
On the Optimality, Stability, and Feasibility of Control Barrier
Functions: An Adaptive Learning-Based Approach

Alaa Eddine Chriat1 and Chuangchuang Sun1

Abstract— Safety has been a critical issue for the deployment
of learning-based approaches in real-world applications. To
address this issue, control barrier function (CBF) and its
variants have attracted extensive attention for safety-critical
control. However, due to the myopic one-step nature of CBF
and the lack of principled methods to design the class-K
functions, there are still fundamental limitations of current
CBFs: optimality, stability, and feasibility. In this paper, we
proposed a novel and unified approach to address these
limitations with Adaptive Multi-step Control Barrier Function
(AM-CBF), where we parameterize the class-K function by a
neural network and train it together with the reinforcement
learning policy. Moreover, to mitigate the myopic nature, we
propose a novel multi-step training and single-step execution
paradigm to make CBF farsighted while the execution remains
solving a single-step convex quadratic program. Our method
is evaluated on the first and second-order systems in various
scenarios, where our approach outperforms the conventional
CBF both qualitatively and quantitatively.

I. INTRODUCTION

While (deep) learning-based approaches have been perva-
sive nowadays, safety issues limit their deployment in real-
world applications, especially those with humans in the loop.
For example, autonomous driving vehicles should guarantee
the safety of the drivers and other entities by following the
driving rules. Other safety-critical applications can be found
in industrial, medical, and household scenarios. Therefore,
learning-enable models should rigorously guarantee safety,
and failing to do so can result in undesirable or even disastrous
outcomes.

In recent years, the control barrier function (CBF [1]) has
attracted extensive attention due to its forward invariance
property and scalability of solving a convex quadratic pro-
gramming (QP) such that many variants have been developed
in different settings and application scenarios. Additionally,
the combination of reinforcement learning (RL) and control
barrier functions [1–8] attracts much attention for safety
assurance and explorations by using CBF as the safety
shield. Specifically, work in [9] integrates the CBF into
the utility function of RL, while others have used neural
networks to parameterize and learn the barrier function
parameters [10, 11]. Moreover, some other works integrated
model predictive control with CBF as a predictive safety
filter for reinforcement learning[12]. However, while control
barrier functions are widely investigated and studied, there
are still major issues addressed as follows. (i) The one-step
forward nature, while rendering simplicity and scalability,

1The authors are with the Aerospace Engineering Department,
Mississippi State University, Starkville, MS 39759, USA. Emails:
aec652@msstate.edu, csun@ae.msstate.edu.

Fig. 1. Limitations of CBF. (a) One step is often myopic and thus generates
an overall sub-optimal path. (b) When marching towards the goal driven
by the control Lyapunov functions, the CBF agent gets stuck into the trap.
(c) Limited translational/angular control input fails to avoid the obstacle for
high-order systems.

also makes it myopic. (ii) The goal-reaching and safety
guarantee, driven by control Lyapunov functions (CLF) and
CBF, can often conflict with each other. (iii) The barrier
function κ(•) is often manually designed (such as linear
and quadratic candidates) and thus lacks expressiveness and
adaptivity. Furthermore, such issues lead to the following
concrete limitations; see the illustrations in Fig. 1. (1) It can
often lead to an overall sub-optimal controller design, with
“greedy” single-step control synthesis. (2) Because of the
one-step planning nature to minimize the control Lyapunov
function, it can easily get trapped in a concave safety set. For
example, when an autonomous vehicle tries to go through
an intersection of two convex obstacles, it can get stuck
there due to the objective to minimize the CLF. (3) It can
often encounter infeasibility [13] due to control limitations
in high-order systems. In other words, the CBF constraint
conflicts with the control constraints. A common example is
the adaptive cruise control scenario when it is ”too late to
brake” when deceleration is limited such that collision cannot
be avoided. We aim to address those fundamental challenges
in CBF via a learning-based approach.

Learning and control approaches have been combined
closely to mitigate their respective disadvantages while
keeping the advantages. Modern control theory has rigorous
guarantees of stability and constraint satisfaction with accurate
dynamics models given. Such guarantees are often missing
in partial-observable environments, with pervasive noise
and uncertainty. Moreover, the design of proper metrics,
such as Lyapunov functions, is often case-by-case and
requires expert knowledge. A principled way to design
such metrics is desirable. As a result, data-driven learning-
based control has attracted much attention in recent years.
Methods are developed to learn the unmodelled dynamics
and quantify the uncertainty, such as the Gaussian process
[14–16]. Lyapunov function [17–19] and (neural) contraction
metric [20–23] based methods are developed to guarantee the
stability of the dynamical systems. As a result, a learning-

ar
X

iv
:2

30
5.

