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Abstract—Object pose estimation underwater allows an au-
tonomous system to perform tracking and intervention tasks.
Nonetheless, underwater target pose estimation is remarkably
challenging due to, among many factors, limited visibility, light
scattering, cluttered environments, and constantly varying water
conditions. An approach is to employ sonar or laser sensing to
acquire 3D data, however, the data is not clear and the sensors
expensive. For this reason, the community has focused on extract-
ing pose estimates from RGB input. In this work, we propose an
approach that leverages 2D object detection to reliably compute
6D pose estimates in different underwater scenarios. We test our
proposal with 4 objects with symmetrical shapes and poor texture
spanning across 33,920 synthetic and 10 real scenes. All objects
and scenes are made available in an open-source dataset that
includes annotations for object detection and pose estimation.
When benchmarking against similar end-to-end methodologies
for 6D object pose estimation, our pipeline provides estimates
that are ∼8% more accurate. We also demonstrate the real-world
usability of our pose estimation pipeline on an underwater robotic
manipulator in a reaching task.

Index Terms—Underwater, manipulation, dataset, pose estima-
tion, computer vision for manipulation.

I. INTRODUCTION

The hazardous nature of underwater environments makes
it challenging and critically dangerous for humans to con-
duct certain underwater intervention tasks. To mitigate this,
underwater robots have been widely adopted for intervention
tasks during the last decade [1]. A robotic system used
for intervention not only requires a mechanised manipulator
arm to interact with nearby objects, but also an object pose
estimation system to track and understand the surroundings.

For an underwater object pose estimation system to extract
the pose of the surrounding objects reliably, it must cope with
changes in light conditions, blurriness, and water visibility.
Employing cutting-edge sensors in complicated setups eases
the gathering of cleaner three-dimensional (3D) data. Exam-
ples of underwater imaging sensors include sonars and lasers;
the former can be cluttered, whereas the latter suffers from
distortion on the reconstructed cloud proportional to the sensor
motion during the scan [1]–[4]. These underwater sensing
constraints suppose a remarkable challenge for underwater
object tracking and intervention [5].

The lack of on-dry-like 3D sensing has pushed the advance-
ments of computer vision techniques useful for segmentation
and localisation underwater [6], [7] as well as red-green-
blue (RGB) imagery and Deep Learning (DL) algorithms
[8]–[10] for known targets. Current methodologies for object
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Fig. 1: Illustration of real-time underwater object pose de-
tection. On top, our processing flow: 1) the RGB as input,
2) detect the object and 3) estimate the object pose. Below,
example of our pipeline in an underwater manipulation setting.

pose estimation rely on the prior knowledge of the computer-
aided-design (CAD) model, which has been proven successful
in vehicle tracking [8] and tool detection for intervention
applications [10], [11]. Although the promising results in the
literature, these are based on datasets and scenarios that target
specific applications, thus lacking generalisation.

One of the main challenges for object pose detection un-
derwater is the lack of datasets with variability of underwater
environment representations that can potentiate robust learn-
ing algorithms. Data collection in uncontrolled underwater
environments is considered a laborious and, in some cases,
hazardous task. The unavailability of these datasets hinders
the training of object pose detection methods that are robust
to the low-light and blurry nature of the input data.

On the grounds of the limitations mentioned above, the
contribution of our manuscript is twofold. First, we collect and
make available a new rich dataset for underwater object pose
detection. This dataset consists of randomised simulated un-
derwater scenarios, as well as 10 different real-world underwa-
ter and dry scenes across two countries (Italy and UAE). The
newly available dataset has RGB and paired depth images with
the corresponding CAD models for the objects of interest1.
Second, we present a multi-target underwater pose prediction
pipeline that employs a combination of deep Convolutional
Neural Networks (CNNs). The architecture employs You Only
Look Once (YOLO) version 4 [12] for its proven robustness
in detecting object instances in underwater RGB images [13],
and an Augmented Autoencoder (AAE) [14] to lift the object’s
pose estimate to 6D while handling symmetries and partial
occlusions. Our method trains in simulation and estimates the
target pose in various real environments more efficiently than
state-of-the-art methodologies that offer an end-to-end solution
to model-based pose estimation. We evaluate the reliability
of our proposal using the Benchmark for 6D Object Pose

1Our dataset is available at https://bit.ly/3LZYvyJ
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Estimation (BOP) toolkit [15]. We also compare the obtained
poses with collected ground truth data and analyse the usability
of the method with a robotic arm in a peg-in-a-hole underwater
scenario, as shown in Fig. 1.

