since cross-attention
mechanism can dynamically assign weights to each input
token, it learns to attend to concept tokens in I while ignore
irrelevant tokens.

Finally, F̃I is mean pooled to output a sentence embedding
F I ∈ R128. It is then concatenated with the shape embedding
F̃X ∈ R300, which is obtained by projecting FX via a fully
connected layer. We compute S using an MLP (Multi-Layer
Perceptron) with a sigmoid activation:

S = Sigmoid(MLP(Concat([F̃X , F I ], dim = −1)))

The MLP comprises three fully connected layers with 1D
batch normalization, ReLU activation, and dropout.

Loss Function We compute the binary cross-entropy loss
between S and the ground truth label Sgt:

Lbce = − 1

N

N∑
i=1

Sgt,i · log(Si)+

(1− Sgt,i) · log(1− Si)

where N is the total number of samples, and Sgt,i is set to
one if the ith grasp pose is successful and zero otherwise.

V. EXPERIMENTAL SETUP

A. Perception Experiments

Baselines We compare GraspGPT to the following methods:
(1) Random, which represents the method in [22] that
focuses on grasp stability only and ignores task constraints
(i.e., task-agnostic grasping method). (2) Semantic Grasp
Network (SGN) [12], which learns class-task-grasp relations
without incorporating external semantic knowledge. (3)
GCNGrasp [4], which is the state-of-the-art TOG algorithm
introduced earlier and whose main limitation is its inability
to generalize to novel concepts out of the graph. During
inference, we connect the novel concept node to its nearest
neighbor in the KG. The nearest neighbor search is based
on the cosine similarity between the concepts’ pre-trained
word embeddings provided by ConceptNet [29].

Dataset GraspGPT and three baselines are evaluated on
the LA-TaskGrasp dataset, which augments the TaskGrasp
dataset with language data. The original TaskGrasp dataset
contains 250K task-oriented grasp pose annotations for 56
tasks, 75 object classes, and 191 object instances. Each
instance is a partial point cloud of a real household object

with multi-view RGB-D fusion. TaskGrasp provides three
types of held-out settings: held-out (object) class, held-out
task, and held-out instance. We focus on the former two
settings in this letter. For language data, LA-TaskGrasp
contains 80 language description records for each object
class and 40 records for each task, resulting in 6000 object
class description records and 2240 task description records.
We combine these descriptions to generate 750 object class
description paragraphs and 560 task description paragraphs.
LA-TaskGrasp dataset also includes 53 language instruction
templates, resulting in 222600 possible language instruction
sentences.

Metrics We use the same set of evaluation metrics used by
GCNGrasp. Specifically, we compute the Average Precision
(AP) score for each object class, task, and instance, and
then compute the mean AP (mAP) averaged over all object
classes, tasks, and instances (i.e., class mAP, task mAP, and
instance mAP).

B. Real-Robot Experiments

The real-robot experiment platform comprises a 7 DoF
Kinova Gen3 robotic arm with a parallel jaw gripper and
an Intel RealSense D435 RGB-D camera with eye-in-hand
calibration. For each test object, we first apply SAM [30] to
extract the object point cloud captured from a single view
and then apply Contact-GraspNet [22] to generate 50 grasp
pose candidates. Single-view setup is used here because it
is more practical for real-world robotic applications. We
collect test objects from our laboratory and YCB dataset.
More details on the experimental setup can be found in the
appendix.

The physical grasping pipeline is divided into three stages:
Perception, Planning, and Action, and the statistics of each
stage is reported separately for clarity. A trial succeeds if
the test object is grasped subject to the natural language
instruction and lifted stably by the robot. We additionally
combine GraspGPT with three pre-defined skills (pouring,
handover, and scooping) in the form of motion primitive to
showcase its practicality in tool manipulation.

C. Implementation Details

All the experiments are conducted on a desktop PC with a
single Nvidia RTX 3090 GPU. GraspGPT is optimized with
an Adam optimizer [31] with a weight decay of 0.0001. The
learning rate is set to 0.0001 initially and decays subject to
a customized function as in GCNGrasp. We train GraspGPT
for 50 epochs with a batch size of 32. Each point cloud is
downsampled to 4096 points before being fed into the model.

