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Abstract— Traditional geometric registration based estima-
tion methods only exploit the CAD model implicitly, which
leads to their dependence on observation quality and deficiency
to occlusion.To address the problem,the paper proposes a bidi-
rectional correspondence prediction network with a point-wise
attention-aware mechanism. This network not only requires the
model points to predict the correspondence but also explicitly
models the geometric similarities between observations and
the model prior. Our key insight is that the correlations
between each model point and scene point provide essential
information for learning point-pair matches. To further tackle
the correlation noises brought by feature distribution diver-
gence, we design a simple but effective pseudo-siamese network
to improve feature homogeneity. Experimental results on the
public datasets of LineMOD, YCB-Video, and Occ-LineMOD
show that the proposed method achieves better performance
than other state-of-the-art methods under the same evaluation
criteria. Its robustness in estimating poses is greatly improved,
especially in an environment with severe occlusions.

I. INTRODUCTION

The object 6D pose estimation task is to compute the
object’s 3D rotation and 3D translation in the current scene
with respect to the canonical coordinates. It is an essential
problem in human-robot interaction applications such as
augmented reality [1], autonomous driving [2], and robot
manipulation [3]. Unlike category-level or unseen object
pose estimation tasks [4], [5], When tackling the instance-
level object pose estimation problem, a CAD model of the
target object is generally specified. The model establishes the
canonical coordinates, and contains the distinctive features of
the target, providing vital prior for estimation. Herein lies one
of the key research issues - how to utilize the CAD model
for object pose estimation.

Some approaches [6], [7] intuitively exploit the CAD
model by generating observations of the model under dif-
ferent poses with perspective projection, then comparing the
query scene with the generated observations, and optimizing
the pose to descend their differences. They directly harness
the rendered features from the CAD model, but are rather
sensitive to the initial guess and prone to a local minimum
because the mapping between the pose and observation is
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Fig. 1. Illustration of our idea. We show the difference between
unidirectional match prediction methods (a), bidirectional match prediction
methods (b), and our point-wise attention bidirectional match prediction
method (c).

not unimodal. On the other hand, some methods leverage the
powerful fitting capability of the neural network to extract
features for predicting the correspondence between the scene
and the model [8], [9]. This pipeline adopts ground truth
correspondences as supervision, obtaining global solutions to
achieve higher accuracy. Though the CAD model is explicitly
utilized in the registration stage, its point features are not
fully exploited in the prediction process, causing dependence
on the quality of observation. When the observations are in-
complete or noisy, the global solution could also be affected.
Recently, [10] attempts to further exploit the CAD model
by introducing an inverse prediction process that predicts
the corresponding scene points for each model point. But
they only employ the averaged global features with point-
wise features from each point set, disregarding their mutual
attention that is obliging for correspondence prediction.

In this paper, we propose a bidirectional point-wise at-
tention aware network for stable 6D object pose estimation.
We adopt two branches to predict the correspondence from
scene points to model coordinates and vice versa, and design
a geometric attention mechanism to assist the prediction.
Our key insight is that the correlations between each model
point and scene point provide essential information for
learning point-pair matches. The scene points are essentially
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model points observed in a specified view with noises and
occlusions. Since the geometric properties of pointclouds do
not vary with changes in viewing perspective, corresponding
points in the scene and the model should still have the highest
attention response to each other despite the transformation.
During training, the known transformation is applied to
supervise the learning of attention mechanism, enabling the
network to model the point-wise attention during inference.
This attention module is then concatenated with the feature
vector to predict the correspondence. Experimental results
demonstrate that by using the attention mechanism module,
the correspondence prediction and pose estimation perfor-
mance is improved.

We further leverage a simple yet effective pseudo-siamese
network (PSN) to obtain point-wise attention. Intuitively, the
coveted attention could be calculated directly from the fea-
tures extracted for correspondence prediction [11]. However,
we argue that these features are insufficient for attention
awareness. The scene features often include color properties
learned from the input RGB image, while the model features
do not, which disturbs the mutual correlation computation.
Moreover, the scene features and model features generally
follow different distributions because they are extracted sep-
arately from two branches. We hope that the attention only
reflects the geometric similarities between point pairs, rather
than being affected by distribution divergences. Therefore,
we design an additional pseudo-siamese neural network,
which takes both sets of point clouds as input and extracts
their features for attention calculation.

To summarize, the contributions of this paper are mainly
as follows:

• To exploit the CAD model for stable 6D object pose
estimation, we propose a bidirectional match prediction
network with global point-wise attention aware mech-
anism, and prove its effectiveness in improving point
pair match learning.

• To obtain robust attention, we introduce a simple but
effective pseudo-siamese network to discover the simi-
larities between model points and scene points.

• We validate our proposed method on public datasets of
LineMOD, YCB-Video, and Occ-LineMOD. The exper-
imental results show that our network outperforms state-
of-the-art methods in both accuracy and robustness.

II. RELATED WORKS

A. Utilizing CAD models by comparison methods

Since the CAD model is available in the instance-level
object pose estimation task, early methods directly generate
templates by projecting the 3D model with various angles,
and estimate the query pose by finding the most similar
template image [12][13][14]. [6][15] propose a novel image
representation by spreading image gradient orientations and
representing the object with a limited set of templates.
[16] verify the candidates by matching features in different
modalities and associate the approximate poses with each
detected template as the initial value for further optimization.

These methods take advantage of explicitly comparing with
the CAD model and are capable of handling textureless
objects, but the discretized template generation process leads
to less accuracy.