II. RELATED WORK

A major challenge for underwater object pose estimation
is the clarity of sensory input. While imagery suffers from
colour degradation and light scattering, 3D perception based
on sonars, lasers and customised stereo cameras struggles to
acquire accurate and neat point clouds [2], [3], [16]. The lack
of on-dry-like 3D sensing motivates underwater object pose
estimation to remain an open research topic.

A. Datasets

Underwater datasets for object pose detection are labour-
intensive to collect. This section overviews available datasets
useful in dry and underwater environments for object tracking
and manipulation from multiple types of sensors.

Assuming ideal conditions and perfect acquisition of RGB
images from a stereo pair, the corresponding depth information
can be computed. However, in reality, ideal conditions are
rarely met. For this reason, [1] develops its own underwater
3D laser scanner. The resulting point cloud is used to guide
an eight degrees-of-freedom (DoF) fixed-base manipulation
system to follow pre-recorded trajectories in real time. In a
subsequent demonstration, an underwater vehicle manipulation
system (UVMS) uses the same sensor to autonomously pick
up an object from the bottom of a water tank. Other method-
ologies resort to using commercial sensors to overcome the
object detection challenge while compensating for the object
pose by having a prior of the object shape. For example, [17]
presented an underwater dataset called UWHandle of three
types of graspable handles collected from a natural seafloor
environment. In [17], they project the known handle models on
the regions of interest (ROI) detected from a fish-eye camera
and test the pose accuracy with AprilTags fiduciary [18]
markers. [10] also proposes a 3D model-based method with
a subset of objects in a controlled water tank setting. While
these methodologies propose underwater pose detection, their
accuracy is limited to specific environments which limits their
extension to manipulation or object tracking in real scenarios.

B. 6D Pose Estimation

Spatial awareness from obtaining 6D pose estimation be-
tween a robot and a reference is essential for successful
tracking or manipulation tasks. Limited literature exists for
object pose estimation in underwater environments.

Authors in [17] proposed a method to detect poses of
objects under controlled partial occlusions. Their approach is
to regress the 3D poses from monocular silhouettes predicted
by a CNN pipeline that uses an associated occlusion mask of
the known object 3D model with a transformation vector. This
architecture required data acquisition in real environments to
estimate the object pose while knowing the target object. Also
knowing the 3D model in advance, authors in [8] propose a

real-time 6D relative pose estimation of an Autonomous Un-
derwater Vehicle (AUV) from a single image. This approach
uses underwater simulated scenario photos for training. In
order to create synthetic images for training, an image-to-
image translation network is used to close the gap between
rendered and real images. The suggested method predicts the
pose of an AUV from a single RGB image that corresponds
to the 8 corners of the AUV’s 3D model. The resilience and
accuracy of the suggested technique are demonstrated in real-
world underwater environments with different cameras. While
these works motivate the development of underwater object
pose estimation methods, they do not cope with uncontrolled
object occlusions and blur caused by marine life and diverse
conditions in the underwater environment.

Contrary to existing underwater pose estimation method-
ologies, we make available online a dataset consisting of
four different objects across simulated and real environments
considering scenes with the objects partly occluded and di-
versity of backgrounds ranging from homogeneous colours to
vegetation. To estimate the object pose, instead of learning
an explicit mapping from input images to object poses we
propose a pipeline that provides an implicit representation of
object orientations defined by samples in a latent space. Thus
allowing to train in simulated and generalise to real underwater
scenes. Moreover, as explored in Section IV, our proposal
shows to be robust to lack of textural surface and symmetrical
object geometries.

III. OUR DATASET

This work pursues an underwater multi-object pose esti-
mation for which the training data needs to be diverse and
accurate. However, contrary to the vast RGB and depth object
datasets for dry environments [19]–[21], there is a lack of
datasets for underwater intervention settings. We present a
new dataset to push the state-of-the-art in underwater object
recognition and pose estimation. Such dataset is then employed
in Section IV to compute object poses with our framework.

Our dataset contains RGB annotated frames of four different
object categories seen from different points of view alongside
the objects’ 3D models. The chosen object categories represent
common use cases for underwater intervention tasks, such as
maintenance or object recovery. The dataset is intended to
continue growing with various object representations useful
for underwater intervention purposes and to encourage the
creation of robust underwater object pose estimation methods.