For the choice of an LLM, we select the OpenAI GPT-3
model, specifically the text-davinci-003 version. GraspGPT
is capable of incorporating any current LLM, such as OpenAI
GPT-4 and Google Bard, or using an ensemble of LLMs. We
leave this ensemble approach for our future work. For the
language encoder, we choose the Google pre-trained BERT-
Base model provided by Hugging Face.



Fig. 3. Qualitative results of open-world generalization. GraspGPT and GCNGrasp are evaluated under both held-out settings. Results on self-collected
test objects (no ground truth annotations) are also presented. Grasp poses are colored by their confidence scores (green is higher). Only top-5 predictions
are displayed for better visualization effect.

Method
Held-out Class Performance (mAP) Held-out Task Performance (mAP)

Instance Class Task Instance Class Task

Random 59.32 58.73 52.72 59.06 58.24 52.37

SGN 74.20 72.95 62.55 75.17 71.59 63.35

GCNGrasp (open-world) 72.92 72.45 67.58 57.48 47.21 33.17

GCNGrasp (closed-world) 79.35 76.88 72.97 80.43 76.06 76.11

GraspGPT (full model) 79.70 77.88 72.84 79.32 76.90 72.34

GraspGPT (w/o D) 74.10 74.33 66.38 74.66 70.85 68.14

GraspGPT (w/o TD) 80.95 77.74 73.76 75.00 71.21 68.38

GraspGPT (w/o OD) 76.04 74.71 71.60 78.26 74.71 71.60

TABLE II. QUANTITATIVE RESULTS OF PERCEPTION EXPERIMENTS

Method
Held-out Class Performance

Success
Held-out Task Performance

Success
Perception Planning Action Perception Planning Action

GraspGPT 91/100 85/100 77/100 77.00% 86/100 77/100 71/100 71.00%

TABLE III. RESULTS OF TASK-ORIENTED GRASPING EXPERIMENTS

Method
Pouring

Success
Handover

Success
Scooping

Success
Grasping Manipulation Grasping Manipulation Grasping Manipulation

GraspGPT 15/20 12/20 60.00% 17/20 16/20 80.00% 18/20 13/20 65.00%

TABLE IV. RESULTS OF TASK-ORIENTED MANIPULATION EXPERIMENTS

VI. RESULTS

A. Results of Perception Experiments

To highlight the difference between our approach and
GCNGrasp, we investigate perception experiments from two
perspectives: open-world generalization and closed-world
generalization. The former evaluates the generalization per-
formance to novel concepts out of the knowledge graph of
GCNGrasp. In the latter evaluation, GCNGrasp has access
to all the concepts in the LA-TaskGrasp dataset and the
ground truth relations between them in its pre-defined graph.
Although this assumption is impractical in real-world robotic
applications, we still want to explore how our approach com-

pares to GCNGrasp even though GraspGPT does not assume
access to concepts out of the training set. Since GraspGPT
and the other two baselines do not rely on a pre-defined
graph structure, their results for the two evaluations are the
same. The quantitative results of perception experiments are
reported in Table II.

Open-World Generalization For both held-out settings,
Random achieves approximate mAPs of 50-60%, indicating
that the distribution of positive and negative samples in
the dataset is even. By considering task constraints, SGN
achieves consistent improvements (10%+) over Random
under two held-out settings. For GCNGrasp, we observe



a significant performance difference between the held-out
task setting and the held-out class setting. GCNGrasp even
falls behind Random by 1.58%, 11.03%, and 19.20% on
three metrics in the held-out task setting. This suggests that
the pre-trained word embeddings of ConceptNet are good
at capturing the linguistic relations between object classes
but perform poorly on relating task concepts. Therefore,
GCNGrasp cannot fully exploit the power of semantic
knowledge encoded in its graph. Since GraspGPT does
not rely on a pre-defined KG but instead leverages the
open-end semantic knowledge from an LLM, GraspGPT
outperforms all three baselines when generalizing to
concepts out of the training set. It outperforms GCNGrasp
by 21.84%, 29.69%, and 39.17% on held-out task setting
and by 6.78%, 5.43%, and 5.26% on held-out class setting.
The qualitative results are presented in Fig. 3.