Recently, some methods adopt graphical rendering tech-
niques to generate pseudo observations in continuous pose
space [17][18][19][20]. [7] exploits a deep learning-based
pose refinement network to refine the initial pose iteratively
by minimizing the differences between the observed image
and the rendered image. [21] proposes a pose refinement
method using the standard differentiable rendering and learn-
ing the texture of a 3D model via contrastive loss. [22]
utilizes differentiable Levenberg-Marquardt optimization to
refine the pose by minimizing the distance between the input
and rendered image representations. [23] identify the relative
pose given the current observation and a synthetic image
rendered from the previous estimates.

These methods have shown great performance by adopting
render and compare refinement as a post-processing step, but
they are time-consuming and sensitive to initial guess.

B. Utilizing CAD models by prediction methods

Instead of explicitly utilizing the generated images from
the CAD model, another pipeline requires the network to
implicitly learn the correlation between the observation and
the model. With the recent advancements in deep learning,
several methods [24][25][26][27] have attempted to detect
box corners in the RGB image for 3D bounding box esti-
mation. PVNet [9], employs farthest point sampling to vote
for key points on the target object, predicting the direction
vector pointing from each pixel to the projection point using
a RANSAC voting strategy to locate the projection point.
Some subsequent methods attempt to enhance the precision
of correspondence prediction or the robustness of geometric
solver [28][29][8][30][31]. Recently, some approaches have
attempted to include model prior information to provide
geometric constraints. [32] proposes a graph neural network
to learn implicit neural representations of the 3D model and
presents a dense correspondence matching scheme for visible
points. BiCo-Net[10] adds an extra branch to predict the
correspondence from model points to scene points, achieving
higher robustness against occlusion. But they rely on the
network to predict the correspondence correctly, ignoring the
correlations between each point pair. While we further pro-
pose a global attention mechanism to leverage the difference
among predicted correspondences.

Besides solving the registration problem from predicted
correspondence, many other methods attempt to implic-
itly utilize the CAD model through direct regression ap-
proach [33][34][35]. DenseFusion [36] deploys a dense fu-
sion strategy to fuse color features and geometry features
point-wisely, then directly regresses pose from the fused
feature. FFB6D [37] adds a bidirectional fusion module
to fuse the two kinds of features on each encoding layer,
bringing more local and global features. GCCN[11] applies
a co-attention module to compute the correlations between
scene points and model points. But they apply the attention



Fig. 2. Overview of our proposed method. We propose a point-wise attention module to obtain the correlations between scene points and model points.
The attention is concatenated with other learned features to predict bidirectional correspondence and solve poses.

map with other features to directly regress the pose, reducing
the influence of geometric properties. We show in the exper-
iment section that our design of the pseudo-siamese network
and geometric solver enhance the capability of the attention
mechanism.

III. METHODS

A. Overall Network Structure

The main structure of the network is illustrated in Fig. 2.
Firstly, the interested region of the target object is cropped
from the RGB and depth images as the input to the network.
Then, we follow [10] to extract color and geometric features
from the scene observations and fuse them point-wisely, as
well as extract the model features. After feature extraction,
we propose a point-wise attention module to model the
correlations between the scene points and the model points.
Last, we explain how we exploit the learned attention map
for pose estimation.

B. Feature Extraction

Firstly, we crop the region of interest of the target object
from the RGB and depth images as the input. Since seg-
mentation is not the focus of our work, we use ground truth
masks as in previous works [36].

To extract color features, we follow ConvNext [38] to
extract surface texture features from the input RGB image.
Then we randomly sample N points from the scene point
cloud obtained from the depth image, and follow Point-
Net [39] to extract geometric features, which is further
concatenated with their corresponding color embeddings to
get the dense point-wise feature vector Fs. Besides, for
bidirectional prediction, we also sample N points from
the model points and extract features Fm from the model
following PointNet [39].

C. Point-wise Attention Module

In this module, we consider the effect of global point pair
geometric attention on the robustness of the final predicted

poses and design the global point-wise attention module as
shown in Fig. 2.

Pseudo-siamese Network. In order to obtain features
for building the attention between scene points and model
points, existing method [11] proposes to deploy two Point-
Nets for each point set to extract their features, which are
then compared to get their correlation. But these features
follow different distributions. Therefore, we design a pseudo-
siamese neural network, which takes both sets of point clouds
as input. By doing so, the attention map only reflects the
geometric similarities between point pairs, rather than being
affected by distribution divergences.

As shown in Fig. 3, we input the sampled scene points
and their normal vectors (x, n) ∈ RN∗6 into the network.
Then 6 Conv1D layers are adopted to extract their geometric
features. In order to preserve multi-level features, we perform
short-circuits to connect the features from top layers to
the last layer. Also, we observe that further concatenating
exterior features from the model points could effectively
advance the distribution consistency for afterward similarity
computation. After concatenating the multi-level and exterior
features, we obtain a fused feature of size F ∈ RN∗1048.
Last, the fused feature is fed to an output Conv1D layer
and then normalized to get the final scene point feature
Fsa ∈ RN∗512. It is the same for the PSN to process model
points to get Fma ∈ RN∗512, except for that the exterior
features are from scene points. Given Fsa and Fma, we then
apply inner production to take the two feature matrices as
input and use the softmax function to generate the attention
map M.

