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Abstract— While LiDAR data acquisition is easy, labeling
for semantic segmentation remains highly time consuming
and must therefore be done selectively. Active learning (AL)
provides a solution that can iteratively and intelligently label
a dataset while retaining high performance and a low budget.
In this work we explore AL for LiDAR semantic segmentation.
As a human expert is a component of the pipeline, a practical
framework must consider common labeling techniques such as
sequential labeling that drastically improve annotation times.
We therefore propose a discwise approach (DiAL), where in
each iteration, we query the region a single frame covers on
global coordinates, labeling all frames simultaneously. We then
tackle the two major challenges that emerge with discwise AL.
Firstly we devise a new acquisition function that takes 3D
point density changes into consideration which arise due to
location changes or ego-vehicle motion. Next we solve a mixed-
integer linear program that provides a general solution to the
selection of multiple frames while taking into consideration the
possibilities of disc intersections. Finally we propose a semi-
supervised learning approach to utilize all frames within our
dataset and improve performance.

I. INTRODUCTION

Dense prediction tasks such as LiDAR semantic segmen-
tation require large amounts of labeled data. While new
LiDAR frames are easy to acquire, labeling, especially in
3D, is not only tedious but also highly costly. This severely
hinders the scalability and deployability of such tasks in
any practical application such as autonomous driving. To
retain an economical budget, labeling must therefore be done
selectively, as exhaustively labeling all acquired frames is
simply not feasible. The question then remains, amongst a
pool of acquired LiDAR frames, how do we select which
parts should be labeled?

Active learning (AL) provides a framework to intelligently
decide what data to label and has proven to be widely
successful in comparable 2D tasks where similar economical
constraints apply [1], [2]. In an AL setting, a model is
initially trained on a small amount of labeled data. Based on
the model’s predictions of the unlabeled data (often on its
uncertainty), an acquisition function determines which data
to query an external human oracle for a label. The human
expert labels the selected data points, which then expand
the training set. The model can then be retrained and thus
the loop restarts until the predetermined budget is reached.
Such a framework that incorporates the human expert into
the pipeline often drastically reduces labeling costs while
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Fig. 1. Accumulation of sequential LiDAR point clouds can severely
reduce labeling costs, thus an active learning framework must learn to select
accumulated regions for labeling to take advantage of this commonly used
technique. When discs are queried for labels, the resulting dataset consists
of fully labeled, weakly labeled and unlabeled frames.

retaining performance. In this work, our goal is to investigate
AL for LiDAR semantic segmentation.

Before we move forward, as we aim to include a human
labeler into our pipeline, it is important to understand the
commonly used techniques for labeling LiDAR sequences
in order to ground our AL approach in reality and ultimately
provide a deployable solution. Unlike 2D images, LiDAR
scans comprise of 3D points that provide coordinates in
the real world. This means sequential point clouds can be
projected onto a global coordinate system and concatenated
to form a denser representation. This common trick can
immensely reduce labeling costs [3], [4], [5]. Most outdoor
scenes are dominated by static structures (e.g. road, building,
vegetation) and static objects (e.g. parked vehicles, bicycles)
thus when working on concatenated point clouds they only
need to be labeled once to have them labeled on all frames. In
fact, labeling the area of a single frame in global coordinates
for concatenated points takes less time than labeling two
individual frames based on our user study.

To exploit the sequential labeling of concatenated frames
within our pipeline and save time labeling, instead of a
single frame, we propose constructing the problem of AL
for LiDAR semantic segmentation using a disc as the unit
data point, i.e. the region a single frame covers on global
coordinates. Therefore when a disc is selected to be labeled,
the oracle labels all points from any frame that fall within
the boundaries of the selected area. An illustration of our
proposed discwise labeling can be seen in Fig. 1 - left.
Exploring discwise AL yields two main challenges which
can be identified when compared to the analogous 2D setting.

Firstly, in a common imagewise AL pipeline the pixelwise
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epistemic uncertainty is aggregated over the image via the
sum [6], [7] or mean [8], [9] to form the acquisition function.
However, unlike 2D images, outdoor LiDAR scenes have
vastly varying point densities across a sequence, which can
have unintentional consequences when naively aggregating
pointwise uncertainty. To combat such effects, we propose a
simple but intuitive solution where we initially pool informa-
tion within globally defined voxels via a symmetric function
and then aggregate voxelwise uncertainty over discs.