Closed-World Generalization Compared to open-world
generalization, GCNGrasp performs consistently better on
closed-world generalization since all the concepts and the
ground truth relations between them have been pre-defined
in its graph. GraspGPT and GCNGrasp outperform both
Random and SGN due to the incorporation of semantic
knowledge. For the held-out task setting, GraspGPT achieves
comparable performance with GCNGrasp on instance mAP
and class mAP but falls behind by 3.77% on task mAP. For
held-out class setting, GraspGPT outperforms GCNGrasp on
two metrics. Overall, GraspGPT achieves comparable per-
formance with GCNGrasp on closed-world generalization
even though it does not assume access to all concepts and
their relations as GCNGrasp does.

B. Results of Real-Robot Experiments

Task-Oriented Grasping We conduct 100 trials on each
held-out setting, with ten trials per object class or task. As
presented in Table III, GraspGPT achieves high success
rates (86.00% and 91.00%) in the perception stage, even
though the object point clouds are captured from a single
view. The performance drop from the perception stage to
the action stage (71.00% and 77.00%) can be attributed
to three primary reasons: (1) marginal grasp candidates
generated by the grasp sampler; (2) incorrect evaluation
by GraspGPT; (3) motion planning failure. The qualitative
results of three test objects are shown in Figure 3 (right).

Task-Oriented Manipulation To support task-oriented ma-
nipulation (refer to Figure 4), we first utilize GraspGPT to
generate task-oriented grasp poses for tool objects. Then,
we design rule-based heuristics to determine the operating
direction and effect points [32] on the target objects. As pre-
sented in Table IV, GraspGPT performs well in task-oriented
grasping, achieving success rates of 75.00%, 85.00%, and
90.00% in three tasks, respectively. However, due to its
inability to adaptively model the relative pose [33] between
the tool object and the target object, the success rates of
task-oriented manipulation decrease, especially for pouring
and scooping.

Fig. 4. Real-robot experiments on task-oriented grasping and manipulation:
Mug-Pour (left) and Spatula-Handover (right).

C. Ablation Study

To gain further insights into the effectiveness of each
component of GraspGPT, we perform two sets of ablation
studies, aiming to answer two questions:

• Does the incorporation of semantic knowledge from an
LLM help to better generalize to novel concepts out of
the training set?

• How does the selection of a pre-trained language en-
coder affect the overall performance of GraspGPT?

Ablation on Semantic Knowledge We compare GraspGPT
to three ablations: (1) no semantic knowledge (i.e., w/o
D); (2) object class description only (i.e., w/o TD); (3)
task description only (i.e., w/o OD). The results for two
held-out settings are reported in Table II. For the held-out
task setting, the full model outperforms all three ablations.
Specifically, the comparison between w/o D - w/o TD and
w/o D - w/o OD demonstrates that the incorporation of task
knowledge is more important for novel task generalization.
For the held-out class setting, we observe that object class
knowledge is more important for generalizing to novel
classes out of the training set. Using object class knowledge
only (w/o TD) even slightly outperforms the full model. We
argue that object class descriptions have already provided
sufficient knowledge for novel object class generalization.
Arbitrarily incorporating extra task knowledge may lead to
adversarial/conflicting effects in some cases. In our current
implementation, we do not preprocess the language data
from the LLM. Future work will be done on knowledge
filtering and selection. Overall, the result verifies the
hypothesis that the incorporation of semantic knowledge
helps achieve better generalization to novel concepts.