PPF constrains. To enhance the accuracy and effective-
ness of the generated attention maps in focusing on geometric
features, a PPF (Point Pair Feature) [12] constraint term is
utilized as supervision to guide the attention maps. PPF is an
effective way to calculate the relative positions and normal
vector directions between point pairs, which enables it to
capture the surface invariance and possess tolerance to pose



Fig. 3. Detailed structure of the proposed pseudo-siamese network.

changes. Additionally, the computation of PPF features takes
into account the neighborhood information in the point cloud,
which is beneficial in handling the case of partial occlusion.
Specifically, all points in the scene point cloud are converted
into the canonical coordinate using ground truth poses. Then
each point in the transformed point cloud is compared with
all points of the model point cloud to calculate the PPF-
constrained point-pair features. As shown in Fig. 4, given
the ith transformed scene point (xi, ni) ∈ RN×6 and the jth
model point (xj , nj) ∈ RN×6 , we calculate the Euclidean
distance feature di,j , the normal vector angle feature θi,j ,
and the distance vector and normal vector angle feature θdi,j

as follows

di,j = ∥xi − xj∥2 (1)

θi,j = arccos

(
ni · nj

∥ni∥ ∥nj∥

)
(2)

θdi,j
= arccos

(
ni

∥ni∥
·
(

nj

∥nj∥

)T

· di,j
∥di,j∥

)
(3)

After that, these three feature terms are weighted and
aggregated as the final constraint term:

W (i, j) =
1

1 + (γ1di,j + γ2θdi,j
+ γ3θi,j)

, (4)

where γ1, γ2, γ3 are the weight parameters. During training,
we supervise the learned attention map with this PPF con-
straint term

Lattention =
1

NN

N∑
i=1

N∑
j=1

(M(i, j)−W (i, j))2 (5)

D. Attention Aware Pose Estimation

Given the extracted features Fs and Fm, and the point-
wise attention map M , we design an attention aware pose
estimation mechanism. The key idea is to concatenate the
attention map to the feature vectors to guide the correspon-
dence matching and pose estimating process.

Specifically, we follow [10] to develop two different
branches to separately predict the point matches Cs→m from
the scene points to model points and the point matches Cm→s

from the model points to scene points. In each branch, an
MLP is deployed to decode the feature vector Fs or Fm, then
the output features are concatenated with the attention map
and fed to an MLP regressor for correspondence prediction.

Fig. 4. Illustration of point-pair features for attention constraint.

In order to encode more features, we also deploy inter-
branch concatenation and short circuits mechanism as shown
in Fig. 2. Given predicted scene to model matches (xi, ni)
and model to scene matches (xj , nj), we directly supervise
the predicted correspondence with L1 losses

Ls =
1

N

∑
i

(∥xi − x̂i∥+ ε ∥ns
i − n̂s

i∥) (6)

Lm =
1

N

∑
j

(
∥xj − x̂j∥+ ε

∥∥nm
j − n̂m

j

∥∥) (7)

where ε is a hyper-parameter to balance the two terms.
Moreover, we also adopt another regression branch to

directly predict the candidate poses Td = (Rd, td) from
decoded features following [40] by regressing the 3D transla-
tion vector and a normalized 4D quaternion vector, in which
the attention map is also concatenated in the way as in the
other two branches. The poses are supervised with the ground
truth pose with ADD loss for asymmetric objects

Ldi
=

1

K

∑
k

∥∥∥(Rdi
pk + tdi

)−
(
R̂di

pk + t̂di

)∥∥∥ (8)

or with ADD-S loss for symmetric objects

Ldi
=

1

K

∑
k

min
j∈K

∥∥∥(Rdi
pj + tdi

)−
(
R̂di

pk + t̂di

)∥∥∥ (9)

We train the network end-to-end with prediction losses,
pose losses, and the attention loss together

L = φ1
1

N

∑
i

Ldi
+ φ2Ls + φ3Lm + φ4Lattention (10)

Last, we follow [12] to compute the possible poses Ts

and Tm from the predicted point pairs. And due to the
complementary nature of the information in these three pose
sets, we merge the predicted poses from the three branches
to obtain the final pose:

Tfinal = average(Td ∪ Ts ∪ Tm) (11)

IV. EXPERIMENT AND DISCUSSION

This section presents our experimental setup and imple-
mentation details and then reports the evaluation results on
several commonly used datasets. We also demonstrate the
effectiveness of our proposed components by performing
several ablation studies.



TABLE I
EVALUATION RESULTS IN TERMS OF ADD(-S)(<0.1D) ON LINEMOD DATASET

DenseFusion [36] GCCN [11] REDE [31] G2L-Net [41] PR-GCN [42] PVN3D [8] BiCo-net [10] Ours
ape 92.3 97.5 95.6 96.8 97.6 97.3 97.3 98.2

benchvise 93.2 98.5 99.4 96.1 99.2 99.7 98.8 99.7
camera 94.4 99.7 99.6 98.2 99.4 99.6 99.6 100.0

can 93.1 99.5 99.5 98.0 98.4 99.5 99.3 99.8
cat 96.5 98.8 99.5 99.2 98.7 99.8 100.0 100.0

driller 87.0 96.6 99.3 99.8 98.8 99.3 98.9 99.3
duck 92.3 98.7 97.0 97.7 98.9 98.2 98.7 99.0

eggbox∗ 99.8 100.0 100.0 100.0 99.9 99.8 99.8 99.8
glue∗ 100.0 100.0 99.9 100.0 100.0 100.0 99.8 99.9

holepuncher 92.1 96.7 98.6 99.0 99.4 99.9 99.2 99.8
iron 97.0 97.1 99.3 99.3 98.5 99.7 100.0 99.9
lamp 95.3 99.1 99.3 99.5 99.2 99.8 99.7 99.8
phone 92.8 98.4 99.3 98.9 98.4 99.5 99.2 99.5
MEAN 94.3 98.5 98.9 98.7 98.9 99.4 99.3 99.6

* Objects marked with stars are symmetrical objects

A. Datasets

LineMOD [6] dataset contains a total of 13 objects, and
we follow the approach in [40] to segment the training
and testing data. Specifically, the dataset contains 13 low-
texture objects placed in different cluttered environments,
comprising 15783 images. And 1065 real data are randomly
selected from the original dataset for testing.