A. Data Collection and Generation

1) Data generation: in order to test our 6D pose estima-
tion framework proposed in Section IV, we designed four
different objects commonly used for underwater intervention
tasks. These objects represent symmetrical, asymmetrical and
texture-less shapes. Fig. 2 illustrates our object categories.
Using Unity and the CAD model of our objects, we generate
a total of 33,920 simulated scenes of dimension 640 × 480
with different homogeneous and heterogeneous backgrounds,
including object occlusions and various illuminations. Fig. 2
showcases some of our simulated scenes.
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Fig. 2: Example of our dataset, including real (white font) and
simulated scenes (black font). UW describes underwater.

2) Collection in real environments: we 3D printed our
objects to harvest data in real scenes. The dataset is collected
using a d455 realsense inside a waterproof container. The
camera simultaneously records both, RGB and depth images
at 640× 480 resolution at 30 frames per second. For the
development of the framework in Section IV, we solely use
the RGB data for training. While we do not use the depth
information for our method, we provide the depth frames in
our available dataset for the use of the community. Using the
previously described camera setup, we record video sequences
of each of the four object categories in 10 different setups,
both, individually and using various categorical combinations.
The average scene sequence contains 180 RGB frames with
corresponding depth data. The different scenes are recorded
across two different countries (Italy and UAE), in different real
underwater and dry environments. For our underwater scenes,
we consider environments, such as partial object occlusions
from marine life, shadows and changing lighting conditions,
low visibility at night coped with LED illumination and
heterogeneous backgrounds. Fig. 2 shows examples of our
real underwater scenarios (captioned ‘UW’ in white font). Per
recording, we freely rotate the object inside the camera field
of view at varying distances as far as 3m from the target, as
bounded by hardware limitations.

B. Object Recognition Annotation and Processing

1) Annotation: given the diversity of environments in
our dataset we need an efficient yet high-quality annotation
pipeline to define our objects of interest in the images.
We annotated a total of 87,100 real RGB images for two-
dimensional (2D). Examples of the bounding boxes are shown
in Fig. 2. Our annotation process consists of three stages.
First, a human annotator labels approximately 1% of the data

Fig. 3: Dataset collection density across scenes.

across scenes, including partial views of the objects. Second,
we designed an auto-labelling tool based on YOLOv4 [12] to
create the bounding boxes for the rest of the data based on the
1% of manually annotated data. Finally, three different human
annotators checked the created bounding boxes in a sequential
fashion to ensure the quality of the annotated region of interest.

2) Dataset Statistics: we consider an important feature of
our dataset the variability of scenes, particularly the contri-
bution of underwater imagery. Fig. 3 shows the four objects
across our 10 scenes and the percentage of RGB images per
scene. As seen from the data density, the collected data is
spread across different settings. The real underwater collected
images represent 42.5% of our dataset, being collected in 4
different underwater conditions. The other 57.5% are image
sequences collected from 6 on dry scenes. Fig. 4 shows the
location distribution of the centre of our annotated bounding
boxes on the RGB images. As shown in the plots, there are
some concentrations at the centre of the 640× 480 image,
with some bounding boxes located across most of the pixels.

C. Ground Truth Extraction for Pose Estimation

Exclusively for sim-to-real evaluation purposes, to obtain
the ground truth of the object pose, we attached an April-
Tag [18] bundle to the target objects. Thus, the bundle has a
fixed map to the centre of geometry of the object. As illustrated
in Fig. 5, given that we know the object base frame by its
3D design, Op, and we can detect the bundle pose, Bp we
calculate offline the transformation between the object and the
bundle, TO

B . Using this information we are able to extract the
ground pose and estimate the error of our detection (detailed
in Section IV-C3).

In general our collected dataset displays features that pro-
mote detection robustness across different scenes, including
dry and underwater environments, as well as a high-quality set
of annotations for future proposals on learning methodologies.

IV. OBJECT POSE ESTIMATION

Obtaining reliable 3D data underwater is difficult given
the environment and sensing limitations. Given the aforemen-
tioned limitations, we propose a pipeline composed of 2D
object detection and 6D pose estimation on the RGB image.
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A diagram of our pipeline is illustrated on Fig. 6. On the
detected object bounding box, we then estimate the object
6D pose. Namely, we create a pipeline based on YOLOv4
for 2D object detection (as detailed in Section IV-A) and the
AAE for 6D pose estimation (as detailed in Section IV-B).
The pipeline is multi-object because the YOLOv4 is multi-
object and selects the correspondent object’s AAE training
(one for each class). Our pipeline is designed to find the best
trade-off between computational efficiency and accuracy on
real-time input while proving to be robust for detection and
pose estimation in dry and underwater environments. Opting
for this pipeline offers a significant advantage because it
can be completely trained in simulation and only requires
labelled data for the YOLOv4, while generalising on real
scenes (see Section IV-C3). Our dataset is readily available
and includes RGB images and 2D labels containing bounding
box information of the depicted objects. Conversely, no dataset
is necessary for AAE since it self-builds from the CAD model.
Nevertheless, synthetic labelled 6D datasets and real labelled
6D datasets were produced and used during the validation
of our method (see Sections IV-C1, IV-C2, IV-C3). The
significance of 6D labelled datasets extends to being applicable

(a) Hotstab (b) Cube

(c) Mug (d) Jar

Fig. 4: Annotations representing object locations in the image.