Secondly, following imagewise aggregation, in common
2D AL pipelines the images yielding the highest uncertainty
are then queried for labels. However unlike 2D images, discs
can intersect with one another in global coordinates and
intersecting regions do not provide any additional informa-
tion. A naive strategy of disallowing intersecting solutions
is not guaranteed to yield the optimal disc selection that
maximizes uncertainty. Therefore to form a general solution,
we construct and solve a mixed-integer linear program that
maximizes the information within the total area formed by
the selected discs. Our solution allows discs to intersect, if
the resulting union would yield a higher uncertainty and
collapses to the commonly chosen argmax function when
selecting only a single disc.

Having established the major building blocks, we construct
a basic yet effective AL pipeline (DiAL) for LiDAR semantic
segmentation where a model trains on discwise labeled
frames, an acquisition function aggregates uncertainty over
discs while respecting point count variability and a selection
algorithm selects discs that maximize information.

Finally, we tackle the problem of semi-supervised training
via a mean teacher framework [10], [4] to utilize all three
types of frames in our actively labeled dataset (see Fig. 1).
Our contributions can be summarised as follows:

• We develop a simple active learning pipeline for LiDAR
semantic segmentation named DiAL that aligns well
with the established techniques for annotating. We query
discs on accumulated frames to exploit the effectiveness
of sequential data labeling.

• We aggregate uncertainty over discs via a two step
method to respect the point count variability of outdoor
LiDAR data and limit bias introduced via aggregation.

• We construct and solve a mixed-integer linear problem
that outputs a number of (possibly intersecting) discs,
allowing a generalized solution to querying multiple
samples each iteration.

• With a simple semi-supervised learning approach that
utilizes labeled, partially labeled and unlabeled frames,
our method performs at 99.8% relative to fully su-
pervised learning on dense labels, with only 50 discs
(∼ 0.5% cost of framewise labeling the entire dataset).

II. RELATED WORK

Active Learning for LiDAR Segmentation: Active learning
provides a framework that leverages existing labeled data
points to intelligently decide how to expand the dataset, most
commonly via the use of a human oracle [1], [2]. The core
goal is extract as much performance as possible from a model

by labeling as few samples. A commonly used strategy to
maximize information yield per labeled data is to sample data
points that show high uncertainty. Common metrics include
the softmax confidence [11], [12], softmax margin [13], [14],
[6], softmax entropy [15], [12], or Bayesian approaches that
utilize learning by disagreement (BALD) [16], [9]. Recent
works have investigated active learning within the context
of 3D semantic segmentation [17], [18], [19]. Specifically,
ReDAL [17] proposes labeling highest information yielding
regions within point cloud frames based on softmax entropy,
color discontinuity, and structural complexity. However to
propose a general AL framework for point cloud segmenta-
tion, the sequential nature of outdoor LiDAR scans remain to
be considered. LiDAL [18] takes advantage of this inherent
property and utilizes cross-frame predictions as a measure of
uncertainty to again, find and label high information provid-
ing regions. While both methods shows great performance
at low percentage point counts (1% − 5%), we argue that
the goal of an AL pipeline should not be to reduce point
counts but to reduce labeling times. It is therefore vital to
consider the sequential nature of LiDAR frames during the
costly labeling stage.
Semi-Supervised LiDAR Semantic Segmentation: LiDAR
semantic segmentation remains to be a challenging and
computationally expensive task with current research focused
on understanding how to best process the unordered data
structure: directly operating on points [20], [21], [22], pro-
jecting it onto 2D [23], [24] and the now prevailing strategy,
voxelization and 3D sparse convolution [25], [26], [27].
Recently, data-efficient methods have risen in popularity that
aim to reduce the labeling cost of the dense prediction task.
There are two common strategies: (i) weakly-supervised that
provides weak labels for all available frames (e.g. scribble
labels with ScribbleKITTI [4]), (ii) semi-supervised that
provides dense labels for only a subset of frames, while
the rest remain unlabeled [28]. For semi-supervised learning,
SemiSup [28] proposes using a pseudo-label guided point
contrastive loss and SSPC [29] utilizes self-training to reduce
the gap to their fully supervised baselines.

III. ACTIVE LEARNING FOR LIDAR SEGMENTATION

For LiDAR semantic segmentation, given the vast differ-
ences in both time and budgetary requirements for data ac-
quisition and labeling, the latter must be done selectively. An
active learning framework provides a solution to intelligently
decide what data to label next. In the following sections, we
explore the individual steps that typically form the loop of
an active learning framework:
III-A A model, trained on the labeled dataset, is used to
determine pointwise uncertainty for the unlabeled data.
III-B The uncertainty is aggregated over the chosen unit of
data, which in our case is the accumulated region (disc).
III-C The data points yielding the highest uncertainty are
queried for labels and thus expand the labeled dataset.