YCB-Video [40] contains 21 shape and texture variations
of YCB [43] objects. A subset of 92 RGBD videos of
the objects is captured and annotated using 6D poses and
instance semantic masks.

We follow [36] to use the GT mask for training, and divide
the dataset into training and testing sets. 16189 frames plus
80,000 synthetic images provided by [40] are selected for
training, and another 2949 critical frames from the remaining
12 videos are selected for testing.

Occ-LineMOD [44] dataset is a subset of the LineMOD
dataset, containing 8 objects under severe occlusion and
1214 images with multiple severely occluded objects. We
use this dataset to test the robustness of pose estimation in
challenging situations.

B. Evalution Metrics

We used ADD [6] and ADD-S [40] evaluation metrics
used by most methods to evaluate our model. ADD is the
average Euclidean distance between the model points after
transforming the predicted and ground truth poses. ADD-S
is a metric for symmetric objects to calculate the average
distance to the nearest point. In both LineMOD and Occ-
LineMOD datasets, we report the accuracy of pose prediction
for ADD(-S) < 0.1d. While for the YCB-Video dataset,
we report the area under the curve obtained by ADD(-S)
by varying the distance threshold and the percentage of all
ADD(-S) data less than 2 cm.

C. Experimental results

LineMOD. We evaluate our performance in the LineMOD
dataset as shown in Table I. For a fair comparison, apart
from [8] which predicts masks by their own, all other
methods including ours utilize the masks provided by
PoseCNN [40]. Our method uses only real data for training
and outperforms all other methods, with a higher accuracy

of more than 0.2%. For small objects in the dataset, it
is demanding for other networks to estimate their poses
effectively based on a small number of pixel points. Our
method tightly links the model point cloud and depth infor-
mation. Eventually, the prediction robustness of these objects
is significantly improved compared to other methods. The
performance of our approach exhibits a slight deficiency
when applied to the symmetrical objects. We argue that it
is attributed to the existence of multimodal responses in the
learned attention maps that represent the correlation between
model points and scene points, pertaining to the geometric
symmetry of the objects. Consequently, these multimodal
responses marginally impact the learning of the matching
process.

YCB-Video. We evaluate our performance with the GT
mask and the PVN3D[8] masks respectively for a fair com-
parison, as shown in Table II. Our method has an advantage
over most of the state-of-the-art methods and achieves 99.1%
on ADD-S (<2cm). Our accuracy improves on most objects
thanks to the point-pair feature constraint. Fig. 5 shows the
results of the visualization of the predicted poses of some
of the objects. It can be seen that our method has improved
the robustness of the network in predicting poses to some
extent, and is able to accurately calculate the correct poses
even with interference such as occlusion.

Occ-LineMOD. For the most challenging dataset, the final
results are shown in Table III. It can be seen that our method
shows a significant improvement in ADD-S<0.1d compared
to other methods, with an average prediction accuracy of
74.4%. Notably, our method demonstrates improved perfor-
mance on symmetrical objects in more occluded situations.
We attribute this observation to the reduction in potential
correlations between point pairs brought about by surface
occlusions. This reduction in the likelihood of multimodal
responses subsequently enhances the precision of the match-
ing process. However, since the structure of PR-GCN [42]
based on graph convolutional network can make full use of
the geometric information and topology of objects in images,
they also show better performance at handling topological
information of objects.



TABLE II
EVALUATION RESULTS IN TERMS OF THE ADD-S(AUC) AND ADD-S(<2CM) EVALUATION METRICS ON YCB-VIDEO DATASET

with GT mask with PVN3D mask
DenseFusion [36] BiCo-net [10] Ours PVN3D [8] PR-GCN [42] BiCo-net [10] Ours

Object AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm
002 96.2 100.0 96.3 100 96.9 100 96.0 100 97.1 100 96.4 100.0 95.8 100
003 95.3 100 96.5 100 96.2 100 96.1 100 97.6 100 96.1 99.9 96.5 100
004 97.9 100 97.5 100 98 100 97.4 100 98.3 100 97.9 100 98.1 100
005 94.3 96.9 96.4 98.7 96.8 98.7 96.2 98.1 95.3 97.6 95.8 98.1 95.9 98
006 97.7 100 98.0 100 98 100 97.5 100 97.9 100 97.9 100 98.3 100
007 96.7 100 95.9 100 96.5 100 96 100 97.6 100 96.2 100 97.1 100
008 97.3 100 97.7 100 97.8 100 97.1 100 98.4 100 97.3 100 98.1 100
009 98.4 100 98.3 100 98.9 100 97.7 100 96.2 94.4 98.9 100 98.7 100
010 90.2 92.3 93.1 95.6 93.6 95.4 93.3 94.6 96.6 99.1 93 94.7 93.4 94.8
011 96.2 99.7 97.4 100 97.7 100 96.6 100 98.5 100 97.4 100 97.6 100
019 97.5 100 97.0 100 97.5 100 97.4 100 98.1 100 97.5 100 97.6 100
021 96.4 100 97.0 100 97.1 100 96 100 97.9 100 96.4 100 96.8 100

024∗ 88.9 87.4 96.5 100 97.0 100 90.2 80.5 90.3 96.6 96.5 100 96 99.3
025 97.0 100 96.5 100 97.3 100 97.6 100 98.1 100 97.2 100 97.4 100
035 97.1 100 96.8 100 97.1 100 96.7 100 98.1 100 96.9 100 97.3 100

036∗ 94.1 100 95.2 100 95.2 100 90.4 93.8 96 100 91.5 89.7 94.1 98.8
037 93.2 100 95 100 94.5 100 96.7 100 96.7 100 90.8 98.9 93.5 100
040 97.5 100 97.3 100 97.2 100 96.7 99.8 97.9 100 96.8 100 98 100

