
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 1

Safe Non-Stochastic Control of Control-Affine Systems:
An Online Convex Optimization Approach

Hongyu Zhou1 Yichen Song2 Vasileios Tzoumas1

Abstract—We study how to safely control nonlinear control-
affine systems that are corrupted with bounded non-stochastic
noise, i.e., noise that is unknown a priori and that is not necessar-
ily governed by a stochastic model. We focus on safety constraints
that take the form of time-varying convex constraints such as
collision-avoidance and control-effort constraints. We provide an
algorithm with bounded dynamic regret, i.e., bounded subopti-
mality against an optimal clairvoyant controller that knows the
realization of the noise a priori. We are motivated by the future
of autonomy where robots will autonomously perform complex
tasks despite real-world unpredictable disturbances such as wind
gusts. To develop the algorithm, we capture our problem as a
sequential game between a controller and an adversary, where
the controller plays first, choosing the control input, whereas
the adversary plays second, choosing the noise’s realization. The
controller aims to minimize its cumulative tracking error despite
being unable to know the noise’s realization a priori. We validate
our algorithm in simulated scenarios of (i) an inverted pendulum
aiming to stay upright, and (ii) a quadrotor aiming to fly to a
goal location through an unknown cluttered environment.

Index Terms—Non-stochastic control, online learning, regret
optimization, robot safety

I. INTRODUCTION

IN the future, robots will be leveraging their on-board
control capabilities to complete safety-critical tasks such

as package delivery [1], target tracking [2], and disaster
response [3]. To complete such complex tasks, the robots need
to efficiently and reliably overcome a series of key challenges:

Challenge I: Time-Varying Safety Constraints: The robots
need to ensure the safety of their own and of their surround-
ings. For example, robots often need to ensure that they follow
collision-free trajectories, or that their control effort is kept
under prescribed levels. Such safety requirements take the
form of time-varying state and control input constraints: e.g.,
as robots move in cluttered environments, the current obstacle-
free environment changes (Figure 1). Accounting for such
constraints in real-time can be challenging, requiring increased
computational effort [4], [5]. Hence, several real-time state-of-
the-art methods do not guarantee safety at all times [6], [7].

Challenge II: Unpredictable Noise: The robots’ dynam-
ics are often corrupted by unknown non-stochastic noise,
i.e., noise that is not necessarily i.i.d. Gaussian or, more
broadly, that is not governed by a stochastic (probability)
model. For example, aerial and marine vehicles often face
non-stochastic winds and waves, respectively [8]. But the
current control algorithms primarily rely on the assumption
of known stochastic noise, typically, Gaussian, compromising
the robots’ ability to ensure safety in real-world settings where
this assumption is violated [9].

Manuscript received June 24, 2023; Revised September 4, 2022; Accepted
September 20, 2023. This paper was recommended for publication by Editor
Jens Kober upon evaluation of the Associate Editor and Reviewers’ comments.

1Department of Aerospace Engineering, University of Michigan, Ann
Arbor, MI 48109 USA; {zhouhy, vtzoumas}@umich.edu

2Department of Mechanical Engineering, Boston University, Boston, MA
02215; ycs@bu.edu

Start

Goal

Wind Field

Quadrotor

Start/Goal Position Wind FieldQuadrotor Wind Force Obstacle

Fig. 1: Safe non-stochastic control example: Autonomous flight in clut-
tered environments subject to unknown wind disturbances. In this paper,
we focus on safe non-stochastic control of control-affine systems where the
robots’ capacity to select effective control actions fast is challenged by (i)
time-varying safety constraints, (ii) unknown, unstructured, and, more broadly,
unpredictable noise, and (iii) nonlinear control-affine dynamics. For example,
in package delivery with quadrotors, the quadrotors are required to fly to goal
positions. But during such tasks, (i) the quadrotors need to ensure collision
avoidance at all times, which requires control actions that respect time-varying
state and control-input constraints, (ii) the quadrotors may be disturbed by
unpredictable wind gusts, and (iii) they need to account for their nonlinear,
in particular, control-affine dynamics. These challenges stress the quadrotors’
ability to decide effective control inputs fast, and to ensure safety. We aim
to provide a control algorithm that handles these challenges, guaranteeing
bounded suboptimality against optimal safe controllers in hindsight.

Challenge III: Nonlinear, Control-Affine Dynamics: The
dynamics of real-world robots are often nonlinear, in partic-
ular, control-affine. For example, the dynamics of quadrotors
and marine vessels take the form of xt+1 = f (xt)+g (xt)ut+
wt, where (i) xt is the robot’s state, (ii) f (xt) and g (xt) are
system matrices characterizing the robot’s dynamics, (iii) ut is
the control input, and (iv) wt is the disturbance [10]. Handling
nonlinear dynamics often requires complex control policies,
requiring, in the most simple case, linearization at each time
step, and, thus, additional computational effort [4].