Fig. 5: On the right, example of the annotated ground pose
estimation on the hotstab. On the left, rest of the objects.

Data Collection

Data Annotation
RGB CAD sim

TRAINING STAGE

REAL TIME INFERENCE STAGE AAE
model

Yolov4
model

Cropping 
function

Pose 
tracker

Input RGB Object Detection Object Pose

Fig. 6: Given an RGB image as input, the first step consists
of 2D detection and classification with multi-object YOLOv4.
Given cropped images and their classes, they become the
input of one of the four AAE training, one for each object.
As output, each training returns a rotation matrix R and a
translation matrix t.

to almost all other underwater pose estimation techniques
that necessitate 6D labels. Moreover, differently from similar
methodologies for 6D pose estimation, our proposed pipeline
proves to be unaffected by the object perception point-of-view,
self occlusions, and symmetric geometries as illustrated in
Section IV-D.

A. 2D Object Detection

For RGB based pose detection methods, accurate 2D de-
tection is essential for the subsequent pose estimation. To
train object detection we consider various underwater scenes
to enrich the collection of features, as detailed in Section III-A.

In the context of deep learning, YOLOv4 has demonstrated
to efficiently perform in a heterogeneous environment, with
an excellent trade-off between accuracy and latency [22].
The training used only synthetic data. As detailed in Sec-
tion III-A, our synthetic data considers different backgrounds,
light colours and directions, in order to overcome issues of
the underwater scenario. Moreover, YOLOv4 applies data
augmentation to the original data. YOLOv4 uses a satura-
tion of 1.5, exposure of 1.5, hue 0.1, and a mosaic effect:
it combines multiple images into a single image. We use
YOLOv4 architecture as originally proposed in [22] to extract
a bounding box with the object features in real-time.

Up to this stage in our pipeline, we have a detected object
and the representing class as the output from YOLOv4. At this
point, we still need to estimate the detected object 6D pose.

B. 6D Pose Estimation

After YOLOv4, a method for 6D prediction should be
chosen. A major issue that usually affects 6D pose estimation
is pose ambiguity. Usually, these ambiguities arise due to
symmetries or self-occlusion of the objects. For example, when
the cup’s handle is occluded, the cup’s pose is ambiguous.
Therefore choosing a pose ambiguity invariant approach has



SAPIENZA et al.: MODEL-BASED UNDERWATER 6D POSE ESTIMATION FROM RGB 5

been revealed to be essential. In addition, given the underwater
scenario, the method should be robust to light changes and
blurring effects in real-time. For these reasons, an Autoencoder
(AE) structured model is chosen: AAE [14]. On the contrary,
alternative approaches [23]–[25], involve regressing local 2D-
3D correspondences between the image and CAD model,
followed by the application of a Perspective-n-Point (PnP)
algorithm to derive the object’s 6D pose. However, these
methods present two limitations in our scenario. Firstly, they
require clear images to distinguish visual features, which poses
a challenge in our underwater environment. Secondly, these
methods are not pose invariant, and as such, are not suitable
for our scenarios where 3 out of 4 objects are symmetrical.
On the other hand, AAE was proposed by [14] as a symmetry
invariant approach. This is due to the property of representing
the orientation not on a fixed parametrisation, but on the
appearance of an object. Our specific underwater dataset,
achieves higher performance scores than other widely used
models, as shown in Section IV-C, demonstrating to be robust
to underwater scenarios. Furthermore, AAE is suitable to real-
world use case requirements, as shown in Table IV where
inference times are computed.