051∗ 89.7 98.0 95.9 100 95.9 100 93.6 93.6 87.5 93.3 94.4 98.5 92 98.5
052∗ 77.4 80.5 95.1 99.9 95.6 100 88.4 83.6 79.7 84.6 88.4 91.2 86.9 91.5
061∗ 91.5 100 96.8 100 97.3 100 96.8 100 97.8 100 97.2 100 96.9 100
ALL 94.2 97.8 96.4 99.6 96.7 96.6 95.5 97.6 95.8 98.5 95.8 98.8 95.8 99.1

* Objects marked with stars are symmetrical objects
TABLE III

EVALUATION RESULTS IN TERMS OF ADD(-S)(<0.1D) ON OCC-LINEMOD DATASET

PVNet [9] REDE [31] FFB6D [37] PR-GCN [42] BiCo-net [10] Ours
ape 15.8 53.1 47.2 40.2 55.6 58.3
can 63.3 88.5 85.2 76.2 83.2 88.5
cat 16.7 35.9 45.7 57.0 47.3 51.6

driller 65.7 77.8 81.4 82.3 69.9 77.8
duck 25.2 46.2 53.9 30.0 58.3 64.8

eggbox∗ 50.2 71.8 70.2 68.2 78.1 81.3
glue∗ 49.6 75.0 60.1 67.0 76.9 79.0

holepuncher 39.7 75.5 85.9 97.2 87.2 93.6
Mean 40.8 65.4 66.2 65.0 69.5 74.4

* Objects marked with stars are symmetrical objects

Fig. 5. Illustration of the performance of our method compared with other baseline methods on the YCB-Video dataset. Point clouds are projected back
to the image after being transformed by the predicted pose. Images are cropped for better visualization.

D. Ablation Studies

Effect of attention aware pose estimation. To verify the
impact of the point-wise attention map module on the ro-
bustness of the predicted poses, we conduct ablation studies
on the LineMOD and Occ-LineMOD datasets. As shown in
Table IV, we find that concatenating the attention map to

the 3 branches makes them aware of the correlation between
model points and scene observations, which significantly
improves the subsequent pose prediction results.

Effect of supervising the attention map with PPF
features. To verify the effect of the point-pair feature weights
in supervising the point-wise attention map, we recombine



TABLE IV
EFFECT OF ATTENTION AWARE POSE ESTIMATION.

Attention for di-
rect regression

Attention for
match prediction

LineMOD
ADD(-S)

Occ-LineMOD
ADD(-S)

99.3 69.5
✓ 99.4 72.4

✓ 99.5 73.7
✓ ✓ 99.6 74.4

these three features and conduct ablation studies on the
LineMOD and Occ-LineMOD datasets. As shown in Table
V, if the PPF constraints term only uses the point distance
vector feature and the angle of the normal feature, it ends up
with 73.3% of the final results, which is a 3.8% improvement
compared to the original network without using constrained
weights. However, we add the angle between the normal
and the distance vector as another feature constraint to
jointly guide the global attention map, and the final result
is improved by 1.1%.

TABLE V
EFFECT OF PPF WEIGHT CONSTRAINT TERMS

d θd,N θN LineMOD
ADD(-S)

Occ-LineMOD
ADD(-S)

✓ 99.5 73.4
✓ 99.4 73.5

✓ 99.4 73.9
✓ ✓ 99.4 73.3
✓ ✓ 99.5 73.5

✓ ✓ 99.4 74.0
✓ ✓ ✓ 99.6 74.4

Effect of point-wise attention mechanism compared
with GCCN. In order to validate the effectiveness of our
proposed point-wise attention mechanism compared with
GCCN [11], we conduct a series of ablation experiments
on all the three datasets. As shown in Table VI, we first
replace the pseudo-siamese network (PSN) to the feature
extraction networks in GCCN. The experimental results show
a significant decrease in the pose prediction performance
compared to using PSN. Then, we apply the improved PPF
weight constraint terms and achieve more improvements.
Finally, as shown in Fig. 6, we visually compare the results
by taking the point clouds from different viewpoints of the
”can” object in the Occ-LineMOD dataset. It can be observed
that our point-wise attention map can better model the weight
distribution that reflects the correlation between the model
and the scene, leading to higher matching precision.

TABLE VI
EFFECT OF PSEUDO-SIAMESE NETWORK (PSN)

PSN PPF con-
straints

LineMOD
(ADD-S)

Occ-LineMOD
(ADD-S)

YCB-Video
(<2cm)

99.3 73.3 98.8
✓ 99.4 73.7 98.9

✓ ✓ 99.6 74.4 99.1

V. CONCLUSION

In this paper, we propose a bidirectional correspondence
prediction network with point-wise attention aware mech-
anism to utilize a CAD model for stable 6D object pose
estimation. Also, we introduce pseudo-siamese network to

Fig. 6. Visualization of attention maps learned by our attention module
(first row) and by GCCN method (second row). We select a point in the
scene point cloud, and the corresponding attention map on the model point
cloud is projected into a 2D image plane for visualization. The dotted
lines connect the scene point and the corresponding points with the largest
attention values.

discover the similarities between model points and scene
points, obtaining robust attention correlations. Experiments
display that our method shows advantages over current state-
of-the-art methods, and the accuracy and robustness of our
prediction results are improved for 6D pose estimation.
However, our performance still relies on the quality of the
mask to a certain extent, which we have not addressed in
this paper. We will consider this issue and try to implement
associative segmentation and pose estimation in future works.

REFERENCES

[1] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose esti-
mation for augmented reality: a hands-on survey. IEEE transactions
on visualization and computer graphics, 22(12):2633–2651, 2015.