The above challenges motivate control methods that effi-
ciently and reliably handle control-affine systems, and guar-
antee the satisfaction of time-varying safety constraints even in
the presence of non-stochastic noise. State-of-the-art methods
to this end typically rely on robust control [11]–[16] or
on online learning [17]–[23]. But the robust methods are
often conservative and computationally heavy: not only they
simulate the system dynamics over a lookahead horizon; they
also assume a worst-case noise realization, given a known
upper bound on the magnitude of the noise. To reduce conser-
vatism and increase efficiency, researchers have also focused
on online learning methods via Online Convex Optimization
(OCO) [24]. These methods rely on the Online Gradient
Descent (OGD) algorithm or its variants, offering bounded
regret guarantees, i.e., bounded suboptimality with respect
to an optimal (possibly time-varying) clairvoyant controller
that knows the future noise realization a priori [17]–[20],
[22]. However, the current online methods address only linear
dynamical systems and time-invariant safety constraints.

Contributions. We provide an algorithm for the problem

ar
X

iv
:2

30
9.

16
81

7v
1

 [
ee

ss
.S

Y
]

 2
8

Se
p

20
23

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 2

of controlling control-affine systems, guaranteeing their safety
against time-varying safety constraints even in the presence
of non-stochastic noise. Henceforth, we refer to this problem
as Safe Non-Stochastic Control for Control-Affine Systems
(Safe-NSC). Our solution approach, its generality, and its
performance guarantees are as follows:

a) Approach: We first formalize the problem of Safe-
NSC as a sequential game between a controller and an adver-
sary, inspired by the current literature on online learning and
control [17]–[20], [22], [23]: at each time step t, the controller
plays first, choosing a control input, and, then, the adversary
plays second, choosing the noise’s realization. The controller
aims to minimize its cumulative performance, e.g., tracking
error, despite being unaware of the noise’s realization a priori.

We then provide an algorithm for Safe-NSC, called Safe
Online Gradient Descent (Safe-OGD) (Algorithm 1). Safe-
OGD chooses control input ut online from a set Ut that is
also chosen by Safe-OGD online to guarantee safety. In more
detail, Ut is constructed (i) given the current safety constraints,
and an upper bound to the non-stochastic noise, and (ii)
employing Control Barrier Functions (CBF) [25] to enforce
the constraints. The safety constraints may be known a priori
or constructed online given the currently known environment,
e.g., the current obstacle-free environment within field of view.

b) Generality: Safe-OGD, as presented above, selects
control inputs directly, without optimizing an underlying
policy parameterization. Oftentimes, however, it is desired
to optimize a control-policy parametrization, such as in
Linear-Quadratic Gaussian (LQG) control [26]. We show that
Safe-OGD can be extended to optimize online any control-
policy parameterization that is linear in the parameters (Sec-
tion IV-C). Examples of such policies include the linear
state-feedback control policy [26], which is commonly used
for LQG control, and the disturbance-action policy [5], [17],
which is commonly used for non-stochastic control.

c) Performance Guarantees and Near-Optimality in
Classical Control Settings: We prove that the Safe-OGD
controller has bounded dynamic regret against any clairvoyant
control policy (Theorem 1). The regret bound also implies
(near-)optimal performance in classical online convex opti-
mization and optimal control problems: (i) when the domain of
optimization is time-invariant, Safe-OGD’s performance bound
reduces to that of the seminal OGD algorithm for online
convex optimization, which bound is near-optimal [27]; and
(ii) when also the optimal clairvoyant control policy is time–
invariant, Safe-OGD learns asymptotically the optimal control
policy (Section V), implying, for example, that Safe-OGD
would converge to the optimal linear state-feedback controller
if applied to the classical LQG problem.

Numerical Evaluations. We validate our algorithms with
extensive simulations (Section VI). Specifically, we validate
our algorithm in simulated scenarios of (i) an inverted pen-
dulum that is tasked to stay upright, and (ii) a quadrotor
that is tasked to move to a prescribed location by flying
through an unknown cluttered environment (Fig. 1). We con-
duct these experiments in Python and Gazebo, respectively. In
the inverted pendulum experiment (Section VI-A), we compare
our algorithm with a linear feedback controller, the Deep
Deterministic Policy Gradient (DDPG) controller [28], [29],
and the iterative Linear–Quadratic Regulator (iLQR) [6]. In

the quadrotor experiment (Section VI-B), we compare our
algorithm with the geometric controller [30] and a Robust
Nonlinear Model Predictive Controller (R-NMPC) [31].

Our algorithm achieves in the simulations a better perfor-
mance, achieving (i) safety at all times, whereas the iLQR and
geometric controllers as well as R-NMPC do not, and (ii) better
or comparable tracking performance than the linear feedback,
DDPG, and geometric controllers as well as R-NMPC.