03
60

8v
1 

 [
cs

.L
G

] 
 5

 M
ay

 2
02

3



based adaptive multi-step control barrier function method is
proposed to improve expressiveness, optimality, feasibility,
and optimality for the control of safety-critical autonomous
systems. Specifically, we propose to learn a class-K function
in a principled way. Moreover, for the myopic nature of
CBF, we propose a novel muli-step training and single-step
execution paradigm. Intuitively, in training it considers a long
horizon (instead of one step) and in execution/ inference,
the advantage of single-step QP is kept. This, to the best of
our knowledge, is the first systematic and unified approach
toward those dundamental issues.

II. PRELIMINARIES

A. High-order CBF

Control barrier functions are used in control theory to
guarantee that a dynamical system can achieve some desired
goals while remaining within safe constraints. A CBF is a
function that quantifies the system’s safety measurements.
Hence, we aim to find an control input that keeps the system
within its safe set measured by CBF. Mathematically, consider
the nonlinear control-affine system:

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

where f and g are globally Lipschitz, x ∈ Rn and u ∈ Rm
are the states and control inputs, respectively, constrained in
closed sets, with initial condition x(t0) = x0.

Definition 1: [1]h : Rn → R is a barrier function for
the set C = {x ∈ Rn : h(x) > 0} if ∃ an extended class-K
function α(•) such that:

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] > 0

inf
int(C)

[α(h(x))] > 0 and lim
∂C

α(h(x)) = 0
(2)

Because not all systems are first-order in inputs, we can use
higher-order control barrier functions to constrain higher-order
systems.

Definition 2: [24]For the non linear system (1) with the
mth differentiable function h(x) as a constraint, we define
a sequence of functions ψi with i ∈ {1, 2, ...,m}, starting
from ψ0 = h(x):

ψi(x, t) = ψ̇i−1(x, t) + αi (ψi−1(x, t)) (3)

and define Ci(t) sequence of safe sets associated with each
ψi:

Ci(t) = {x ∈ Rn : ψi−1(x, t) > 0} (4)

the function h(x) is a high order control barrier function if
there exist extended class-K functions αi(•) such that:

ψm(x, t) > 0 (5)
CBFs have great potential in designing safe and robust

systems, and they have been applied to various applications
such as robotics, and autonomous vehicles.

B. Reinforcement learning

Reinforcement learning (RL) is to learn a policy for
sequential decision-making from active interaction with the
dynamic systems [25]. Such dynamic systems are often
defined as Markov decision processes (MDP) that can
either be fully or partially observable. An MDP is a tuple
〈S,A,O, T , R, γ, P0〉, where S is a set of agent states in the
environment, A is a set of agent actions, O is a set of obser-
vations in partially observable case, T : S ×A× S → [0, 1]
is the transition function, R is the reward function, γ ∈ [0, 1]
is the discount factor and P0 : S → [0, 1] is the initial state
distribution. In the partially observable case, the agent receives
an observation oi correlated with the state si as S 7→ O. A
policy π : S 7→ P (A) is a mapping from the state space to
probability over actions. πθ(a|s) denotes the probability of
taking action a under state s following a policy parameterized
by θ. The objective is to maximize the cumulative reward:
J(θ) = Eτ∼pθ(τ)[

∑
t γ

tR(st, at)], where τ are the trajecto-
ries sampled under πθ(a|s). In order to optimize the policy
that maximizes J(θ), the policy gradient with respect to θ
can be computed as ∇θJ(θ) = Eτ∼πθ(τ)[∇θ log πθ(τ)G(τ)],
where G(τ) =

∑
t γ

tR(st, at) [25]. The Q-function of a
policy π is defined as Qπ : S ×A → R at any state action
pair (s, a). Mathematically, for a policy π, Qπ(s0, a0) =
Eπ[
∑∞
t=0 γ

tR(st, at)] denotes the expected return of the
trajectory. The policy can be deterministic in the form as
µθ : S 7→ A. As the objective gradient depends on the
differentiation over actions, it requires continuous action
space. With the policy parameters θ as deep neural networks
(DNN), it is termed as deep deterministic policy gradient
(DDPG) and can be used as a suitable instantiation of the
RL algorithm for continuous control.