[2] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view
3d object detection network for autonomous driving. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
pages 1907–1915, 2017.

[3] Menglong Zhu, Konstantinos G Derpanis, Yinfei Yang, Samarth
Brahmbhatt, Mabel Zhang, Cody Phillips, Matthieu Lecce, and Kostas
Daniilidis. Single image 3d object detection and pose estimation for
grasping. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 3936–3943. IEEE, 2014.

[4] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran
Song, and Leonidas J Guibas. Normalized object coordinate space
for category-level 6d object pose and size estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2642–2651, 2019.

[5] Xu Chen, Zijian Dong, Jie Song, Andreas Geiger, and Otmar Hilliges.
Category level object pose estimation via neural analysis-by-synthesis.
In Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, pages
139–156. Springer, 2020.

[6] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic,
Kurt Konolige, Nassir Navab, and Vincent Lepetit. Multimodal
templates for real-time detection of texture-less objects in heavily
cluttered scenes. In 2011 international conference on computer vision,
pages 858–865. IEEE, 2011.

[7] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim:
Deep iterative matching for 6d pose estimation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 683–698,
2018.

[8] Yisheng He, Yimeng Sun, Jiashuo Huang, Xu Liu, Chuyang Fan, and
Baoquan Li. Pvn3d: A deep point-wise 3d keypoints voting network
for 6dof pose estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5499–5508, 2020.

[9] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hujun Bao.
Pvnet: Pixel-wise voting network for 6dof pose estimation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4561–4570, 2019.



[10] Zelin Xu, Yichen Zhang, Ke Chen, and Kui Jia. Bico-net: Regress
globally, match locally for robust 6d pose estimation. arXiv preprint
arXiv:2205.03536, 2022.

[11] Yongming Wen, Yiquan Fang, Junhao Cai, Kimwa Tung, and Hui
Cheng. Gccn: Geometric constraint co-attention network for 6d object
pose estimation. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 2671–2679, 2021.

[12] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic.
Model globally, match locally: Efficient and robust 3d object recogni-
tion. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 998–1005, 2010.

[13] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep
image retrieval: Learning global representations for image search. In
Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings, Part VI
14, pages 241–257. Springer, 2016.

[14] Chunhui Gu and Xiaofeng Ren. Discriminative mixture-of-templates
for viewpoint classification. In Computer Vision–ECCV 2010: 11th
European Conference on Computer Vision, Heraklion, Crete, Greece,
September 5-11, 2010, Proceedings, Part V 11, pages 408–421.
Springer, 2010.

[15] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer,
Gary Bradski, Kurt Konolige, and Nassir Navab. Model based
training, detection and pose estimation of texture-less 3d objects in
heavily cluttered scenes. In Computer Vision–ACCV 2012: 11th Asian
Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012,
Revised Selected Papers, Part I 11, pages 548–562. Springer, 2013.
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APPENDIX I
DETAILS OF OUR METHOD

A. Implementation Details

Network Architecture. This experiment runs on Ubuntu
20.04 with a Tesla4 graphics card, using Pytorch for the
entire code implementation. We sample 1000 points from the
generated depth point cloud and the model point cloud. We
set the epoch to 50 during the training phase. The parameters
γ1 = 100, γ2 = 50, γ3 = 50 are set in the PPF constraints
term, and the parameters φ1 : φ2 : φ3 : φ4 = 1 : 1 : 1 : 0.01
are set in the loss function for the joint training of loss terms.

Attention Feature Extraction. In the process of obtaining
the attention map, as shown in figure 3, we first apply the
multilayer perceptron layer to boost the 6-dimensional data
to two dimensions of 64 and 128. To retain the local features
more accurately, the 64 and 128 dimensions are locally fused
as local features following DenseFusion [36]. Afterward, the
concatenated 256-dimensional features are further encoded.
Then the 1024-dimensional features are pooled on average
as global features and densely fused with the previously
generated local features.

B. Comments on the effect of ”PPF constraints”

“PPF constraints” refer to constraining the learning of
the attention network with Point Pair Features (PPF). As
proposed by [12], PPF is a feature representation method
used to describe the relative geometric relations between
two points. [12] stores the features of all points in a hash
table as a global model descriptor for matching, while we
only adopt the features to supervise the point-wise atten-
tion map. Specifically, we deploy the PPF based on the
following principle. Two close points with similar normal
vectors should achieve special PPF values, which leads to a
higher weight after our aggregation formulation. Thus, the
weights between the scene points after transformation and
their corresponding model points should be highlighted. In
that condition, it is plausible to take the PPF weights as
supervision to indicate how the correspondence should be
between the original model and scene points.

C. Comments on the effect of the final average process of
pose sets

In the final processing of pose sets, we used the same
averaging method as Bico-net [10]. However, when encoun-
tering situations of inconsistent poses, such as symmetrical
objects, this average calculation may lead to inaccurate pose
estimation, as you mentioned.

Fig. 7. Transformation between model and scene coordinates in PPF [12].

The characteristic of symmetric objects is that their ap-
pearance is mirror symmetric on a certain plane, so it is
easy to have multiple symmetric solutions when predicting
poses. When dealing with an object based on rotational axis
symmetry (such as the can object in the Linemod dataset),
we believe that the average operation has little impact on
this type of object, as its pose remains symmetrical after
averaging. However, when dealing with another object based
on 180-degree symmetry (such as the eggbox object in the
Linemod dataset), there may be some deviation in the final
pose obtained by this average operation, resulting in poor
performance of the final prediction results.

