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Abstract—Agile quadrotor flight relies on rapidly planning
and accurately tracking time-optimal trajectories, a technology
critical to their application in the wild. However, the computa-
tional burden of computing time-optimal trajectories based on
the full quadrotor dynamics (typically on the order of minutes
or even hours) can hinder its ability to respond quickly to
changing scenarios. Additionally, modeling errors and external
disturbances can lead to deviations from the desired trajectory
during tracking in real time. This letter proposes a novel
approach to computing time-optimal trajectories, by fixing the
nodes with waypoint constraints and adopting separate sampling
intervals for trajectories between waypoints, which significantly
accelerates trajectory planning. Furthermore, the planned paths
are tracked via a time-adaptive model predictive control scheme
whose allocated tracking time can be adaptively adjusted on-the-
fly, therefore enhancing the tracking accuracy and robustness. We
evaluate our approach through simulations and experimentally
validate its performance in dynamic waypoint scenarios for time-
optimal trajectory replanning and trajectory tracking.

Index Terms—Unmanned aerial vehicles, integrated planning
and control, motion and path planning, time-adaptive model
predictive control.

SUPPLEMENTARY MATERIAL

Code: https://github.com/BIT-KAUIS/Fast-fly
Video: https://youtu.be/E6QVHWcvB6E

I. INTRODUCTION

The use of quadrotors in both academic and commercial
fields has garnered significant attention due to their excellent
maneuverability and versatility [1], [2]. Quadrotors have nu-
merous applications, including aerial photography and videog-
raphy, search and rescue operations, agricultural monitoring,
package delivery, and military reconnaissance, to just name a
few. These applications require the quadrotor to visit multiple
waypoints within a limited flight duration due to on-board
battery capacity, which necessitates time-optimal flight to
improve the efficiency and task completion [3].

Trajectory planning for time-optimal flight has always been
a challenging problem [4]. Unlike the point-mass model,
which has a closed-form solution with bang-bang acceleration
and can quickly obtain the time-optimal trajectory by sampling
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Fig. 1. Quadrotor racing through circles at a maximum speed of 10.6 m/s.
The circles have a radius of 0.8 m, with four stationary circles and one moving
circle held by a person. The time-optimal trajectory is quickly replanned when
the position of the moving circle changes. Our proposed methods enable the
quadrotor to efficiently replan and accurately track the updated trajectory in
a fast and precise manner.

at waypoints [5], the quadrotor model is underactuated. The
thrust generated by the propellers can only act along the z-
axis of the body, and both the thrust magnitude and direction
need to be adjusted simultaneously to control the movement
of the quadrotors [6]. Therefore, the coupling of acceleration
and angular velocity makes the time-optimal trajectory of the
quadrotors even more complex.

To address this challenge, a common approach uses non-
linear numerical optimization to plan the trajectory, by dis-
cretizing it in time and treating the full quadrotor dynamics as
dynamical constraints [7]–[9]. However, for multi-waypoint
time-optimal flight, each waypoint must be allocated as a
constraint to a specific node on the trajectory. The optimal
time of passing through each waypoint is unknown, making
it difficult to determine which node a waypoint should be as-
signed to. To tackle this issue, the work [4] introduced the so-
called progress measure variables to represent the completion
of a waypoint (progress) and used complementary progress
constraints (CPC) to allocate the waypoint constraints, thus
ensuring generation of time-optimal trajectories that satisfy the
full dynamics. However, the introduction of progress measure
variables and CPC renders the entire optimization problem
complicated and numerically more challenging, whose solving
time typically ranges from minutes to even hours. Although the
waypoint constraints can be relaxed by a certain tolerance, the
accuracy and optimality of generated trajectories is sacrificed.

For trajectory tracking, the two leading frameworks are
the nonlinear model predictive controller (NMPC) and the
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differential-flatness-based controller. Due to advances in com-
puter hardware, the NMPC approach has demonstrated supe-
rior tracking accuracy and robustness [10]. However, when it
comes to time-optimal trajectory planning, the quadrotor must
operate at its motion limits, and dynamical model mismatch
and unknown external disturbances can lead to trajectory track-
ing failure during extreme flight [11], making robust trajectory
tracking a challenging task. To overcome this problem, [4]
proposed to generate a time-optimal trajectory with a slightly
lower input upper-bound than the quadrotor’s real actuator
limit to ensure tracking robustness. Obviously, this approach
sacrifices time-optimality.