C. Differentiable convex programming

Differentiable convex programming is a technique that
allows computation of the gradients of an optimization
problem objective function with respect to the parameters of
the problem, by taking matrix differentiation of the Karush-
Kuhn-Tucker (KKT) conditions. One example of a differ-
entiable optimization method is OPTNET [26], which has
differentiable optimization problems within the architecture
of the neural network. During training, the gradients of the
objective function are back-propagated through the neural
network. In general, we can use this method to differentiate
through any disciplined convex program [27], by mapping it
into a cone program first [28], computing the gradients, and
mapping back to the original problem. A common example of
differentiable programming is learning the constraints of the
optimization problem such as convex polytopes or ellipsoid
projections, through supervised learning. The advantage of
differentiable optimization methods like OPTNET is that they
can be used to optimize a wide range of convex objectives
that are difficult to optimize using traditional optimization
methods.



Fig. 2. Overview of the adaptive multi-step control barrier function (AM-CBF). (a) An end-to-end trainable multi-step CBF via differentiable programming.
Back propagating through all the learnable modules, including the κ(•) within the quadratic programming, the return J(θ) will be maximized. (b) The
neural network architecture to learn an adaptive class-K function.

III. APPROACH: ADAPTIVE MULTI-STEP
CONTROL BARRIER FUNCTION

A. Learning-based CBF: a multi-step training and single-step
execution paradigm

Control barrier functions have been used to enforce safety
constraints in control systems. In reinforcement learning,
CBFs can be used to ensure that an agent’s actions satisfy
safety constraints while maximizing a reward function. In
general, CBFs can be used as a safety shield that projects
an unsafe action into a safe one via the CBF conditions [2–
4]. However, non-learning-based CBFs suffer the limitations
described in Section I, which we aim to address here with
its learning-based counterpart.

Consider the nonlinear system (1), the objective of safe
reinforcement learning is to generate a policy/control ur to
achieve certain goals characterized by the reward function
in the MDP while satisfying safety constraints. The typical
way is to drive a potential function V (x) to be zero, such as
goal-reaching with V (x) = ‖x− xf‖22. The RL policy will
generate an action without safety guarantee first as uRL(t) =
µ (xt | θµ) +Nt, where µ(• | θµ) is a policy parameterized
by deep neural networks θµ and N is a random process for
promoting exploration. 1 Then the barrier function method [1]
ensures that the controller complies with the safety constraint
by solving the following convex quadratic program for control
synthesis

minur∈[u,ū] ||ur − uRL||2

s.t. ∂h(x)
∂x (f(x) + g(x)ur) ≥ −κ(h(x))

(6)

where α > 0 and κ(•) is an extended class-K function (strictly
increasing and κ(0) = 0). Then like typical RL trajectory
rollout, such process will be repeated for an episode length
T ; see Fig. 2(a). Unlike existing works in the literature
using a manually designed class-K function, we propose
to learn an extended class-K function parameterized by a

1The state x and s, the control/action u and a, terminologies in control
theory and reinforcement learning, are used interchangeably here.

neural network; see the illustration in Fig. 2(b). First, the
class-K function is made expressive and adaptive with the
parameterization of DNNs. Moreover, it should keep the
property of a class-K function. (a) To make sure that κ(•)
is monotonically increasing, the weights (excluding the bias)
of the DNNs should be non-negative [29, 30], which is
achieved by the absolute value (or exponential) activation
function to guarantee W1 ≥ 0 and W2 ≥ 0. (b) By setting
κ(z) := κ′(z)−κ′(0), we guarantee that κ(0) = 0. Then the
learned function κ(•) is guaranteed to be a class-K function.
Moreover, we consider multi-steps of CBF in the rolling-out
and training process of RL policies to address the infeasibility
and sub-optimality issues. The intuition is that with the
learning-based multiple-step planning, 1) it can have a more
global view (instead of myopic) to achieve optimality, 2) it
can be more foresighted and thus avoid getting stuck into the
concave trap (stability), and (3) avoid the conflicts between
CBF condition and control limitations (infeasibility). Hence,
with a learned class-K function and a multi-step training
and single-step execution paradigm, we address the three
fundamental issues of CBF described in section I and the
overall of the AM-CBF is illustrated in Fig. 2.