We explored different methods, as detailed in Section IV-D,
and found out that AAE works better in our environment
because of the properties outlined above. Since rotations live
in a continuous space, it seems natural to directly regress a
fixed rotation in the three-dimensional rotation group (SO(3)),
like in EfficientPose [26]. However, pose ambiguities and
representational constraints can introduce convergence issues
[24]. AAE solves this problem by discretising the SO(3) space
and then moving the problem from regression to classification.
Furthermore, an advantage of AAE is that it does not depend
on real data collection and annotations for training. Instead, in
the training stage, AAE creates its own dataset by randomising
object poses, taken from the CAD model, and Visual Object
Classes (VOC) background real images, to bridge the simula-
tion to real images gap. To guarantee the AAE performance
on dry and underwater scenarios, we (i) add background
images from our collected dataset in real scenarios (detailed
in Section III-A2), and (ii) customise the data augmentation
for training stage. AAE applies data augmentation at the pre-
processing stage when it generates its dataset, allowing the
method to be trained solely in simulated data. Table I reports
the AAE data augmentation hyperparameters.

A pose of a 3D object in this proposal is represented
by the 4 × 4 matrix P = [R, t;0, 1], where R is the
rotation represented by a 3× 3 matrix and t is the translation
represented by a 3× 1 vector. P transforms a 3D point xm in
the model coordinate system to a 3D point xc in the camera
coordinate system: P[xm;1] = Rxm + t = [xc;1]

AAE is based on AE structure, aiming to obtain an image
representation in a low-dimensional Euclidean space. In detail,
first, AAE applies a random augmentation faug to input x
and reconstructs the original image. Then, an encoder-decoder
training reconstructs the original input. The parameters are
learned during the backpropagation phase, based on the per-
sample loss: l =

∑
i∈D ∥xi − x̂i∥2. After this initial training,

a codebook is created by generating a latent representation

Box Cup Jug Hotstab
Data Augmentation Hyperparameters

Perspective Transform
Crop And Pad ✓ ✓ ✓

Affine ✓ ✓ ✓ ✓
Coarse Dropout ✓ ✓ ✓
Gaussian Blur ✓ ✓

Invert ✓ ✓ ✓ ✓
Multiply ✓ ✓ ✓ ✓

Contrast Normalization ✓ ✓
Square Occlusion 0.6 0.4 0.4 0.4

Architecture-Hyperparameters
Learning Rate 2e− 4 2e− 4 2e− 4 2e− 4

Optimizer Adam Adam Adam Adam
Latent Space Dimension 256 256 128 256

Epochs 50, 000 70, 000 70, 000 70, 000
Batch Size 32 32 64 64

TABLE I: Hyperparameters chosen for each object’s training.

zi ∈ Rl of each one of the n object views, and their
correspondent Pi matrices. The AAE training must be done
for each one of the objects in the dataset. During the test
phase, AAE is preceded by the 2D detector and receives as
input the already detected and cropped image. The image goes
through the encoder which gives its latent space features. Then,
the cosine similarity is computed between the input latent
representation code and all codes from the codebook. The
highest similarity is chosen and the corresponding rotation
matrix from the codebook is returned as 3D object orientation.

For the entire pipeline, five training are needed: one multi-
object YOLOv4 and four different AAE, one for each object.
Despite this, the pipeline is considered multi-object since in
inference, given an image, is able to reconstruct the pose
of each observable object in time explained in Table IV.
One limitation of AAE is that the number of objects in a
single scene affects the inference time. However, in the case
of four objects the achieved performance respects predefined
time constraints. Deep Neural Networks performance, as AAE,
is dependent on hyperparameters that determine the network
structure. Finding the right hyperparameters is fundamental to
ensuring good performance. AAE relies on many hyperparam-
eters [14], which are divided into two groups: those modifying
the structure and optimization of the network (such as learning
rate, latent space dimension, batch normalization), and those
acting on the data augmentation (such as occlusion percentage,
inversion, multiplication, drop, Gaussian blurring addition).
Given the large hyperparameter space, we use heuristics to
only explore the most promising configurations. In our case,
we ran experiments, on a total of 40 different configurations
to find the best hyperparameter setting.

After different training for architecture network and data
augmentation hyperparameters optimization, we choose the
best set per each object training (see summary in Table I).

C. Method Evaluation

Our evaluation is threefold. First, using the simulated data
per object in our dataset, we provide a baseline of our method’s
performance using part of the BOP metrics [15] and Comple-
ment over Union (CoU) (see Section IV-C1). Second, using
the BOP metrics, we benchmark against current literature. We
choose YOLO-6D [24] and EfficientPose [26], as they also are
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deep learning methods that generalise mappings from images
to objects. Nonetheless, as they do not claim to bridge training
in simulation to real scenarios performance, the evaluation
is done in underwater simulated data (see Section IV-C2).
Finally, to test the robustness of our training in simulation
and its performance in real scenes, we calculate the error
pose using the ground truth (see Section IV-C3). This error
estimation provides a baseline for future work to compare our
method’s performance and dataset.