In this letter, we propose an efficient and robust framework
for time-optimal waypoint flight. The framework divides the
waypoint flight mission into two layers: the time-optimal path
planning under waypoint constraints and the time-adaptive
trajectory tracking control. The overall framework is based on
the full quadrotor dynamics and nonlinear optimization, which
minimizes the flight time while maximizing the quadrotor
flight capability. Our contributions are summarized as follows.
• We propose a segmented time-optimal trajectory planning

method with a much shorter solving time (seconds versus
minutes), higher accuracy, and improved optimality in
time than CPC.

• We propose a time-adaptive model predictive control
(tMPC) method for tracking planned trajectories achiev-
ing a shorter tracking time and higher accuracy while
ensuring the tracking robustness.

• We implement the proposed time-optimal trajectory re-
planning method in real-world experiments with dynamic
waypoints and validate its planning efficiency and track-
ing robustness. The source code of our system is publicly
available at https://github.com/BIT-KAUIS/Fast-fly.

II. RELATED WORKS

A. Time-optimal Trajectory Planning

Trajectory planning has advanced significantly in simu-
lation and experimentation over the past decade. Early re-
search focused primarily on planning collision-free and safe
trajectories. Recent studies have focused more on planning
smooth, dynamically feasible, and minimum-time trajectories
to enable quadrotors to fly more flexibly and quickly [12]–[15].
Optimization-based trajectory planning methods have repre-
sented trajectories as time sequences of the quadrotor’s state
and control inputs, considering the objective of minimizing
the flight time while complying with the quadrotor dynamics
and input constraints [4]. A method by [16] achieved time-
minimum flight by maximizing the velocity along the given
path using a path parametrization method while considering
the translational and rotational dynamics of quadrotors. How-
ever, this method only optimizes velocity along the given path
and does not optimize the path further. The above trajectory
planning methods did not consider the scenario where the
quadrotors need to pass through given waypoints, which is
common in drone racing. Time-optimal trajectory planning

with waypoint constraints requires consideration of the time
allocation problem, i.e., assigning waypoints to specific time
steps, which is often non-trivial and hard to tackle. The recent
work by [4] introduced the CPC method, considering the full-
state dynamics constraints of the quadrotor and achieving truly
time-optimal trajectory planning with waypoint constraints.
However, the solution of CPC requires a large amount of com-
putation, making it difficult to achieve real-time replanning. To
address this issue, [5] performs real-time replanning of time-
optimal trajectories based on a point-mass dynamics model
and employs model predictive contouring control (MPCC)
with full quadrotor dynamics [17] to track the trajectory. This
method has both replanning capabilities and exceeds previous
methods in time optimality.

B. Trajectory Tracking Control of Quadrotors

The differential-flatness based controller (DFBC) has shown
significant improvement in tracking performance during high-
speed flight [18], [19]. Quadrotors have been proven to be dif-
ferentially flat [18], [20]; that is, once a time-parameterized 3D
path with the heading angle is given, the attitude, angular ve-
locity, and acceleration of quadrotors can be readily computed.
These quantities can be sent to the lower-level controller to
form a feedforward term, which can address the issue of model
mismatches and unknown external disturbances. The work [19]
developed the differential control method by cascading an
INDI controller after the DFBC. The INDI controller helps
enhance robustness against external aerodynamic disturbances
and achieves a maximum flight speed of nearly 13 m/s and an
acceleration exceeding 2g on a real quadrotor.

Another control algorithm is MPC which predicts the future
states for multiple time steps and computes the associated
control inputs. Thanks to the recent advances of hardware
and nonlinear optimization solvers [21]–[24], NMPC based
on full-state dynamics can meet real-time requirements. The
work [25] used each rotor thrust as a control input, and [26]
used the solved internal state as the reference input which is
sent to the lower-level controller. NMPC can fully exploit the
capabilities of drones and account for the actuator saturation
constraints.