To address this issue, we have incorporated a novel at-
tention mechanism in our approach. The attention mecha-
nism helps to identify and leverage the differences among
predicted correspondences, effectively reducing the impact
of inconsistent poses during the averaging process. By em-
phasizing the reliable correspondences and suppressing the
less reliable ones, the attention mechanism contributes to
more accurate and robust pose estimation, particularly for
symmetric objects and challenging scenarios. Additionally,
we are considering clustering the final pose set based on its
rotation axis, and then averaging and refining the clustered
pose set.

D. Details of the three regression pose branches

In our method, we employ two kinds of poses, including
Ts and Tm that are computed from the correspondence
alignment branches, and Td that is predicted from the direct
regression branch.

For Td, we let the network predict the 3D translation vector
and a normalized 4D quaternion vector. While for Ts, we
follow [12] to define it as the transformation from a point
pair (mr,mi) in the model coordinates to its corresponding
point pair (sr, si) in the scene coordinates

si = Tsmi (12)

Ts = T−1
s→gRg(α)Tm→g (13)

In the equation, Tm→g ∈ R4×4 transforms mr into the
origin and rotates its normal vector onto the x-axis, and it
is formulated by computing the 3D translation vector, 3D
rotation axis, and 3D rotation angle. And so is the case



TABLE VII
ABLATION ON ADD-S LOSS FOR SYMMETRIC OBJECTS

Object fine-tune with
ADD loss

with ADD-S loss

eggbox 82 81.3
glue 79.6 79

with Ts→g . Rg(α) ∈ SO(3) defines a rotation around the
x-axis to align Tm→g and Ts→g , which is formulated by
computing the relative 3D angle. Tm is defined and computed
the same as Ts. Our rotation matrices are all calculated from
the rotation axis, angles, or quaternions, thus they are all
originally orthonormalized. Figure 7 illustrates the process
of calculating the position in PPF.

APPENDIX II
MORE EXPERIMENTAL RESULTS

A. Experiment against ADD-S Loss

In our experimental results, while our network demon-
strates improved accuracy on the majority of objects, we have
observed that there are certain symmetric objects where the
performance is not as satisfactory. To further investigate the
impact of the ADD-S loss function on predicting the poses of
both symmetric and asymmetric objects during the bidirec-
tional correspondence stage, we conduct additional analyses.
Specifically, We fine-tune the two symmetric objects using
ADD loss and examine the results on the Occ-Linemod
dataset. Table VII presents the outcomes, indicating that the
accuracy of both ”glue” and ”eggbox” improves after the
modification of the correspondence mapping loss function.
This suggests that the effectiveness of the ADD-S loss
function may vary depending on the symmetry characteristics
of individual objects. In the future, we will conduct more in-
depth research on this aspect.

B. Comparison with state-of-the-art methods on three bench-
mark datasets

Table VIII shows the comparison of FFB6D[37] and
RCVPose[45] methods on the LineMOD dataset. Table IX
shows the comparison of FFB6D[37] and RCVPose[45]
methods on the YCB-V dataset; and Table X shows the
comparison of FFB6D[37], RCVPose[45], CheckerPose[46],
ZebraPose[47], and Depth-based 6DoF Object Pose Esti-
mation using Swin Transformer[48] methods on the Occ-
LineMOD dataset.

C. More results on YCB-Video dataset

In this section, we integrate the ADD-AUC metric to
comprehensively assess the accuracy and robustness of our
pose predictions on the YCB-Video dataset. The ADD-
AUC metric, encompassing the area under the pose error
curve, provides a comprehensive perspective on performance.
During the evaluation, we utilize the segmentation masks
provided by PVN3D [8]. Table XI demonstrates our results
that our network also possesses a significant improvement in
the ADD-AUC metric compared to the current mainstream
methods.

TABLE VIII
THE STATE-OF-THE-ART WORKS ON LINEMOD DATASET

FFB6D RCVPose RCVPose+ICP Ours
ape 98.4 - - 98.2

benchvise 100 - - 99.7
camera 99.9 - - 100

can 99.8 - - 99.8
cat 99.9 - - 100

driller 100 - - 99.3
duck 98.4 - - 99

eggbox⋆ 100 - - 99.8
glue⋆ 100 - - 99.9

holepuncher 99.8 - - 99.8
iron 99.9 - - 99.9
lamp 99.9 - - 99.8
phone 99.7 - - 99.5
MEAN 99.7 99.4 99.7 99.6

*Objects marked with stars are symmetrical objects

TABLE IX
THE STATE-OF-THE-ART WORKS ON YCB-V DATASET

FFB6D RCVPose RCVPose+ICP Ours
Object AUC AUC AUC AUC

002 96.3 - - 95.8
003 96.3 - - 96.5
004 97.6 - - 98.1
005 95.6 - - 95.9
006 97.8 - - 98.3
007 96.8 - - 97.1
008 97.1 - - 98.1
009 98.1 - - 98.7
010 94.7 - - 93.4
011 97.2 - - 97.6
019 97.6 - - 97.6
021 96.8 - - 96.8

024⋆ 96.3 - - 96
025 97.3 - - 97.4
035 97.2 - - 97.3

036⋆ 92.6 - - 94.1
037 97.7 - - 93.5
040 96.6 - - 98

051⋆ 96.8 - - 92
052⋆ 96 - - 86.9
061⋆ 97.3 - - 96.9

MEAN 96.6 96.6 97.2 95.8

*Objects marked with stars are symmetrical objects

Through this supplementary section, we aim to provide
a well-rounded assessment of our method’s performance by
incorporating the ADD-AUC metric, thereby ensuring a fair
and comprehensive evaluation framework for comparing our
approach with the existing state-of-the-art methods.