A. Pointwise Epistemic Uncertainty Estimation
The goal in LiDAR semantic segmentation is to discover

the dependency of the pointwise distribution over the labels



y ∈ Y on an input variable x ∈ X via the model weights w.
Formally, reducing this to a classification task where y can
be of class c ∈ C, we define the conditional probability as:

p(y = c|x,X, Y ) =

∫
p(y = c|x, ω)p(ω|X,Y )dω (1)

As the posterior distribution p(w|X,Y ) is intractable, we
approximate it with a variational distribution q(ω) and aim to
minimize the Kullback-Leibler divergence between the two
distributions KL(q(ω)|p(ω|X,Y )). Following Gal. et al. [9],
we further approximate the variational distribution via Monte
Carlo integration by employing variational inference, i.e. by
applying stochastic forward passes (i.e. a model is trained
with dropout and dropout is performed during inference):

p(y = c|x,X, Y ) ≈
∫

p(y = c|x, ω)q(ω)dω

≈ 1

N

∑
n=1:N

p(y = c|x, ω̂n)
(2)

We measure the pointwise epistemic uncertainty within
our training set X as the mutual information between the
model parameters and the model posterior:

I[y, ω|x,X] = H[y|x,X]− Ep(ω|X) [H[y|x, ω]] (3)

with H[y|x,X] = −
∑

c p(y = c|x,X) log p(y = c|x,X)
defining the pointwise entropy. Inserting Eq. 2 into Eq. 3:

I[y, ω|x,X] ≈−
∑
c

(
1

N

∑
n

p̂c

)
log

(
1

N

∑
n

p̂c

)
+

1

N

∑
c

∑
n

p̂c log p̂c

(4)

with p̂ denoting the softmax output of a stochastic forward
pass. For the derivation, please refer to [30].

B. Discwise Uncertainty Aggregation

Having established a metric to capture pointwise uncer-
tainty, the next step in an active learning pipeline is to
aggregate this information over a chosen unit of data. This
aggregate will then be used to guide the ensuing data unit
selection step. The choice of the data unit is therefore not
trivial as it will determine what will be presented to the
human annotator. To make a practical choice, it is important
to first understand the labeling process of LiDAR point
clouds for semantic segmentation to ground our choice in
reality and take advantage of commonly utilized techniques.

LiDAR labeling is notoriously difficult and requires a
high level of expertise from the annotator. While scenes
are represented in 3D, labeling is done on 2D projections
onto a monitor screen. As the projection is view dependent,
the labeling process requires constant navigation and read-
justments within the 3D space. Labeling a 2D area on a
screen labels every point that falls within that selected area,
commonly causing unintentional regions to be labeled, thus
requiring regular corrections.

While working with 3D point clouds does come with
obvious disadvantages for labeling, there is one strength

that drastically speeds up the process. Given sequential data
(as commonly acquired in outdoor LiDAR applications),
individual frames can be projected onto a global coordinate
system via odometry poses to form a concatenated point
cloud sequence. This allows each global area to be labeled
once, in order to have it labeled on every frame. Given
that most outdoor scenes are dominated by static things
(e.g. parked vehicles) and static stuff (e.g. road, building),
this technique can save thousands of hours for large-scale
datasets. To quantify the impact of this method, we utilize
in-house annotators to label multiple frames as well as their
corresponding discs. We define a disc as the region a single
frame would cover on global coordinates (see Fig. 1 - left
for an illustration of a labeled disc). We observe that with an
overhead of 10%−80%1, one can not only fully label a single
frame, but also weakly label several other frames within
the same sequence by utilizing concatenated point cloud
sequences. Unlike previous work that focus on reducing the
total number of points labeled [17], [18], our goal in this
work is to minimize labeling times. Therefore following this
observation, to take advantage of sequential labeling, we
propose using discs as units of data within our AL pipeline.

To aggregate pointwise uncertainty over a disc, we first
consider 2D analogous aggregation methods such as the
sum [6], [7] or the mean [8], [9]. However we note that
unlike 2D images that have constant pixel counts, LiDAR
discs can have vastly different point counts which can bias
such methods. In specific, the mean fails to consider the
variation in discwise point counts due to environmental
changes (e.g. highway scenes have an overall low number
of points compared to in-city 4-way junctions), and the sum
fails to consider local density changes due to the variation
in ego vehicle velocity (e.g a slow moving vehicle would
accumulate more frames and thus more points within the
same global environment compared to a fast moving car).