Following the RL formalism, the policy µ(• | θµ) and
the class-K function κ(•) will be updated to maximize the
cumulative reward function as

J(θ) =

T∑
k=1

γkR(sk, ak). (7)

Moreover, the temporal difference loss function used to train
the critic network is as follows [31]

L(θ) = Es,a,r,s′
(
(y −Q(s, a|θQ)

)2
where y = R+ γQ′

(
s, µ′(s | θµ

′
) | θQ

′
)
,

(8)

where θµ
′

and θQ
′

are the target networks of the actor and
critic, respectively. Gradient descent-type algorithms are used
to update the parameters θµ, θK, and θQ.



B. Gradient evaluation of the class-K function within QP
via differentiable convex programming

To update the class-K function, it requires to differentiate
through the QP in (6) to get the derivative of the loss
function regarding θK. Note that the QP in (6) is convex
and can be differentiated via the KKT conditions [26], which
are equivalent conditions for (global) optimality. The KKT
conditions state that at the optimal solution, the gradient of
the Lagrangian function with respect to the program’s input
and parameters must be zero. Hence, by taking the partial
derivative of the Lagrangian function with respect to the
input and extending it via the chain rule to the program’s
parameters, we obtain all the gradients needed for training.
Therefore it can be integrated seamlessly into the end-to-
end training framework. We have integrated differentiable
optimization using the cvxpylayers package 2 which is an
extension to the cvxpy package with an affine-solver-affine
(ASA) approach. The ASA consists of taking the optimization
problem’s objective and constraints and mapping them to a
cone program. For a generalized QP

min
x

1

2
xTQx+ qTx

s.t. Ax = b

Gx ≤ h,

(9)

we can write the Lagrangian of the problem as:

L(z, ν, λ) =
1

2
zTQz+qT z+νT (Az−b)+λT (Gz−h) (10)

where ν are the dual variables on the equality constraints
and λ ≥ 0 are the dual variables on the inequality constraint.
Using the KKT conditions for stationarity, primal feasibility,
and complementary slackness.

Qz? + q +AT ν? +GTλ? = 0

Az? − b = 0

D (λ?) (Gz? − h) = 0

(11)

By differentiating these conditions, we can shape the Jacobian
of the problem as follows. dz

dλ
dν

 = −

 Q GTD (λ?) AT

G D (Gz? − h) 0
A 0 0

−1  ( ∂`∂z? )T0
0


(12)

Furthermore, via chain rule, the derivatives of the loss function
regarding any of the parameters in the QP, including the
class-K function, are available [26]. This will enable end-to-
end training for any learnable modules in this framework.
This differentiable programming module is integrated into
DDPG training process3. Moreover, during training, multiple
tasks will be encountered and thus the resulting controller
can be adaptive to different or even unseen tasks. Note that

2https://github.com/cvxgrp/cvxpylayers
3https://github.com/philtabor/

Youtube-Code-Repository/blob/master/
ReinforcementLearning/PolicyGradient/DDPG/pytorch/
lunar-lander/ddpg_torch.py

in execution, only one step of the QP in (6) is needed to
solve (the same as normal CBF). As a result, this AM-CBF
can address the critical limitations of existing CBF-based
approaches and can lead to more adaptive, reliable, and safe
controllers. Algorithm 1 summarizes the overall framework
with the DDPG [31] and the learnable AM-CBF.

Algorithm 1 Safe reinforcement learning with AM-CBF
1: Require: Environment setting, learning rates α, β, dis-

count factor γ, and target network update rate τ
2: Initialize critic network Q

(
s, a | θQ

)
, actor µ (s | θµ)

and K-function network with weights θQ and θµ and θK

3: Initialize target network Q′ and µ′ with weights θQ
′ ←

θQ, θµ
′ ← θµ

4: Initialize replay buffer R
5: for episode = 1, . . . ,M do
6: Initialize a random process N for action exploration
7: Receive initial observation state s1

8: for t = 1, . . . , T do
9: Select action at = µ (st | θµ) +Nt according to

the current policy and exploration noise
10: Rectify the action via (6) for safe exploration
11: Execute action atR and observe reward rt and

new state st+1

12: Store transition (st, at, atR , Rt, st+1) in R
13: Sample a random mini-batch of N transitions

(st, at, atR , Rt, st+1) from R
14: Update critic by minimizing the loss in (8) with

learning rate β
15: Update the actor θµ and K-function θK using the

gradient ascent with the sampled gradient of the
return in (7)

16: θµ ← θµ + α∇θµJ(θ)
17: θK ← θK + α∇θKJ(θ)
18: Update the target networks with rate τ
19: θ′ ← τθ + (1− τ)θ′
20: end for
21: end for
22: Return: θµ, θK, θQ.