For the evaluation in Section IV-C1 and IV-C2, we use three
of the widely popular ([24], [26], [27]) BOP toolkit metrics:

• Mean Average Precision (mAP) is a 2D bounding box
detection metric mAP (C,Γ, R) = avgc∈CAP (c,Γ, R),
where AP (c,Γ, R) is the area under the curve, Γ is the
set of thresholds used in Intersection over Union (IOU)
scores, c is the class, and R is the set of the discretised
recall values;

• Average distance to the model point (ADD) given the
model M, the estimated pose P̂ and the ground-truth P
eADD = avgx∈M∥P̂x−Px∥;

• Average distance to the closest model point (ADI) if
the model M has indistinguishable views, then eADI =
avgx1∈M minx2∈M ∥P̂x1 − Px2∥. eADI yields rela-
tively small errors since it does not consider model point
distances, but the distance to the closest model diameter.

Moreover, we compute the CoU error, which compares the
predicted pose and ground truth masks from the CAD model.

1) Dataset Baseline with BOP given that the benchmark in
Section IV-C2 is produced with simulated data, we provide a
performance baseline per object in our dataset with synthetic
images to have a fair and uniform comparison baseline.:
For this section, we use 500 synthetic underwater scenes in
various settings as detailed in Section III-A. In our dataset,
the box, cup, and hotstab are symmetrical, while the jug is
not. To evaluate AAE’s performance, we choose eADI for the
symmetrical set and eADD for the asymmetrical object. Our
results with different thresholds of correctness for eADI are
illustrated in Table II. Table II introduces a baseline for our
new underwater dataset. For the jug, we computed the eADD,
obtaining 29.2% for km = 0.1; 56.6% for km = 0.2, and;
68.6% for km = 0.3. Nonetheless, these metrics are not pose-
ambiguity invariant. Consequently, the objects may present
ambiguous poses. This is due to their symmetrical views. For
example, the box is texture-less and has two symmetrical axes,
thus being difficult to distinguish between its faces. For these
cases, we also calculate the CoU on the same set of images.
The results are shown in Table III. Contrary to the results in
Table II, CoU does not penalise symmetric poses, since it uses
only segmentation masks. A clear example is the different pose
estimation performance on the box object between eADI from

Objects km = 0.1 km = 0.2 km = 0.3
Box 21.6% 51.0% 60.4%
Cup 55.0% 77.8% 85.8%
Jug 72.2% 86.6% 93.0%

Hotstab 44.0% 64.4% 73.8%
Average Perc.: 48.2% 69.95% 78.25%

TABLE II: Recall percentages based on eADI .

Table II and eCOU in Table III.
Additionally, in terms of real-time performance, Table IV

shows the inference times of our proposal per detection stage
and end-to-end pipeline. These results use the same validation
set, thus the statistics of 500 inference times. The first time is
discarded to not consider the weight load and initialisation
memory levels. Inference times are computed on a Xavier
AGX, Jetpack 5.0.2.

In general, since we propose a new dataset it is hard to
compare the resulting values to other 6D pose datasets.

2) Benchmark with Literature to fairly compare with
YOLO-6D and EfficientPose, we train and test all the methods
using simulated underwater data (see Section III-A). We
select a subset of 250 images, from the 500 extracted in
Section IV-C1, corresponding to various synthetic scenes of
hotstab (symmetric object) and the jug (asymmetric object).:
Training: We iterated on different combinations of batch
sizes, learning rates and Adam momentum as optimiser for
the training of YOLO-6D and EfficientPose. The performance
reported in this section for YOLO-6D is achieved with batch
size equal to 32, an adaptive learning rate (it starts with 0.0001
for 10,000 epochs. For EfficientPose, the best performance
is achieved with a batch size equal to 1, a learning rate of
0.0001 and 500 epochs. For our proposal, we train as detailed
in Section IV-B. However, to ensure comparability with the
other two methods, we opted for lighter versions by selecting
ϕ equal to 0 as scaling hyperparameter.

Results: Table V shows the results of comparing YOLO-
6D, EfficientPose and our method using the BOP metrics. In
the case of EfficientPose, contrary to the high performance on
the Linemod Dataset, it achieves poor results in our dataset.
We observe that EfficientPose’s 2D detection achieves only
77%, consequently compromising the 6D pose estimation. [28]
presents an exhaustive study on the potential causes for object
detection failure in EfficientPose.