From Table VIII, Our method achieves a competitive
accuracy of 99.6%, closely trailing the leading method by
only 0.1%. The key advantage of our approach is achieving
comparable performance to methods utilizing synthetic and
fuse data (FFB6D), while relying solely on real-world data
for training. This ensures generalizability and robustness
in handling diverse and challenging scenarios without the
need for costly synthetic data generation. Additionally, our
method’s efficiency and simplicity, without iterative opti-
mization, make it practical for real-time applications in
robotics and augmented reality systems. By leveraging only



TABLE X
THE STATE-OF-THE-ART WORKS ON OCC-LINEMOD DATASET

FFB6D RCVPose+ICP CheckerPose Zebrapose swim transformer Ours
ape 47.2 - 58.3 57.9 59.8 58.3
can 85.2 - 95.7 95 88.8 88.5
cat 45.7 - 62.3 60.6 46.7 51.6

driller 81.4 - 93.7 94.8 95.1 77.8
duck 53.9 - 69.9 64.5 59.4 64.8

eggbox⋆ 70.2 - 70 70.9 90.3 81.3
glue⋆ 60.1 - 86.4 88.7 88 79

holepuncher 85.9 - 83.8 83 88.8 93.6
MEAN 66.2 71.1 77.5 76.9 77.1 74.4

* Objects marked with stars are symmetrical objects

TABLE XI
EVALUATION RESULTS IN TERMS OF THE ADD(AUC) EVALUATION METRIC ON YCB-VIDEO DATASET

DenseFusion PoseRBPF PVN3D PVN3D+ICP BiCo-net Ours
Object ADD-AUC ADD-AUC ADD-AUC ADD-AUC ADD-AUC ADD-AUC

002 70.7 91.9 80.5 79.3 79.2 79.8
003 86.9 91.8 94.8 91.5 94.9 95.8
004 90.8 94 96.3 96.9 96.7 97.4
005 84.7 91 88.5 89 89.7 92
006 90.9 93.2 96.2 97.9 97.3 97.9
007 79.6 80 89.3 90.7 78.9 84.5
008 89.3 80.6 95.7 97.1 96.2 97.3
009 95.8 96.4 96.1 98.3 97.6 98.3
010 79.6 77.8 88.6 87.9 86.3 87.2
011 76.7 87.5 93.7 96 93.1 96.3
019 87.1 89.8 96.5 96.9 95.9 97.5
021 87.5 88.6 93.2 95.9 94.4 94.9

024⋆ 86 46.8 90.2 92.8 96.5 92
025 83.8 91.4 95.4 96 88.9 91.8
035 83.7 95.1 95.1 95.7 94.7 96.7

036⋆ 89.5 33.4 90.4 91.1 95.2 94.3
037 77.4 89 92.7 87.2 82.6 78.4
040 89.1 91.6 91.8 91.6 91.5 92.4

051⋆ 71.5 90.9 93.6 95.6 95.9 93.3
052⋆ 70.2 77 88.4 90.5 95.1 95.9
061⋆ 92.2 95.3 96.8 98.2 96.8 96.4
ALL 82.9 86.8 91.8 92.3 91.2 92.3

* Objects marked with stars are symmetrical objects

real data, our approach offers a compelling choice for prac-
tical 6D pose estimation applications.

From the results in Table IX and X, it is evident that
our method may not be the top-performing one on specific
datasets compared to other state-of-the-art approaches. How-
ever, these observations suggest potential areas for optimiza-
tion within our network, such as refining calculation methods
for symmetric objects in pose regression and enhancing the
performance of direct regression branches.

Taking into account the overall effectiveness of our
network across multiple datasets, our experimental results
demonstrate its exceptional performance beyond the limita-
tions of the baseline. Consequently, we firmly believe that
the primary advantage of our network lies in its ability
to significantly enhance 6D pose estimation across diverse
datasets, positioning it as a current state-of-the-art solution in
this domain. This capability makes our method a compelling
choice for practical applications where generalization and
robustness are crucial factors.

APPENDIX III
CONTRIBUTIONS AND EXPANSION OF OUR APPROACH

A. Analysis of applicability to other frameworks

First, the proposed attention map is validated to be helpful
for both correspondence prediction and direct regression
pipelines.Thanks to the combination of both pipelines in
BiCo-Net [10], we are enabled to verify the effectiveness
of the attention mechanism respectively, as shown in Table
IV.

As for other methods besides BiCo-Net, we argue that
similar processes, i.e. predicting correspondence or poses
from encoded features, could all benefit from the extra
attention information more or less. PVNet and PVN3D
differ from BiCo-Net in predicting sparse keypoints locations
rather than dense matching points. However, fundamentally,
they are still learning the corresponding points between the
scene and the model from the encoded features. Therefore,
the attention maps between scene and model points could
also help the learning process.



Second, the proposed attention mechanism is highly ver-
satile and adaptive to other architectures. The input of
our module, the scene and the model points, is commonly
applicable in RGBD-based instance-level pose estimation
tasks. And the output of our module, the attention maps,
can be simply concatenated with the original features. For
example, if we were to use this module on PVN3D, we could
concatenate the learned attention maps to the N*1792 feature
vector in PVN3D. In future work, we are more than happy
to conduct such in-depth research in this perspective.

B. Our contribution and improvements

BiCo-Net proposes a novel bidirectional correspondence
prediction network to further exploit the CAD model in-
formation, and uniquely combines global regression and
local matching for robust 6D pose estimation. It is capable
of handling challenging scenarios, such as occlusion and
clutters, and achieving great performance. Based on the main
architecture of BiCo-Net, our contributions lie in propos-
ing a global point-wise attention mechanism to leverage
the similarities between observations and the model prior.
Experiments and ablation studies show the effectiveness of
our proposed attention mechanism.
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