IV. SIMULATIONS AND RESULTS

In this section, we evaluate the AM-CBF performance in
two cases of a Dubin’s car environment, a first-order and a
second-order system. Three research questions are answered,
originating from the limitations of the current CBFs. We
compare our approach with non-learning-based CBF with all
other settings identical.

A. Optimality

To evaluate the AM-CBF performance on the optimality
of trajectory, we used the first-order Dubins car environment
we the following kinematics(13). ẋ

ẏ

θ̇

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 vx
vy
ω

 , (13)

https://github.com/cvxgrp/cvxpylayers
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/pytorch/lunar-lander/ddpg_torch.py
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/pytorch/lunar-lander/ddpg_torch.py
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/pytorch/lunar-lander/ddpg_torch.py
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/pytorch/lunar-lander/ddpg_torch.py


where vx is the velocity along the x axis of the car’s frame,
vy is the sideways velocity, and ω is the angular velocity. In
order to reach its final destination xf from an initial state
xo, we designed a reward that penalizes the squared distance
between the car and the goal state multiplied by a coefficient
as d ‖x− xf‖22, and penalizes every time step by a constant
s for minimum time goal-reaching. Hence, the reward is
defined as:

R = −d ‖x− xf‖22 − s, (14)

with d > 0 and s ≥ 0. The discount factor γ, learning rates
for training the actor and critic, and the update rates for the
target networks are summarized in Tables I and II in the
appendix.

Fig. 3 presents the trajectories from both the class-K
functions from both AM-CBF and the linear ones. It is shown
that the linear CBF follows a myopic trajectory where it avoids
the obstacle only after reaching it resulting in a sub-optimal
path. While the AM-CBF starts the avoidance from the initial
state and clears the obstacle in a more optimal way in terms
of the shortest path.

Fig. 3. Dubins car trajectories for learning based AM-CBF and linear
K-function CBF.

Quantitatively, the reward functions of both cases are
plotted in Fig. 4, where we can see that the non-learning-
based CBF approach has a lower training time compared to
the AM-CBF. However, the AM-CBF reaches a higher return
value, which indicates the optimality of the trajectory and
the shorter time to reach the final destination.

The final trained class-K function for the Dubins car is
plotted alongside the linear function used in the normal
CBF in Fig. 5. Intuitively, the learned function represents
a piecewise affine function in the form of an increasing
quadratic function. The learned class-K functions share
similar forms across different scenarios.

Fig. 4. Return comparison for Dubins car between AM-CBF and linear
K-function CBF. The shadowed area denotes the variance from three runs
with different random seeds.

Fig. 5. K-function learned from AM-CBF and the linear K-function.

B. Stability

To evaluate the AM-CBF performance when encountering
a concave obstacle, we created two overlapped circular
obstacles to create a local minimum of the Lyapunov function
that can possibly trap the car. Fig. 6 shows how the linear CBF
gets attracted to the contact point and gets stuck there, while
the AM-CBF adapts and learns how to avoid the obstacle
and the trap.

The return for the AM-CBF concave obstacle is plotted in
Fig. 7, we can see some instability at the beginning of the
learning but it smoothes out and reaches the optimal reward.
The linear CBF has no reward profile due to the failure for



Fig. 6. The AM-CBF reaches its destination, while linear K-function
getting stuck in the trap.

reaching and thus the truncation of episodes.