3) Real data error pose estimation: to test the robustness
of our method’s performance in real scenes, despite being
trained in simulation, we calculate the error pose using the
ground truth data (see Section III-C). Moreover, this error

CoU error θ = 0.3 θ = 0.5 θ = 0.7
Box 94.6% 100% 100%
Cup 94.2% 99.4% 100%
Jug 79.6% 97.8% 99.6%

Hotstab 20.2% 65.6% 92.6%
Average Percentages: 72.15% 90.57% 98.05%

TABLE III: Recall percentages based on eCOU .

YOLOv4 AAE END TO END

FPS FPS latency (ms) FPS

single object

min 3.57 8.14 403.13 2.48
max 2.93 6.37 497.78 2.01
avg 3.42 7.44 426.51 2.34

multi objects

min 3.52 1.83 830.61 1.20
max 2.76 1.28 1,144.46 0.87
avg 3.27 1.72 885.66 1.13

TABLE IV: Total inference time in milliseconds and FPS,
as the sum of pre-processing, inference, and post-processing
times, for both single object and multi objects scenarios with
the corresponding Frames Per Second (FPS) value.
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ADD ADI mAP
Symmetric Object (hotstab)

EfficientPose 1.32% 8.65% 75.21%
YOLO-6D 9.58% 36.71% 77%

YOLOv4+AAE 11.4% 44.0% 99%
Asymmetric Object (jug)

EfficientPose 23% 54.8% 73.41%
YOLO-6D 26.50% 58.44% 81.6%

YOLOv4+AAE 29.2% 78.2% 99.5%

TABLE V: EfficientPose, YOLO-6D, and YOLOv4+AAE
comparison using BOP metrics for the hotstab and the jug
objects. The ADD and ADI recall is computed with a threshold
km = 0.1. The mAP is computed with a 0.5 of IOU.

pose estimation offers a baseline for evaluating future 6D pose
estimation methods that require real ground truth labelled data
for training. From the 87,100 collected images in our dataset,
83,701 contained the bundle described in Section III-C. From
this subset, we selected 20% of the data to process the
translation and rotation error in Table VI. Specifically, we
calculate the Euclidean distance between the position and
orientation estimation error of our proposed pipeline in Fig. 6
with respect to the ground truth pose extracted from the bundle
holder. The evaluation subset is available in our website2.

As seen by the error estimation, the position error median is
approximately 20mm while the normalised orientation error
(between 0° and 360°) is around 30° for the different objects.
It is worth noting that higher error values correspond to the
rotation error rather than the translation one. Particularly, this
difference is more evident for the cube and mug objects. This
result can be attributed to the texture-less and symmetrical
nature of objects. While the pose estimation has room for
improvement, particularly for the object rotation, the values
are consistent with the original AAE proposal in [14], demon-
strating the method’s consistency across symmetric objects.

Scenes Hotstab Cube Mug Jar
Asphalt te re te re te re te re

Dry shadow 22.3 25 23.7 23.5 21.1 25 23.3 21
Dry dirt 16 23 28.2 21.2 15 24.3 20.1 22.4

UW partly occluded 22.1 29 24.2 29 21.1 24 19 24
UW with LED 21 20.9 24 30 19 25 20 24

Grass 20 22 29.8 31.4 20 27 21 21.3
Dry white 20 27 25 32.1 20 28.1 20 27.1
Dry blue 15 25 23.6 29 22 21.8 24.2 23

UW with shadow 17 26.3 18 25 19 24.3 22.7 23
UW with plants 20 20.3 24 25.1 20 23 19.9 20

TABLE VI: Median data for pose error representation of our
pipeline using the pose extracted from AprilTag bundles as
ground truth for each of our settings. Translation error, te in
mm and rotation error, re in degrees.

D. Underwater Manipulation Use Case

In order to test the robustness of our object pose estimation
pipeline we tested it with our underwater manipulation setup.
Our testing setup consisted of a static robotic arm, Reach
Bravo with 7 DoF on a bench structure that served as the
skeleton to hold the arm inside our 2m depth pool. We placed
a surface with a solid background and attached a weight to
our target object to avoid pose oscillations due to the object’s

2Our dataset is available at https://bit.ly/3LZYvyJ

Fig. 7: Our proposed pipeline in an underwater manipulation
example. Given the object pose of an object, we autonomously
generate (i) grasp configurations on the objects and (ii) a
motion plan to reach and grab the target object.

buoyancy. We attached a realsense d455 camera on the arm’s
skeleton to have a complete view of the arm and the object.
From the camera we extract solely the RGB data as input to
our pipeline described in Sections IV-A and IV-B.