To combat these effects, we propose an intuitive two step
aggregation method.

Firstly, to combat the local density changes, we aggregate
mutual information (MI) within local neighborhoods via a
symmetric function, i.e. we pool within globally defined
voxels. Formally, we define the aggregated voxelwise MI as:

Ij = fxi∈Vj
I[yi, w|xi, X] (5)

with the set Vj containing all points xi within the voxel
centered around vj of length lvoxel, i.e. Vj = {xi | ||xi −
vj || ≤ lvoxel/2} and f chosen as min or max [20], [21].

Having voxelwise uncertainty, we can then aggregate the
mutual information within discs to form our acquisition
metric to guide our decision on what region to label next.
To combat discwise point count variations we refer back to
the sum. Formally, we define the discwise uncertainty αi as:

αi =
∑

jzj,iIj (6)

1For SemanticKITTI [3], we observe that a disc takes approximately 3.5
hours to label due to their fixed range, while the corresponding frame can
vary significantly based on content and environment (which is in line with
the reported labeling times of accumulated tiles [3]).
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Fig. 2. Illustration of the active learning pipeline. We first estimate
pointwise epistemic uncertainty, aggregate it on globally defined voxels and
select discs that maximize the total information. The points within each disc
is then labeled by an annotator.

with zj,i defining a binary mask of voxels within the disc of
radius R centered around xi:

zj,i =

{
1, if ||vj − xi|| −R ≤ 0

0, otherwise.
(7)

With the two step aggregation, we aim to maximize the
pooled information we obtain from globally defined local
neighborhoods based on the conditions set by function f .

It should be noted that, we consider a disc as the unit
of data to remain comparable to current state-of-the-art
framewise active learning strategies. However our method
provides a general solution to the selection of any region
shape within the registered point cloud sequence, as Eq. 7
can be freely designed based on annotator preferences.

C. Disc Selection for Labeling

Given discwise uncertainty, we can now query the disc î
that would yield the highest amount of new information:

î = argmaxαi. (8)

Selecting a single disc to label in each iteration of the
active learning algorithm comes with additional fix costs that
are associated with not only the initiation of the data labeling
pipeline (e.g. set up time for the annotator) but also with the
training of the model. A common solution to this issue is to
query multiple data samples in each iteration [31], [1], [17].

While the selection of a single disc can be done via
Eq. 8, the selection of multiple discs in each iteration cannot
be trivially handled. Unlike with 2D images, discs can
intersect in global coordinates and intersecting regions do
not provide any additional information to the system. Yet,
naively prohibiting intersections within the selection of discs
would not guarantee the highest information yield.

To this end, we propose a general solution by constructing
a mixed-integer linear program that maximizes the informa-
tion within the union of the areas formed by the discs. To
select discs centered around possible points xi of radius R,
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L

Fig. 3. Mean teacher framework for semi-supervised LiDAR semantic
segmentation to take advantage of fully labeled (L), weakly labeled (W)
and unlabeled (U) frames within the overall dataset. Colored paths show
the distinct paths for the types of frames.

we solve the following problem:

max
∑

jvjIj
s.t.

∑
ixi = N

vj ≤
∑

izj,ixi, ∀j
0 ≤ vj ≤ 1, ∀j
xi ∈ {0, 1}, ∀i

(9)

with xi and vj denoting binary and real variables that
determine if a certain center point or voxel has been selected.

Here, the first constraint fixes the total number of selected
discs to a predetermined value of N for each iteration, and
the second constraint ensures that we select the union of the
disc masks zj,i (see Eq. 7) for selected disc centers xi = 1.
Although vj’s are defined as {vj ∈ R | 0 ≤ vj ≤ 1}, the
xi variables being binary guarantees that vj’s would assume
binary values in any optimal solution.

In ensuing steps of the AL pipeline, we set an additional
constraint to fix the previously selected discs î (xî = 1 ∀ î)
and adjust the first constraint accordingly (

∑
ixi = tN for

time step t). Our overall proposed AL framework for LiDAR
semantic segmentation is illustrated in Fig. 2.

IV. SEMI-SUPERVISED LIDAR SEGMENTATION

By labeling discs, i.e. during any point in our active
learning pipeline, our overall dataset consists of three types
of frames: (i) fully labeled frames that span a complete disc
region, (ii) weakly labeled that partially intersect with the
labeled disc in global coordinates and (iii) unlabeled frames.
When naively training with a supervised loss, we only make
use of labeled points. To better utilize all information within
our dataset, we construct a semi-supervised training approach
that can utilize all forms of information to improve the
quality of the final dense predictions of our model.