Ablation on Language Encoder To validate the design
choice of using a large pre-trained language encoder, we
equip GraspGPT with pre-trained BERTs of three sizes and
compare their resulting mAPs. Since the conclusions for the
two held-out settings are similar, we only report the result of
the held-out task setting for simplicity. The result is presented
in Table V, where L denotes the number of transformer
layers. It is clear that BERT-Base outperforms two smaller



Model
Held-out Task Performance (mAP)

Instance Class Task

BERT-Small (L=4) 78.06 74.48 71.90

BERT-Medium (L=8) 78.47 75.93 72.02

BERT-Base (L=12) 79.32 76.06 72.34

TABLE V. ABLATION ON PRE-TRAINED LANGUAGE ENCODER

models, but the gaps are insignificant. We argue that the three
models are equally pre-trained on a large corpus of text data,
so they achieve a similar level of knowledge understanding
capability despite their differences in model complexity.

VII. CONCLUSION

In this letter, we propose GraspGPT, an LLM-based TOG
framework that leverages the open-end semantic knowledge
from an LLM to achieve zero-shot generalization to novel
concepts out of the training set. Compared to existing meth-
ods, GraspGPT does not rely on any pre-defined concept set
or knowledge base. Evaluation on the LA-TaskGrasp dataset
demonstrates the superiority of GraspGPT over existing
methods on novel concept generalization. The effectiveness
of GraspGPT is further validated in performing task-oriented
grasping and manipulation in real-world applications.
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APPENDIX I

A. Language Augmented TaskGrasp (LA-TaskGrasp) Dataset

This section presents the natural language prompts utilized to generate object class and task descriptions within the
LA-TaskGrasp dataset. Additionally, we provide detailed examples of object class descriptions (“Mug”, “Spoon”, and
“Hammer”) and task descriptions (“Sweep”, “Screw”, and “Slice”). Following that, we present a list of 53 language
instruction templates, consisting of 11 templates derived from previous work and 42 templates generated through LLM
data augmentation. Lastly, we offer 18 LA-TaskGrasp dataset examples, each of which includes 6 DoF task-oriented grasp
poses, a language instruction, an object class description paragraph, and a task description paragraph.

1) Object Class Description Prompts:
• “Describe the shape/geometry of household object [obj] in a detailed and scientific response:”

• “Describe the common use/function of household object [obj] in a detailed and scientific response:”

• “Describe what household objects have similar shapes/geometries to [obj] in a detailed and scientific response:”

• “Describe what household objects have similar uses/functions to [obj] in a detailed and scientific response:”

2) Object Class Description Examples:

Class Property Description Similarity Description

Mug

(shape)“The mug is cylindrical in shape, with a slightly rounded
base leading up to straight walls which eventually taper

slightly towards the rim.”

(similar shape)“Mugs typically have a cylindrical shape with a
slightly tapered top and a curved handle; objects with similar

shapes include bottles and vases.”

(use)“A mug is a cylindrical drinking vessel typically used to
hold hot beverages such as coffee, tea, hot chocolate,
or soup. The curved shape of the mug allows liquids

to be held and consumed while reducing splashes
and spills.”

(similar use)“Mugs and other household objects, such as glasses,
jars, and other containers, can all be used to hold and contain
liquids, such as hot or cold drinks. In addition, certain mugs,
such as those with handles, can also be used to stir and mix

drinks and other items.”

Spoon

(shape)“The spoon has a slightly curved bowl shape with a
long, narrow handle extending diagonally from the bowl in

the opposite direction to the spoon’s curved edge.”

(similar shape)“A teaspoon and a spoon have a similar shape,
with both utensils curved at the bowl with a long, thin handle.

In addition, a soup spoon has a shape similar to a spoon.”

(use)“A spoon is a unit of measurement for dry and liquid
ingredients that equals approximately three teaspoons,
and is used for serving, measuring, and mixing foods.”

(similar function)“A spoon is a utensil commonly used for
measuring, stirring, and serving food. Household objects

similar in function include a measuring cup, and soup ladle.”

Hammer

(shape)“The hammer has an elongated cylindrical shape with a
flattened striking face at oneend and a handle at the other end.”