In a recent comparative study of NMPC and DFBC by [10],
it was shown that although DFBC is more computationally
efficient and easier to implement, NMPC performs better in
high-speed flight. MPC can only track trajectories that satisfy
dynamic feasibility. To this end, another predictive control
method, namely MPCC [27], maximizes the trajectory tracking
progress while considering the tracking accuracy. This method
can not only track trajectories that are not dynamically feasible
but also achieve approximately time-optimal flight [17].

III. METHODOLOGY

A. Quadrotor Dynamics

We represent vectors and matrices using bold lowercase and
bold uppercase letters, respectively, throughout this letter. We
define the world frame, denoted by W : {xW ,yW , zW }, with
zW pointing downward and aligned with gravity. The body
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Fig. 2. A diagram showing the world frame and body frame of a quadrotor.

frame, denoted by B : {xB ,yB , zB}, has xB pointing forward
and zB pointing downward, opposite to the collective thrust.
The body frame’s origin is attached to the quadrotor’s center
of mass (CoM), as depicted in Fig. 2.

We consider the quadrotor dynamical model used in, e.g.,
[4], [17], whose dynamics are given as follows

ṗ = v
v̇ = gzW − czB −RDR>v

q̇ = 1
2q�

[
0
ω

]
ω̇ = J−1(τ − ω × Jω) .

(1)

Here, p and v denote the position and velocity of the quadro-
tor’s CoM, respectively. The symbol q ∈ SO(3) is the unit
quaternion representing the rotation from W to B, and R is
the corresponding rotation matrix parameterized by q. The
symbol ω is the angular velocity of B with respect toW , c and
τ are the mass-normalized collective thrust and the resultant
torque generated by rotors. The symbol D = diag(dx, dy, dz)
is the mass-normalized rotor-drag coefficients, and J is the
quadrotor’s inertia matrix.

For the configuration depicted in Fig. 2, the thrust Ti at
each rotor i ∈ {1, 2, 3, 4} can be used to decompose c and τ
as follows

c =
1

m
(T1 + T2 + T3 + T4) (2)

τ =


l√
2
(T1 +T4 − T2 − T3)

l√
2
(T1 + T3 − T2 − T4)

cτ (T3 + T4 − T1 − T2)

 (3)

where m and l represent the quadrotor’s mass and arm length
respectively. Additionally, the thrust values Ti must satisfy the
following constraints

0 6 Tmin 6 Ti 6 Tmax. (4)

B. Time-optimal Trajectory Planner

The objective of a waypoint flight is, given a starting point,
to guide the quadrotor through M given waypoints in a specific
order. In the general optimization-based planning algorithm,
the time required to reach each waypoint is predetermined,

1 3N = 2 5N = 3 4N =

1dt

1dt
1dt 2dt 2dt 2dt
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Fig. 3. Demonstration of the proposed time-optimal flight method with Nw =
3 waypoints. The trajectory is divided into three segments, each consisting
of a pre-assigned number of discrete points, with N1 = 3, N2 = 5, and
N3 = 3. The sampling times for the three segments are denoted by dt1, dt2,
and dt3, respectively. The three waypoint constraints are allocated to nodes
m1 = 3 and m2 = 8, as well as the last node N .

and the task of passing through the waypoint is expressed
as position constraints of the quadrotor at the corresponding
times [28], [29]. If {pwi

∈ R3}Nw
i=1 denote the positions of Nw

waypoints, the optimization problem for the waypoint flight
can be expressed as follows

min
xk,uk

J =

N−1∑
k=0

(‖xk+1‖Q + ‖uk‖R) (5a)

s.t. ‖pmi − pwi‖22 6 δ2i , i = 1, 2, . . . , Nw (5b)
xk+1 = f(xk,uk, dt) (5c)
xlb 6 xk 6 xub (5d)
ulb 6 uk 6 uub (5e)
x0 = xinit. (5f)

The objective function in (5a) minimizes the control cost
and system energy, where ‖x‖A is defined as x>Ax for a
positive definite matrix A = A> of suitable dimensions. The
waypoint constraints are represented in (5b), where mi ∈ N,
pmi and δi ≥ 0 denote the time, the position of the quadrotor
and the allowable position error, when passing through the i-
th waypoint. The dynamics constraint is represented in (5c),
which can be obtained from the continuous dynamics in (1)
using the Runge-Kutta method with a sampling period of
dt > 0. The state constraints, input constraints, and initial
state constraint are represented in (5d)–(5f), respectively.