C. Feasibility

Infeasibility only happens in high-order systems with
control constraints (e.g., upper/ lower bound). Hence, to
create the infeasibility case, we use a second-order Dubin’s
car with the following kinematics ẍ

ÿ

θ̈

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ux
uy
τc

 , (15)

with norm constraint of the control input as ‖u‖ ≤ umax. We
also have the following adjusted reward function to penalize
the velocities at the final destination for learning to brake as
well

R = −d ‖x− xf‖22 − b ‖v − vf‖
2
2 − s. (16)

In Fig. 8, it is observed that the AM-CBF avoids the
obstacle by diverging earlier with constrained input, while
the linear CBF only tries to avoid the obstacle after reaching
it, which results in infeasibility due to constrained inputs.
The side zoom-in figure shows the direction of the car when
the infeasibility arises in magenta, where the translational/
rotational control inputs (ux, uy, τc) are insufficient to brake/
turn enough to avoid the collision with the obstacle. Fig. 9
shows the reward profile from the AM-CBF, where we can
see some oscillations at the start of the learning, smoothing
out as the training progresses.

V. CONCLUSIONS
In this paper, we proposed a novel approach to address the

optimality, stability, and feasibility of control barrier functions.

Fig. 7. The return profile from AM-CBF for the stability case. The shadowed
area denotes the variance from three runs with different random seeds.

Fig. 8. The AM-CBF reaching its destination in blue, and linear K-function
violates the safety constraints next to the obstacle due to the conflicts between
CBF conditions and the control constraints. The magnified magenta line
shows the car’s direction while encountering collision.

Our approach is called the Adaptive Multi-step Control Barrier
Function (AM-CBF), where we parameterize the class-K
function by a neural network and train it together with the
reinforcement learning policy. We evaluate our method on
the first and second-order Dubin’s car in various scenarios,
where our approach outperforms the conventional linear class-
K function both qualitatively and quantitatively. For future
work, we plan to explore the generalization of our approach to
meta-learning settings for fast adaptation to new tasks and also
work on distributionally robust learning under distributional
shift.



Fig. 9. Return profile from AM-CBF for the feasibility case. The shadowed
area denotes the variance from three runs with different random seeds.

APPENDIX

We show the hyper-parameters in learning here in Tables
I and II.

TABLE I
THE PARAMETERS USED IN THE DUBINS CAR

Parameter description Value
xo initial state −1.5 + rand,−1.5 + rand, π

4
xf final state 1.5 + rand, 1.5 + rand, π

4
d distance penalty 0.6
b velocity penalty 0.1
s step penalty 1
γ discount factor 0.99

TABLE II
THE HYPER-PARAMETERS FOR TRAINING THE NEURAL NETWORKS

Parameters Value
Actor-Critic networks hidden layers (128, 64)
K-function hidden layers (7, 7)
batch size 64
Critic learning rate (β) 0.01
Actor learning rate (α) 0.001
Target update rate (τ ) 0.7

REFERENCES

[1] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada,
“Control barrier function based quadratic programs for
safety critical systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 8, pp. 3861–3876, 2016.

[2] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick,
“End-to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks,”

in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 3387–3395.

[3] L. Zheng, Y. Shi, L. J. Ratliff, and B. Zhang, “Safe
reinforcement learning of control-affine systems with
vertex networks,” arXiv preprint arXiv:2003.09488,
2020.

[4] J. Choi, F. Castañeda, C. J. Tomlin, and K. Sreenath,
“Reinforcement learning for safety-critical control un-
der model uncertainty, using control lyapunov func-
tions and control barrier functions,” arXiv preprint
arXiv:2004.07584, 2020.

[5] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer,
S. Niekum, and U. Topcu, “Safe reinforcement learning
via shielding,” arXiv preprint arXiv:1708.08611, 2017.

[6] N. Fulton and A. Platzer, “Safe reinforcement learning
via formal methods: Toward safe control through proof
and learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

[7] M. Turchetta, A. Kolobov, S. Shah, A. Krause, and
A. Agarwal, “Safe reinforcement learning via curriculum
induction,” arXiv preprint arXiv:2006.12136, 2020.

[8] J. Garcıa and F. Fernández, “A comprehensive survey
on safe reinforcement learning,” Journal of Machine
Learning Research, vol. 16, no. 1, pp. 1437–1480, 2015.

[9] R. Munos, T. Stepleton, A. Harutyunyan, and M. Belle-
mare, “Safe and efficient off-policy reinforcement learn-
ing,” Advances in neural information processing systems,
vol. 29, 2016.

[10] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li, “Model-
free safe reinforcement learning through neural barrier
certificate,” IEEE Robotics and Automation Letters,
2023.