Points of all frame types can be divided into two sub-
sets: labeled, and unlabeled. For labeled points we apply a
supervised loss H that is typically chosen as cross entropy:

LS = H(ŷ, y) (10)



given the predicted class distribution ŷ, and ground truth y.
To extend the supervision to unlabeled points we utilize

a mean teacher framework (MT) [10]. The MT framework
consists of a student that is typically trained using backprop-
agation (see Eq. 10), and a teacher network who’s weights
(θEMA) are computed as the exponential moving average
(EMA) of the student’s.

θEMA
t = βθEMA

t−1 + (1− β)θt (11)

To make use of the more robust representation capabilities
of the moving average weights, we apply a consistency loss
between the student’s predictions and the teacher’s via [4]:

LU = KL(p(ŷi), p(ŷEMA
i )) (12)

with ŷEMA denoting the teacher’s predicted class distribution.
To increase the variation between the student and teacher’s
outputs and therefore more effectively utilize the unsuper-
vised loss, we apply perturbations to the student’s input in
the form of rotation, Gaussian jitter, translation and scaling.
Formally, we define the total loss as:

L = LS + LU (13)

Our proposed mean-teacher based semi-supervised learning
pipeline is illustrated in Fig. 3.

V. EXPERIMENTS

Implementation Details: In our experiments we use the
popular SPVCNN [26] as a baseline model which already
includes dropout layers. We use GUROBI [32] to solve the
optimization problem. We do 10 stochastic forward passes
for each sample to compute the mutual information. We set
a radius of 50m for discs following precedent on LiDAR
frame processing [25], [26] and a voxel size of 0.5m for the
initial local aggregation. The disc size allows us to remain
comparable to framewise methods. Furthermore, querying
large regions allows us to better capture the underlying long
tailed distribution of driving scenes.

We select N = 5 discs on each step, starting with an initial
state of 1 arbitrarily chosen disc (sequence 0, disc 100). We
set β = 0.99 following Unal et al. [4]. We set f as the min-
operation unless stated otherwise. Furthermore, in this work
we limit the possible disc centers xi to the ego vehicle path
to reduce the search space. It should be noted that while we
impose this constraint for our experiments, our AL pipeline
along with the mixed-integer linear program in Eq. 9 forms
a general solution, allowing a free choice xi and even zj,i.
Dataset: We test and extensively ablate our method on
SemanticKITTI [3] which is the most popular large-scale
autonomous driving dataset for LiDAR semantic segmen-
tation. It consists of 11 sequences with publicly available
labels, among which sequence 8 is reserved for validation.
The training sequences consist of 19130 frames. Evaluation
is carried via the mIoU metric over 19 classes on the
val-set. We also showcase that our method works on two
further datasets ScribbleKITTI [4] and nuScenes [5] and with
other baseline models (MinkowskiNet [27]), with similar
performance gains over random disc selection.

Steps 0 1 2 4 7 10
CONF 25.7 30.6 37.2 47.0 53.6 56.2
MAR 25.7 41.1 46.4 53.2 53.7 56.9
ENT 25.7 41.0 45.5 52.1 54.9 59.3
MI 25.7 42.2 49.5 53.6 57.9 62.0

TABLE I
COMPARISON OF DIFFERENT UNCERTAINTY METRICS: (I) THE SOFTMAX

CONFIDENCE (CONF), (II) THE SOFTMAX MARGIN (MAR), AND (III)
THE SOFTMAX ENTROPY (ENT) TO MUTUAL INFORMATION (MI).

Exp. Time 1% 2% 3% 4% 5%
Labeled (1%) 2% 3% 4% 5%

Fr
am

ew
is

e

RANDfr 48.8 52.1 53.6 55.6 57.2
RANDre 48.8 51.7 55.0 56.1 58.2
SEGENT 48.8 49.8 48.3 49.1 48.2
CSET 48.8 53.1 52.9 53.2 52.6
ReDAL [17] 48.8 51.3 54.0 58.6 58.1
LiDAL [18] 48.8 57.1 58.7 59.3 59.5
DiAL (Ours) 44.4* 53.6 55.9 56.3 58.1
Exp. Time 1% 2% 3% 4% 5%
Labeled 60% 90% 99% 99% 99%

DiAL (Discwise Ours) 61.4 63.8 63.8 63.8 63.8

TABLE II
COMPARISON OF AL METHODS UNDER FIXED BUDGET CONSTRAINTS.

* INDICATES A DIFFERENT INITIAL STATE.