(similar shape)“A hammer has a similar shape as a meat
tenderizer, an ice pick, and a nail puller.”

(use)“The hammer is a tool used to deliver an impulse force to an
object. It works by transferring kinetic energy from the handle
to the striking head of the hammer, allowing the user to drive

nails, shape and flatten objects, and otherwise manipulate
the material being worked upon.”

(similar functions)“A household object that serves a similar
function to that of a hammer is a kitchen mallet, which is

used to pound, tenderize, and flatten food. Another
common household item that serves a similar

purpose is a rubber mallet.

TABLE VI. EXAMPLES OF OBJECT CLASS DESCRIPTIONS



3) Task Description Prompts:
• “Describe what household objects can be used to [task] in a detailed and scientific response:”

• “Describe what household objects support the function of [task] in a detailed and scientific response:”

• “Describe what verbs are semantically close to [task] in a detailed and scientific response:”

• “Describe what verbs achieve similar effects to ’[task] an object’ in a detailed and scientific response:”

4) Task Description Examples:

Task Affordance Description Relevance Description

Sweep

(use)“Household objects that can be used to sweep include brooms,
dustpans and mops. ”

(closeness)“Verbs that are semantically close to sweep
include cleanse, purify, and eradicate.”

(function)“Household objects such as a broom, dustpan, and mop help
to support the sweeping function by providing a tool with which to
sweep away dust and debris. The broom helps to physically remove

dirt and dust from the floors and other surfaces.”

(similar effect)“The action of sweeping an object can be
described as a type of displacement, in which the object is
moved across a surface in a steady, sweeping motion. This
is similar to actions like pushing, dragging, and gliding.”

Screw

(use)“Household objects that can be used to screw in objects
include screwdrivers, managed screwdrivers, and various tools

with rotating handles, such as adjustable wrenches, pliers,
and socket wrenches.”

(closeness)“Verbs that are semantically close to ‘screw’
might include ‘twist’, ‘fasten’, or ‘tighten’, as these all
fall within the general semantic domain of attaching or

fastening objects or components together.”

(function)“Household objects such as screwdrivers and
power drills provide the necessary torque required to
turn a screw and hold it in place, providing support

for the function of the screw.”

(similar effect)“Verbs such as ’fasten’, ’attach’, and ’secure’
can have similar effects to ’screw an object’, by joining

two pieces of material together and providing
a strong connection.”

Slice

(use)“Household objects that can be used to slice include knives,
graters, mandolines, and vegetable peelers. These objects
typically have blades that are designed to cut through a

variety of food items.”

(closeness)“Verbs semantically close to slice include
chop, divide, section, mince, dice and shred, as

they all involve cutting an object into smaller pieces,
either directly or through an intermediary tool.”

(function)“Household objects that support the function of
slicing include knives with sharp edges and fine serrations,

as well as manual slicers that use an adjustable blade
to create uniform slices.”

(similar effect)“Verbs such as cleave, cut, and divide
can also achieve the same effect as slicing an object,

by physically splitting the object into two
or more distinct parts.”

TABLE VII. EXAMPLES OF TASK DESCRIPTIONS



5) Language Instruction Templates:

Language Instruction Templates

“use the <obj>to <task>” “use the <obj>to perform <tasking>”

“<task>things with the <obj>” “use the <obj>to <task>something”

“executing <tasking>with the <obj>” “use the <obj>to conduct <tasking>”

“utilize the <obj>to <task>” “just use the <obj>to <task>”

“using a <obj>to <task>” “do <tasking>with the <obj>”

“perform <tasking>with the <obj>” “perform <tasking>using the <obj>”

“bring the <obj>out to <task>” “to <task>, get the <obj>”

“find the <obj>so that you can <task>” “get the <obj>and start <tasking>”,

“bring out the <obj>to <task>” “perform <tasking>with the <obj>”

“using a <obj>to do <tasking>” “make use of the <obj>to <task>”

“grab the <obj>to <task>” “pick up the <obj>to <task>”