For time-optimal planning, time is treated as an optimization
variable. To achieve the goal of minimizing the total flight
time, the optimization objective function for time-optimal
planning only considers minimizing the flight time T , which
is not reflected in the objective of minimizing system energy
and control cost in (5a).

To determine mi, the work of [4] introduced complementary
progress constraints to optimize the values of mi, which
considerably increases the computation time of the resulting
nonlinear optimization problem. In our method, we fix the
allocation of the waypoint constraints, i.e., by pre-assigning
each mi an appropriate value, and divides the trajectory into
Nw segments using the Nw waypoints, each using a separate
sampling interval denoted by dti > 0. The number of discrete
points Ni ∈ N for each trajectory segment is pre-assigned
based on the distance between adjacent waypoints; see a
pictorial illustration in Fig. 3. As a result, the total flight time



T and the allocation mi’s of the waypoint constraints can be
obtained as follows

T =

Nw∑
i=1

Ni dti (6a)

mi =

i∑
j=1

Nj , ∀i = 1, 2, . . . , Nw. (6b)

Furthermore, for each trajectory segment, we discretize the
quadrotor dynamics using the corresponding sampling time dti
in the following form

xki+1 = f(xki ,uki , dti) (7)

where ki ∈ N and mi−1 6 ki 6 mi, representing the nodes
(i.e., discrete points) in the i-th trajectory segment.

Finally, the proposed time-optimal waypoint trajectory plan-
ning problem can be summarized as follows

min
xk,uk,dti

T in (6a) (8a)

s.t. ‖pmi
− pwi

‖22 ≤ δ2i , with mi in (6b) (8b)
Constraint in (7) (8c)
xlb 6 xk 6 xub (8d)
ulb 6 uk 6 uub (8e)
x0 = xinit. (8f)

Compared to the time-optimal flight optimization problem
using CPC in [4], our proposed Problem (8) can be efficiently
solved using interior-point methods as the allocation of each
waypoint constraint is fixed. However, the nonlinear dynamics
constraints (8c) make Problem (8) intrinsically nonconvex.
Thus, to ensure the quality of the interior-point method, a good
initialization is required. In order to construct such an initial-
ization, we propose a warm-up problem, which incorporates
the waypoint and dynamics constraints into the objective as
penalty functions

Lw =

Nw∑
i=1

‖pmi
− pwi

‖22

Ld =

N−1∑
k=0

‖xk+1 − f(xk,uk, dt0)‖22

where dt0 is a constant.
There exist infinitely many solutions that fulfill both the

relaxed waypoint and dynamics constraints. To ensure a unique
optimal solution, we introduce a regularization term for the
control inputs in the objective function. This term, which is
defined as Lc =

∑N−1
k=0 ‖uk‖R, considerably accelerates the

convergence of the interior point method.
We can find an initial solution to Problem (8) by properly

choosing dt0 and solving the warm-up problem with an
interior point method, which is formulated as follows

min
xk,uk

Lw + Ld + Lc (9a)

s.t. xlb 6 xk 6 xub (9b)

ulb 6 uk 6 uub (9c)
x0 = xinit (9d)

whose solution is used as the initialization for Problem (8).
Upon solving (8), we obtain the optimal sampling times
{dt∗i }

Nw
i=1 for all segments and the time-optimal trajectory

points {x∗ki}ki between adjacent waypoints, given by

T ∗ :=
{
(x∗ki , dt

∗
i )|i =1, . . . , Nw, ki ∈ Z, mi−16 ki6 mi

}
.

(10)

C. Time-adaptive Trajectory Tracker

The standard NMPC calculates the control commands by
solving a finite-time optimal control problem with a receding
horizon H . Specifically, the objective function is formulated
as follows

min
u

H−1∑
k=0

(‖xk+1 − xref,k‖Q + ‖uk − uref,k‖R) (11a)

s.t. xk+1 = f(xk,uk, dt) (11b)
xlb 6 xk 6 xub (11c)
ulb 6 uk 6 uub (11d)
x0 = xinit (11e)

where xref,k and uref,k are the reference states and reference
inputs generated from our high-level trajectory planner.