Once we have obtained the 6D pose from the pipeline
proposed in this letter, we use our in-house developed assis-
tant for manipulation tasks to aid in taking authoring high-
level manipulation commands. The assistant then extracts and
concatenates in a single task all required reaching goals and
motion plans. In the example of reaching for an object, the
manipulation assistant takes the semantic label of the detected
object and allows the user to select a series of tasks. For the
pipeline proof-of-concept, we decided to use a single object
in the scene to ease the manipulation goal decision-making
process. Using our user interface, we select Open Gripper
and Reach Hotstab (see illustration in Fig. 7). Out of 10
different poses, inside the arm’s working space, 6 resulted in
accurate poses for the arm to successfully reach3. The failed
trials are attributed to flickering in the AAE pose estimation.
These oscillations are the result of unavoidable reflections
from the water surface due to the shallowness of our testing
environment. Nonetheless, for future improvements, a pose
tracker and filtering could be put in place to ensure grabbing
the object. Moreover, in some of the frames, we noticed that
the 2D object detection model would detect some outlier
objects in the scene. To ensure the manipulator did not plan
trajectories to false positive poses, we selected a priori the
target object. However, the 2D object detection model could
be further improved by including background data with similar
geometries that do not belong to our objects of interest.

V. CONCLUSIONS AND FUTURE WORK

We propose a method for underwater pose estimation using
RGB data that copes with diverse environments. We sum-
marise our contribution as twofold: (i) a publicly available

3Experiments: https://www.youtube.com/watch?v=xPAbxwh5JGM

https://bit.ly/3LZYvyJ
https://www.youtube.com/watch?v=xPAbxwh5JGM
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dataset consisting of 4 objects in 10 different real scenes
and annotations for object detection and pose estimation, as
well as, (ii) an object pose estimation pipeline that adapts to
different light conditions and heterogeneous backgrounds in
real scenes while being trained in simulated data.

Our dataset consists of some challenging objects with a
symmetrical shape and poor texture. Regardless of such object
characteristics, our proposed method outperforms alternative
model based 6 Degrees of Freedom (6D) pose estimation
methods. Our results suggest potential for generalisation with
symmetrical, asymmetrical and texture-less object representa-
tions. We attribute this performance to the robustness achieved
in the AAE through our hyperparametrisation stage. We suc-
cessfully used our proposed pipeline for a reaching task using
an underwater manipulator demonstrating its robustness. It is
also worth mentioning that our pipeline has some inherent lim-
itations given the adopted self-supervised learning approach.
One of these limitations is the scalability of the pipeline as
target objects in the scene increase, since there should exist
a AAE model per object. However, we envision using our
pipeline for manipulation purposes in which there are limited
target objects at a close-reaching range.

This work opens multiple avenues for further research, such
as facilitating the object generalisation through an online 3D
shape estimation algorithm, and stabilising the pose detection
with a pose tracker and filtering to avoid oscillations in the
pose estimation. We enable such future work by making our
proposed pipeline and dataset publicly available.
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[16] S. Aldhaheri, G. De Masi, È. Pairet, and P. Ardón, “Underwater
robot manipulation: Advances, challenges and prospective ventures,” in
OCEANS 2022-Chennai, pp. 1–7, IEEE, 2022.

[17] G. Billings and M. Johnson-Roberson, “Silhonet-fisheye: Adaptation of
a roi based object pose estimation network to monocular fisheye images,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4241–4248,
2020.

[18] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011
IEEE international conference on robotics and automation, pp. 3400–
3407, IEEE, 2011.

[19] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient response maps for real-time detection of
textureless objects,” IEEE transactions on pattern analysis and machine
intelligence, vol. 34, no. 5, pp. 876–888, 2011.

[20] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
arXiv preprint arXiv:1711.00199, 2017.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision, pp. 740–755,
Springer, 2014.

[22] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020.

[23] M. Rad and V. Lepetit, “BB8: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects
without using depth,” CoRR, vol. abs/1703.10896, 2017.

[24] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot 6d
object pose prediction,” CoRR, vol. abs/1711.08848, 2017.

[25] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” arXiv preprint arXiv:1809.10790, 2018.

[26] Y. Bukschat and M. Vetter, “Efficientpose: An efficient, accurate and
scalable end-to-end 6d multi object pose estimation approach,” CoRR,
vol. abs/2011.04307, 2020.

[27] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
CoRR, vol. abs/1711.00199, 2017.

[28] E. Govi, D. Sapienza, C. Scribano, T. Poppi, G. Franchini, P. Ardòn,
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