“to <task>, hold the <obj>in your hand” “hold the <obj>in your hand and <task>”

“in order to <task>, grasp the <obj>” “grasp the <obj>in order to <task>”

“if you want to <task>, hold the <obj>” “grip the <obj>to <task>”

“<task>with the <obj>” “grasp the <obj>in a way that allows for <tasking>”

“holding the <obj>in a <tasking>-friendly manner” “take a <tasking>-friendly hold of the <obj>”

“make sure you have a <tasking>-friendly grip on the <obj>” “hold the <obj>in a <tasking>manner”

“grip the <obj>in a <tasking>-friendly manner” “ensure you have a <tasking>-friendly grip on the <obj>”

“use the <obj>to <task>things” “performing <tasking>with the <obj>”

“use the <obj>to accomplish <tasking>” “<tasking>with the <obj>”

“do <tasking>using the <obj>” “fetch the <obj>to <task>”

“find the <obj>and then <task>” “obtain the <obj>for <tasking>”

“use the <obj>to conduct <tasking>” “grasp the <obj>to <task>”

“taking hold of the <obj>, <task>” “to <task>, grasp the <obj>”

“to <task>, take hold of the <obj>” “get the <obj>to <task>”

“grasp the <obj>in a way that allows you to <task>” “ensure you grasp the <obj>in a way that allows for <tasking>”

“hold the <obj>in a <tasking>position”

TABLE VIII. LANGUAGE INSTRUCTION TEMPLATES



6) Dataset Examples:

Fig. 5. Dataset examples, each of which includes 6 DoF task-oriented grasp poses, a language instruction, an object class description paragraph, and a
task description paragraph. Here, we only show part of the paragraphs. All the grasp poses are colored by their task compatibility scores (green is higher).



B. Additional Experimental Setup

This section aims to provide further information regarding the experimental setup employed for both perception and
real-robot experiments.

1) Training Hyper-Parameters:

Basic Setting

Batch Size 32

# of Points 4096

# of Epochs 50

Optimization Setting

Optimizer Adam

Learning Rate 0.0001

Learning Rate Decay 0.7

Decay Step 2e4

Weight Decay 0.0001

Learning Rate Clip 1e-5

PointNet++ Setting

# of SA Layers 3

# of Sampled Points 512, 128, 1

Embedding Sizes 320, 640, 1024

Data Preprocessing

Scaling True

Mean Centering True

Random Rotation True

Random Jitter True

Random Dropout True

Hardware Resource

CPU 12th Gen Intel® Core™ i9-12900K

# of CPU Cores 24

GPU Nvidia RTX 3090

LLM Setting

Model OpenAI GPT-3

Engine text-davinci-003

Prompt Type text

Temperature 1.0

Max Tokens 256

Top P 1.0

Frequency Penalty 0.0

Presence Penalty 0.0

TABLE IX. TRAINING HYPER-PARAMETER SETTING



2) Real-Robot Experiment:

Fig. 6. Real-robot experimental setup: a Kinova Gen3 robotic arm with a Robotiq parallel jaw gripper (left) and an Intel RealSense D435 RGB camera
(right) with eye-in-hand calibration.

Fig. 7. Test objects collected from our laboratory and YCB dataset.

Fig. 8. Pipeline of real-robot experiment with intermediate results.



C. Discussion

In this section, we discuss the limitations of GraspGPT. Potential solutions are also provided as part of our future work.
• LLM Knowledge Filtering and Selection