A. Results and Ablation Studies

In this section, we conduct extensive experiments and
ablation studies to isolate the effect of each of our proposed
components in DiAL, and compare them to both baseline
methods and current approaches in the literature in order to
show their necessity and effectiveness for discwise AL.

Uncertainty Metric: We compare the mutual information
to other metrics commonly used for uncertainty estimation
for classification tasks, including (i) the softmax confidence
(CONF), (ii) the softmax margin (MAR), and (iii) the
softmax entropy (ENT). More detailed explanation on all
baseline approaches can be found in Hu et al. [18]. As
seen in Tab. I, the mutual information provides strictly better
performance within our proposed active learning pipeline for
LiDAR semantic segmentation, and thus we retain this metric
for the remainder of the experiments.

Disc vs. Frame: We compare our proposed strategy of dis-
cwise active learning to methods that do not take sequential
labeling into consideration, including random selection of
frames (RANDfr), random selection of framewise regions
(RANDre), segment-entropy (SEGENT), core-set selection
(CSET), ReDAL [17] and LiDAL [18]. A detailed explana-



Steps 0 1 2 4 7 10
Framewise 1.1 19.2 22.6 26.1 32.6 40.0
Discwise 25.7 42.2 49.5 53.6 57.9 62.0
∆ +24.6 +23.0 +26.9 +27.5 +25.3 +22.0

TABLE III
COMPARISON OF FRAMEWISE AND DISCWISE LABELING UNDER

REALISTIC LOW BUDGET CONSTRAINTS.
Labeled 1% 3% 6% 12%

ReDAL [M39] 25.7 37.7 42.1 47.6
LiDAL [M12] 25.7 40.2 45.8 49.9
DiAL (Ours) 25.7 42.2 49.5 53.6

TABLE IV
COMPARISON OF AL WITH SEQUENTIAL LABELING.

tion on baseline approaches can be found in Hu et al. [18]. 2

Firstly in Tab. II - top, we compare our approach applied
with framewise active learning to existing approaches. As
seen, our baseline framewise active learning framework
performs on par with existing methods such as ReDAL [17].

Second, we showcase the effectiveness of sequential label-
ing in an AL setting in Tab. II - bottom, where we observe
significantly better performance compared to our framewise
AL baseline under a fixed labeling budget.

Of course these results are completely expected when we
consider the percentage of points labeled. Here, with the
aid of Tab. II we would like draw the readers attention to
how misleading the percentage of labeled points might be
when comparing it to labeling times of LiDAR point clouds.
While the reported percentages may seem sparse, by the time
it takes to label 1% of points on individual frames (191
frames), around 60% of the total point count can be labeled
(95 discs)3. These findings once again emphasize the need to
ground LiDAR based active learning research in commonly
used techniques for labeling to ensure practicality. To yet
again showcase the advantages of discs over frames in low
budget scenarios, we also provide an additional comparison
in Tab. III where we see an overwhelming advantage of
sequential labeling within AL.
Adapting SOTA to sequential AL: We strongly argue that
all AL methods should utilize sequential labeling but not all
of them are naturally extendable to incorporate sequential
labeling. Specifically, ReDAL and LiDAR rely on memory
heavy region extraction methods limiting them from being
used on accumulated point clouds. Still to exploit sequential

2To compare to the aforementioned framewise methods under a fixed
labeling budget, we need to first determine the equivalent number of discs
to label, as, to emphasize once again, matching the percentage of labeling
points would not match the labeling times. Assuming point percentage
is directly correlated with frame percentage, to label 1% of points, we
determine the appropriate number frames to label as 1% of the total
frame count. To compensate for the time difference between discwise and
framewise labeling, we then apply our active learning strategy with discwise
selection until a conservative (1%)F/2 discs are queried, with F denoting
the total frame count in the train-set. For the initial state, we randomly
sample discs while minimizing intersections. We therefore ensure that each
method is compared under the same labeling budget.

3The point count of each disc can correspond to up to 100 times the point
count of the corresponding frame. We note that this ratio holds for most
datasets as ego-vehicles often move at low velocities during data acquisition.
Even at higher velocities, we argue that this example provides sufficient
grounds that emphasizes the benefits of sequential labeling.

f D 0 1 2 4 7 10
- Mean 25.7 35.9 45.7 51.4 54.1 56.9
- Sum 25.7 48.2 49.3 53.0 55.4 57.5

Max Sum 25.7 49.5 51.7 55.2 57.8 59.2
Min Sum 25.7 42.2 49.5 53.6 57.9 62.0

TABLE V
COMPARISON OF DISC AGGREGATION STRATEGIES. f DENOTES THE

SYMMETRIC FUNCTION AND D DENOTES THE DISCWISE AGGREGATION.