When the reference trajectory is time-optimal, it indicates
that the quadrotor’s performance has reached its limits. How-
ever, the nonlinearity, imprecision, and aerodynamic effect of
the quadrotor’s dynamical model can still affect the actual
tracking error. Fast trajectory tracking using the NMPC al-
gorithm 11 faces two main challenges.

c1) The reference trajectory is typically specified as a se-
quence of discrete points, and its time interval may not
match that of the trajectory tracking controller. Thus, the
solution obtained from time-optimal control cannot be
directly used as the reference state for NMPC.

c2) Model mismatch, sensor noise, external disturbances,
and delays may cause the actual tracking time progress
to deviate from that obtained from high-level planning,
resulting in an increased actual tracking error.

To address the first challenge, we represent the planned
trajectory (10) as a time-parameterized one and use polynomi-
als to interpolate the trajectory between discrete points. The
quadrotor’s differential flatness property, combined with the
small-time intervals dt∗i (less than 0.1 s in general) between
discrete points x∗k, enables us to express the trajectory as
follows

traj(t) =


traj1(t− t0), t0 6 t < t1
traj2(t− t1), t1 6 t < t2

...
trajN (t− tN−1), tN−1 6 t < tN

(12)

where tk represents the time associated with the state x∗k
which can be obtained by accumulating dt∗i , and trajk is a
function of time and satisfies the following conditions, where



p∗k and v∗k denote the position and velocity components of x∗k,
respectively

trajk(0) = p∗k−1

trajk(dtk) = p∗k
trajk(t)

dt

∣∣∣∣
0

= v∗k−1

trajk(t)

dt

∣∣∣∣
dtk

= v∗k

(13)

which means the trajectory trajk satisfies the condition of
first-order continuity.

To address the second problem, we propose optimizing
the initial sampling time t0 of the first reference point and
subsequently sampling the reference points on the trajectory
every interval dt, denoted as

pref,k = traj(t0 + (k − 1)dt) , ∀k = 1, 2, . . . ,H. (14)

As the trajectory planning process accounts for the quadro-
tor’s dynamics model, the trajectory is dynamically feasible.
Therefore, we can focus on tracking the reference position of
the trajectory using a time-adaptive model predictive control
(tMPC) problem formulation as follows:

min
xk,uk,t0

H∑
k=1

‖pk − pref ,k‖22 (15a)

s.t. xk+1 = f(xk,uk, dt) (15b)
xlb 6 xk 6 xub (15c)
ulb 6 uk 6 uub (15d)
x0 = xinit (15e)

where xk and uk represent the state and control inputs at time
step k, respectively, and H is the prediction horizon.

IV. EXPERIMENTS

In this section, we present a set of simulations and experi-
ments to validate the effectiveness of our proposed methods.
We implemented the nonlinear optimization and optimal con-
trol problems using the open-source CasADi toolkit [21] and
developed our program in the ROS environment. We designed
separate ROS nodes for the trajectory planner and tracker,
and implemented two nodes for simulation and actual flight,
allowing for seamless switching between the two without
modifying the program. The inertial and geometric parameters
of the quadrotor used in our simulations and experiments are
listed in Table I.

A. Performance of Time-optimal Planner

Comparison with the state-of-the-art methods. Previous
work by Foehn et al. [4] introduced CPC to achieve time-
optimal trajectory planning. This method currently bench-
marks the time-optimal flight performance, having even out-
performed professional human pilots in drone races. However,
the time-optimal trajectory generated by the CPC method
requires a significant amount of computation time, typically

TABLE I
QUADROTOR CONFIGURATIONS

Parameters Values

D [s−1] diag(0.398, 0.316, 0.230)

J [gm2] diag(1, 2, 3)

m [kg] 1.2
l [m] 0.3

(Tmin, Tmax) [N] (0, 6.9)
cτ [1] 0.2

TABLE II
COMPARISON WITH THE CPC METHOD

Number of waypoints
Optimization time [s] Solution [s]
CPC Ours1 CPC Ours

n = 4 417.12 0.598 + 1.11 7.973 7.935

n = 5 1960 1.15 + 1.12 8.939 8.884

n = 6 1720 1.24 + 1.20 9.86 9.829

n = 7 1980 1.33 + 1.92 11.45 11.41

n = 8 2350 1.69 + 2.24 11.93 11.65

1 Total optimization time for our method, including solving time for the
warm-up problem (9) and the time-optimal planning problem (8).

taking several minutes to even hours to compute the full-state
time-optimal trajectory.