As previously mentioned, we do not process the language data returned by an LLM, which can result in language
descriptions containing imprecise or false commonsense knowledge. We identify two typical errors in the generated
language descriptions: (1) Part-of-speech error. Since certain words have multiple uses as nouns and verbs, LLM
occasionally returns object class knowledge even when prompted with task description prompts, or vice versa. For
instance, when we prompt the LLM for the task description of verb “ladle” (e.g., “Describe what household objects
support the function of ‘ladle’ in a detailed and scientific response:”), the LLM might respond with “A ladle is a
utensil that is typically long-handled, with a deep dish or scoop at the end. It is usually made of metal or plastic and is
used to serve or measure hot liquids such as soup, sauce, or gravy.” (2) Mismatching descriptions. Due to significant
intra-class variances, the LLM-generated object class descriptions may not precisely match the properties of actual
object instances. For example, the object class description of “frying pan” could be: “The geometry of a frying pan
is generally cylindrical, with sloping sides and a flat base to evenly disperse heat while cooking.” However, the actual
object instance might be square-shaped. To address the first error, GraspGPT should be able to inspect the semantic
meaning of the generated language description and verify if it meets the prompt’s intention. To tackle the second error,
a potential solution would involve incorporating a multi-modal model, such as BLIP-2, which can generate language
descriptions based on the visual content provided. This integration would require GraspGPT to process additional visual
inputs, such as RGB images.

• Task-Oriented Pick and Place
Our current work focuses on addressing the challenge of task-oriented grasping/picking. However, to achieve successful
tool manipulation, the robot must also anticipate the subsequent motion of the tool and effectively interact with the
target object. For instance, when inserting a nail into a slot, the robot needs to perform the following steps: (1) securely
grasp the hammer by its handle, (2) guide the hammer towards the nail, assuming the nail is initially positioned
halfway inside the slot, and (3) forcefully pound the nail into the slot. While GraspGPT has progressed in addressing
the initial task-oriented grasping step, the subsequent steps are currently simplified with pre-defined motion primitives.
Recent works, such as Neural Descriptor Fields, approach tool manipulation as a pick-and-place task. This involves
predicting the grasp point on the tool object (i.e., task-oriented picking) and determining the effect point on the target
object (i.e., task-oriented placing). Since we currently use rule-based heuristics to determine the effect point, the robot
cannot model the relative pose between the tool object and the target object. Ideally, the robot should adjust the effect
point depending on the grasp point. A failure case can be found in the supplementary video. We plan to expand the
capabilities of GraspGPT from task-oriented grasping to task-oriented pick and place, leveraging both grasping and
placement knowledge from an LLM.

• Single-Stage Architecture
GraspGPT currently follows a two-stage, sample-and-evaluate approach, similar to previous works. While this design
choice simplifies the complexity of constructing GraspGPT, it introduces a reliance on a pre-trained task-agnostic grasp
sampler. As the grasp sampler solely considers geometry information without incorporating semantic priors about the
tool to be grasped, it uniformly samples over the given point cloud. However, during robot interaction, only specific
functional/affordance regions of a tool are engaged, while non-functional regions remain untouched. This uniform
sampling approach makes GraspGPT inefficient for real-time inference. Moreover, GraspGPT assumes all the candidate
grasp poses generated by the grasp sampler are stable. However, the sampler may output marginal/unstable grasp poses,
which are susceptible to perturbances such as unpredicted contact or calibration error. An example can be found in
the supplementary video. Future research aims to integrate task-agnostic sampling and task-oriented evaluation within
an end-to-end architecture, enabling the direct prediction of task-oriented grasp poses from given point clouds. This
approach is anticipated to consider both stability and task compatibility simultaneously.

• Simultaneous Affordance Learning
A closely related task to task-oriented grasping is affordance recognition, where the robot identifies specific regions
on an object for various types of interactions. Previous studies, such as the Affordance Keypoint Detection Network
(AffKP), have demonstrated the benefits of joint learning of affordance segmentation for task-oriented grasping and
manipulation. In future work, we aim to incorporate affordance learning into the GraspGPT framework. We anticipate
that simultaneously learning these two objectives would mutually enhance their performance. On the one hand,
affordance learning would assist the robot in identifying the relevant regions to grasp for a given task. On the other
hand, the supervision provided by task-oriented grasping could serve as weak supervision for affordance recognition.
Equipping the robot with affordance recognition capability also opens up possibilities for other tasks, such as task-driven
object retrieval/selection and semantic scene understanding.

https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2112.05124
https://ieeexplore.ieee.org/abstract/document/9364360
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