Steps 0 1 2 4 7 10
RAND 25.7 35.5 40.2 45.5 52.2 57.4
HPCS 25.7 36.4 36.8 40.9 49.0 50.9
Ours 25.7 42.2 49.5 53.6 57.9 62.0

TABLE VI
COMPARISON OF DISC SELECTION STRATEGIES (I) RANDOM (RAND),

(II) HIGHEST POINT COUNT SELECTION (HPCS) AND (III) OURS.

labeling, we construct a new pipeline where we use ReDAL
and LiDAL to select a region to label, fit a convex hull
onto this region and label all points within the hull in the
accumulated point cloud sequence. This allows DiAL, which
is developed directly with sequential labeling at its core,
to better compare to baseline approaches under sequential
labeling. In Tab. IV we observe that our discwise AL strategy
outperforms both work. This is because both LiDAL and
ReDAL often pick distant sparse regions that show a higher
uncertainty in the current frame, however when sequential
labeling, also contain a large number of high certainty
points from other frames. Specifically, compared to DiAL,
LiDAL and ReDAL tend to sample more head class heavy
regions (e.g. regions of mainly road, building points) as
they can show low uncertainty in certain frames at long
ranges. However in the sequential setting, this yields a non-
optimal selection and thus a reduced performance for tail
classes. While head classes perform similarly across different
methods (the IoU for road, building, vegetation are within
3%), we observe large gains in tail classes such as bicycle
(up to +22.5%), other vehicle (up to +17.7%, and person (up
to 8.3%) when directly optimizing for sequential labeling.
Disc Aggregation: In Tab. V, we compare our disc aggrega-
tion strategy of voxelwise pooling followed by discwise sum
to 2D analogous methods of discwise mean, and discwise
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SPVCNN (Dense labels) [26] 63.8 97.1 35.2 64.6 72.7 64.3 69.7 82.5 0.2 93.5 50.8 81.0 0.3 91.1 63.5 89.2 66.1 77.2 64.1 49.4
RAND 57.4 95.1 8.2 56.1 69.5 31.1 62.7 80.8 0.0 91.8 34.2 76.8 0.1 91.4 61.7 88.6 55.5 76.5 62.9 48.3
HPCS 50.9 93.9 5.3 31.7 29.6 28.3 53.9 51.0 0.0 92.3 40.0 78.5 0.0 90.2 55.2 87.2 57.5 76.1 60.6 36.0
DiAL (Supervised) 62.0 96.1 30.1 62.7 69.7 54.4 68.5 85.5 0.0 89.7 45.7 76.8 0.1 91.0 61.8 88.3 66.5 75.3 64.8 50.7
∆ (RAND) +4.6 +1.0 +21.9 +6.6 +0.2 +23.3 +5.8 +4.7 0.0 -2.1 +11.5 0.0 0.0 -0.4 +0.1 -0.3 +11.0 -1.2 +1.9 +2.4
DiAL (Semi-supervised) 63.7 96.0 42.0 63.7 82.5 46.1 74.6 86.3 0.0 93.8 44.0 79.6 13.0 89.9 56.8 87.1 66.0 71.7 65.2 51.6
∆ (Supervised) +1.7 -0.1 +12.1 +1.0 +12.8 -8.3 +6.1 +0.8 0.0 +4.1 -1.7 +2.8 +12.9 -1.1 -5.0 -1.2 +0.5 -3.6 +0.4 +0.9

TABLE VII
COMPARISON OF THE CURRENT BASELINES AT STEP 10 (51 DISCS) TO OUR PROPOSED ACTIVE LEARNING FRAMEWORK WITH AND WITHOUT

SEMI-SUPERVISED TRAINING. ALONGSIDE THE MIOU, WE PROVIDE CLASSWISE IOU METRICS TO SHOW THE ADVANTAGES OF ACTIVE LEARNING.
Ground Truth RAND HPCS Ours Ours + SSL

Fig. 4. Example results from the SemanticKITTI validation set comparing current baseline approaches to our proposed discwise active learning pipeline
trained in a supervised and semi-supervised manner (+ SSL).

Steps 1 2 4 7 10
RAND 35.5 37.0 44.0 48.8 53.8
Ours 40.8 49.5 51.9 56.5 59.0
∆ +5.3 +12.5 +7.9 +7.7 +5.2

TABLE VIII
MINKNET [27] ON SEMANTICKITTI [3].