Our study presents a time-optimal trajectory planning ap-
proach that addresses the same problem as the CPC method,
but with considerably less computation time and better so-
lution accuracy. To evaluate the performance of our method,
we employed the drone configuration provided by Foehn et
al. [4], which is summarized in Table I, and conducted a
comparative analysis with the CPC method using an equal
number of discretization points for 4 to 8 waypoints. Our
experimental results in Table II reveal that our method is
orders of magnitude faster than the CPC method, while main-
taining superior solution quality. Moreover, our method offers
the advantage of pre-assigning waypoint constraints and the
flexibility to continuously adjust the optimal time for passing
through each waypoint, leading to a higher precision on the
waypoint constraints in contrast to the CPC method.

Convergence analysis of the optimal solution. In order to
improve the solution quality of our time-optimal planning
method, we carefully determine the number of discretization
points Ni between adjacent waypoints. Despite considering the
accurate drone dynamics model in the optimization problem
(8), the finite number of nodes used for discretizing the
trajectory introduces a certain level of approximation. To
ensure the uniformity of each node, we determine Ni based
on the distance between adjacent waypoints. Specifically, we
use the spatial density of nodes, denoted by D, to compute
Ni as per the following equation

Ni =

⌊
‖wpi −wpi−1‖

D

⌋
(16)

where b·c represents the floor function that outputs the greatest
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TABLE III
TRACKING ERROR UNDER MODEL MISMATCH

RMES [m] Max Error [m] Track Time [s]
tMPC MPC tMPC MPC tMPC MPC

Baseline 0.036 0.04 0.133 0.147 9.75 9.81

m− 0.03 kg 0.031 0.037 0.098 0.151 9.64 9.81

m+ 0.03 kg 0.052 0.081 0.208 0.329 9.87 9.83

0.9D 0.044 0.043 0.223 0.134 9.73 9.83

1.1D 0.029 0.039 0.092 0.148 9.74 9.82

integer less than or equal to the given value.
To yield a more accurate trajectory, we discretize the

trajectory into more nodes. However, this results in increased
computation time. Therefore, we investigate the convergence
trend of our optimal solution and the computation time under
different node densities. Fig. 4 depicts the convergence trend of
the optimal solution and the computation time at various values
of 1/D (average number of discrete points per meter) with a
fixed location for each waypoint. We measure the solving time
20 times with different initial solutions and calculate the mean
(blue line) and standard deviation (blue shadow). As shown,
with an increasing number of discrete points, the accuracy
of our optimal solution gradually improves. However, the
solving time increases rapidly, and the solution time becomes
increasingly unstable. To balance the solution accuracy and
the computation time, we choose D = 0.3.

B. Analysis of the Fast Trajectory Tracking Method

Upon obtaining the time-optimal trajectory from the high-
level planner, we employ the trajectory tracking method in
Section III-C to control the quadrotor and track the trajectory.
To assess the tracking performance, we define the root-mean-
square error (RMSE) of position tracking as follows

RMSE =

√√√√ 1

n

n∑
i=1

min
t
‖pi − traj(t)‖2 (17)
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where traj(t) represents the time-parameterized trajectory in
(12), pi denotes the actual position of the quadrotor during
the tracking process, and n is the number of sampling points.

We compared our proposed trajectory tracking algorithm
with the standard MPC. Our method demonstrated superior
performance in terms of position tracking error, flight speed,
actual flight time, and tracking robustness. When disturbances
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Fig. 7. Performance of time-optimal flight over static waypoints in real world.
Panels from top to bottom are the position, velocity, and tracking error for
three loops of actual flight. The maximum flight speed reached 10.6 m/s, and
the maximum position error during the entire trajectory tracking was 0.22 m.