[11] W. Xiao, T.-H. Wang, R. Hasani, M. Chahine, A. Amini,
X. Li, and D. Rus, “Barriernet: Differentiable control
barrier functions for learning of safe robot control,”
IEEE Transactions on Robotics, 2023.

[12] K. P. Wabersich and M. N. Zeilinger, “Predictive control
barrier functions: Enhanced safety mechanisms for
learning-based control,” IEEE Transactions on Auto-
matic Control, 2022.

[13] W. Xiao, C. A. Belta, and C. G. Cassandras, “Sufficient
conditions for feasibility of optimal control problems
using control barrier functions,” Automatica, vol. 135,
p. 109960, 2022.

[14] I. D. J. Rodriguez, U. Rosolia, A. D. Ames, and Y. Yue,
“Learning unstable dynamics with one minute of data: A
differentiation-based gaussian process approach,” arXiv
preprint, 2021.

[15] M. Khan, T. Ibuki, and A. Chatterjee, “Safety uncertainty
in control barrier functions using gaussian processes,”
in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 6003–6009.

[16] C. Peng and Y. Yang, “Trajectory tracking of a quadrotor
based on gaussian process model predictive control,” in
2021 33rd Chinese Control and Decision Conference
(CCDC). IEEE, 2021, pp. 4932–4937.

[17] Y. Chow, O. Nachum, E. Duenez-Guzman, and



M. Ghavamzadeh, “A lyapunov-based approach to
safe reinforcement learning,” in Advances in neural
information processing systems, 2018, pp. 8092–8101.

[18] F. Berkenkamp, M. Turchetta, A. Schoellig, and
A. Krause, “Safe model-based reinforcement learning
with stability guarantees,” in Advances in neural infor-
mation processing systems, 2017, pp. 908–918.

[19] S. M. Richards, F. Berkenkamp, and A. Krause, “The
lyapunov neural network: Adaptive stability certification
for safe learning of dynamical systems,” arXiv preprint
arXiv:1808.00924, 2018.

[20] H. Tsukamoto, S.-J. Chung, and J.-J. Slotine, “Learning-
based adaptive control via contraction theory,” arXiv,
2021.

[21] H. Tsukamoto and S.-J. Chung, “Neural contraction
metrics for robust estimation and control: A convex
optimization approach,” IEEE Control Systems Letters,
vol. 5, no. 1, pp. 211–216, 2020.

[22] ——, “Learning-based robust motion planning with
guaranteed stability: A contraction theory approach,”
IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 6164–6171, 2021.

[23] H. Tsukamoto, S.-J. Chung, J.-J. Slotine, and C. Fan,
“A theoretical overview of neural contraction metrics for
learning-based control with guaranteed stability,” arXiv
preprint arXiv:2110.00693, 2021.

[24] W. Xiao and C. Belta, “High-order control barrier

functions,” IEEE Transactions on Automatic Control,
vol. 67, no. 7, pp. 3655–3662, 2021.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[26] B. Amos and J. Z. Kolter, “Optnet: Differentiable
optimization as a layer in neural networks,” arXiv
preprint arXiv:1703.00443, 2017.

[27] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond,
and J. Z. Kolter, “Differentiable convex optimization
layers,” Advances in neural information processing
systems, vol. 32, 2019.

[28] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. M.
Moursi, “Differentiating through a cone program,” arXiv
preprint arXiv:1904.09043, 2019.

[29] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and
R. Garcia, “Incorporating functional knowledge in neural
networks.” Journal of Machine Learning Research,
vol. 10, no. 6, 2009.

[30] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar,
J. Foerster, and S. Whiteson, “Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning,” arXiv preprint arXiv:1803.11485, 2018.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous con-
trol with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.


	I INTRODUCTION
	II PRELIMINARIES
	II-A High-order CBF
	II-B Reinforcement learning
	II-C Differentiable convex programming

	III APPROACH: ADAPTIVE MULTI-STEP CONTROL BARRIER FUNCTION
	III-A Learning-based CBF: a multi-step training and single-step execution paradigm
	III-B Gradient evaluation of the class-K function within QP via differentiable convex programming

	IV SIMULATIONS AND RESULTS
	IV-A Optimality
	IV-B Stability
	IV-C Feasibility

	V CONCLUSIONS