Steps 1 2 4 7 10
RAND 33.6 36.6 44.2 50.6 52.8
Ours 37.7 39.4 47.3 52.4 54.4
∆ +4.1 +2.8 +3.1 +1.8 +1.6

TABLE IX
SPVCNN [26] ON SCRIBBLEKITTI [4].

Steps 1 2 4 7 10
RAND 34.6 36.2 42.3 48.0 51.1
Ours 41.7 44.1 47.4 50.8 55.0
∆ +7.1 +7.9 +5.1 +2.8 +3.9

TABLE X
SPVCNN [26] ON NUSCENES [5].

sum. We further compare the effects of different symmetric
functions within our 2-stage setup.

Firstly we observe the limitations of common aggregation
strategies. The sum performs similarly, if not better at low
step counts to our proposed methods. As it is biased towards
frames with high point counts, the high information yield
at early frames allows easier learning of head classes. This
trait later becomes its own demise as the distribution of
labels becomes increasingly long tailed, limiting the models
capability to learn difficult examples.

As expected, the max operation outperforms the min
during the initial iterations as high density discs often lead to
multi-class voxels that show a large variation of uncertainty.
While again the high information yield at early frames helps,
it comes with a detriment at later stages. As the min operation
aims to maximize the minimum information, it expects each
voxel to contribute substantially to the learning process, i.e.

it favors purely uncertain voxels within the selected discs.
These result in a more even distribution thus allowing the
strategy to outperform others at later steps.
Disc Selection: In Tab. VI, we compare our disc sampling
strategy of mixed-integer linear optimization to maximize
total MI to (i) random selection of discs, and to (ii) the
heuristic approach of highest point count sampling (HPCS),
where each iteration we sample N discs that are associated
with the frames that contain the highest number of points.
In all baselines, we prohibit intersections between discs to
prevent trivial and harming solutions of selecting neighbor-
ing discs around the argmax 4. As seen, our AL pipeline

4Given a LiDAR sensor that operates at 10Hz and an ego-vehicle that
moves in a straight line at 50km/h, each disc will be separated by only
2m. This is further reduces at lower velocities and while turning. Thus when
intersections are allowed, if a disc at xi yields the highest uncertainty, it
is very likely that the neighboring discs at xi−1 or xi+1 would yield the
second highest, resulting in a severe overlap of voxels.



outperforms baseline methods with considerable margins.
In Tab. VII we also provide a classwise breakdown of

the IoU for the final step. Here it can be seen that through
intelligent disc selection, our AL approach allows substantial
improvements for mainly tail classes such as bicycle, motor-
cycle, other-vehicle, person and bicyclist. In Fig. 4 we also
provide visual results that demonstrate this effect.
Semi-Supervised Training: In Tab. VII we further compare
our active learning model trained on labeled points to our
semi-supervised approach. As seen (in step 10) the perfor-
mance is improved significantly (1.7% mIoU), with major
improvements seen for classes such as bicycle, truck, person
and the difficult other-ground category. Our AL method
performs 99.8% relative to the baseline model trained on
a fully labeled dataset, with only 51 discs labeled (0.5%
annotation cost of framewise labeling the entire dataset).
Model Independence: Our proposed discwise AL pipeline
is completely model independent. In Tab. VIII we provide
additional results to demonstrate this by showing that our
approach continues to significantly outperform baseline ran-
dom sampling while using MinkowskiNet [27].
Other Datasets: Our method works well against the random
baseline for both ScribbleKITTI [4] and nuScenes [5] which
we showcase in Tab. IX and Tab. X respectively.

VI. CONCLUSION

In this work we tackle the problem of active learning for
LiDAR semantic segmentation while considering common
labeling techniques that minimize labeling times. To this end,
we propose querying discs to utilize the sequential nature of
LiDAR frames. With discwise AL, we label an accumulated
region only once to have it labeled on all frames. We further
devise a new acquisition function that tackles bias introduced
due to the variability of local and discwise point counts. Later
we construct a mixed-integer linear program to provide a
general solution to disc selection that considers intersections.
Finally we improve the performance of our model via a semi-
supervised approach that utilizes a mean teacher. Through
extensive studies we show that while simple, our discwise
AL framework is highly effective and can boast high perfor-
mance gains compared to baseline approaches.
Limitations: To enable sequential labeling objects must
remain static. In cases where multiple varying class object
paths collide in global coordinates, the joint object cloud
must be labeled on a per frame basis. Time savings are still
substantial as most of the environment is dominated by static
structures. Still, in our proposed active learning framework,
we do not consider the additional cost of labeling colliding
moving objects. We hope future work can tackle this issue.
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