or model mismatch were present, our proposed tMPC was
capable of adaptively tracking the time-optimal trajectory,
whereas standard MPC failed under time-optimal flight con-
ditions. To address this issue, we slightly slowed down the
tracking progress of MPC to cope with external disturbances
and actuator delays. Figure IV-B shows the trajectory tracking
performance of tMPC and MPC under constraints of eight
waypoints. Table III presents the average and maximum track-
ing errors and actual tracking time when the dynamic model is
accurate and when there are mismatches in UAV mass or rotor
drag coefficient. The results indicate that due to the inability of
MPC to adapt its tracking time, the tracking accuracy of MPC
varied significantly when there were model mismatches, while
tMPC automatically adjusted the tracking time and maintained
tracking accuracy. Further, we compared the velocity tracking
performance of tMPC and MPC, revealing that tMPC exhibits
better tracking performance. As shown in Fig. 6, tMPC can
quickly track the time-optimal trajectory with desired speed
for both the first and second loops after takeoff. In contrast,
MPC requires a longer transition process in the first loop.

C. Real-world Waypoint Racing

To further validate the performance of our algorithm, we
conducted experiments on a physical quadrotor platform. The
physical platform utilized the PX4-Vision frame and power
kit and was integrated with an Intel NUC11 as the on-
board computer. For the lower-level control, we employed the
Pixhawk4 flight controller, which can accept angular velocity
and thrust as control inputs and runs the angular velocity
controller at 1, 000 Hz. In addition, the PX4 firmware running
on the Pixhawk4 provided the extended Kalman filter for state
estimation, which fused Inertial Measurement Unit (IMU) data
with external auxiliary positioning provided by an OptiTrack
motion capture system at 100 Hz.
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Fig. 8. Online replanning and tracking performance under dynamic waypoints
in real world. In the figure, C3 1, C3 2, and C3 3 show the positions of the
third circle at different times. The dashed line represents the corresponding
time-optimal trajectory. The solid lines with colors indicate the real-time
position of the quadrotor, with the color signifying the flight speed.

To demonstrate the accuracy of trajectory tracking, we
conducted an experiment where the drone flew through a circle
with a diameter of 0.8 m. The experiment involved five circles,
each representing a waypoint that the drone has to navigate
through. We first conduct time-optimal flight experiments with
static circles. In the experiment, we measure the position of
each circle in advance and then use our proposed algorithm
to plan the time-optimal trajectory and track it. We collect
position and velocity data for the flight of three loops and
calculate the position tracking error with respect to the time-
optimal trajectory, as shown in Fig. 7. The results indicate that
in the small indoor environment, we achieve a maximum flight
speed of 10.6 m/s and a tracking error of less than 0.22 m.

To demonstrate the re-planning capability of our proposed
algorithm, we conducted time-optimal flight experiments un-
der dynamic waypoints. In the experiment, we randomly
change the position of one of the waypoints and regenerate
optimal trajectories in real-time, as shown in Fig. 8. We
achieved a maximum flight speed of 10.2 m/s, with the throttle
maintaining at around 21 m/s2, which is very close to the
theoretical maximum throttle (23 m/s2) of the quadrotor in
the experiment, as shown in Fig. 9. The experimental data
corroborate that our algorithm can quickly replan new time-
optimal trajectories upon changing the waypoint positions (in
our experiment, the replanning time was 0.12 s) and accurately
control the UAV to fly along the new trajectory.

V. CONCLUSION AND FUTURE WORK

In this letter, we have presented a novel (online) time-
optimal (re)planning method for quadrotor navigation through
dynamic waypoints. Our proposed tMPC algorithm effectively
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Fig. 9. Time-optimal flight data under dynamic waypoints in real world.
Plots from top to bottom are the quadrotor’s real-time position, velocity, and
throttle. The maximum flight speed is 10.2 m/s, and the average throttle is
21 m/s2.

addressed the issue of poor robustness in time-optimal trajec-
tory tracking. Our experimental results demonstrated that our
approach can quickly plan new time-optimal trajectories and
enable the quadrotor to rapidly switch to the new trajectories
once the waypoint positions change. Compared to previous
work, our approach achieved truly time-optimal trajectory re-
planning. However, we acknowledge that the proposed method
does not constrain the quadrotor’s yaw angle, which is often
required in many applications. In future work, we will con-
sider onboard sensor-based state estimation and gate position
estimation to reduce dependence on motion capture systems.
Moreover, collision-free time-optimal trajectory planning con-
stitutes an interesting topic for future research.
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