II. RELATED WORK

The said Challenges I to III have motivated research on
robust control, online learning for control, and safe control:

Robust control. Robust control algorithms select control
inputs upon simulating the future system dynamics across a
lookahead horizon [12]–[16], [32]. To this end, they either
assume a worst-case realization of noise, given an upper bound
to the magnitude of the noise [12]–[16], or assume a stochastic
model governing the evolution of the noise [32]. However,
assuming the worst-case noise realization can oftentimes be
pessimistic; and assuming a stochastic model may compromise
performance when the underlying noise is non-stochastic or
the assumed model is incorrect.

Online learning for control. Online learning algorithms
select control inputs based on past information only since
they assume no model that can be used to simulate the future
evolution of the noise [17]–[23]. Assuming a known upper
bound to the magnitude of the noise, and by employing
the OCO framework to capture the non-stochastic control
problem as a sequential game between a controller and an
adversary [24], they provide bounded regret guarantees against
an optimal (time-varying) clairvoyant controller even under
unpredictable noise. They consider time-invariant state and
control input constraints or no constraint, in contrast to time-
varying safety constraints, with the exception of [23]. Also,
they only consider linear dynamical systems, in contrast to
nonlinear control-affine systems, with the exception of [21].1

Safe Control. Safe control algorithms select control inputs
to ensure that the unsafe region on the system’s state space is
not reachable. This can be achieved by using Hamilton-Jacobi
(HJ) reachability analysis [33] and CBF [25]. HJ reachability
analysis computes the backward reachable set, i.e., the set of
states from which the system can be driven into the unsafe
set, and selects control inputs to avoid such an unsafe set. HJ
reachability analysis is able to handle bounded disturbances
and recovers maximal safe sets. However, it is often com-
putationally intractable for high-dimensional systems, thus,
requiring to place assumptions on system dynamics to recover
traceability, such as requiring linear systems or the system
dynamics can be decomposed into several subsystems [34]–
[36]. CBF achieves safety by ensuring forward invariance
of the safe set, i.e., by selecting control inputs such that
the system state remains in the safe set. This method has

1We compare this paper with our previous work [23]: (i) [23] considers
linear time-varying systems; in contrast, herein we consider nonlinear control-
affine systems. (ii) [23] employs toy MATLAB simulations of a linear time-
invariant model of a quadrotor that aims to stay at the hovering position;
in contrast, we conduct extensive experiments on two nonlinear control-
affine systems, namely, an inverted pendulum aiming to stay upright, and a
quadrotor flying in an unknown cluttered environment, where we use Python
and Gazebo, respectively. (iii) [23] is accepted to a conference venue and will
not contain any proof of its theoretical results due to space limitations. (iv)
There is no overlap in the writing between [23] and this paper.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 3

been used to design control algorithms for systems with no
noise [25], [37]–[39], stochastic noise [7], [40], and bounded
non-stochastic noise [41].

III. PROBLEM FORMULATION

We formulate the problem of Safe Non-Stochastic Control
for Control-Affine Systems (Problem 1). To this end, we use
the following framework and assumptions.

Control-Affine Systems. We consider discrete-time control-
affine systems of the form

xt+1 = f (xt) + g (xt)ut + wt, t ∈ {1, . . . , T}, (1)
where xt ∈ Rdx is the state, ut ∈ Rdu is the control input,
wt ∈ Rdx is the process noise, and f : Rdx→Rdx and g :
Rdx→Rdx × Rdu are known locally Lipschitz functions.

For simplicity, we assume the stability of the nominal
system in eq. (1) without the noise:
Assumption 1 (Stability of the Nominal System). The nomi-
nal system, xt+1 = f (xt) + g (xt)ut, is stable.

Remark 1 (Removal of the Stability Condition). The stability
condition can be removed by employing a known stabilizing
controller us

t , that is, setting ut = us
t + vt, where the stabi-

lizing controller us
t can be computed via Control Lyapunov

Functions [42], and vt is the controller to be designed.
For a quadrotor, such a stabilizing controller can be one that

enables the quadrotor to track a given reference path [43].
Assumption 2 (Bounded Noise). The noise is bounded, i.e.,
wt ∈ W ≜ {w | ∥w∥ ≤ W}, where W is given.

Per Assumption 2, we assume no stochastic model for the
process noise wt: the noise may even be adversarial, subject
to the bound W . An example is a quadrotor subject to wind
disturbances with bounded magnitude, whose evolution may
not be governed by a known stochastic model.

Safety Constraints. We consider the states and control
inputs for all t must satisfy polytopic constraints of the form2

xt ∈ St ≜ {x | Lx,tx ≤ lx,t}, ∀{wτ ∈ W}t−1
τ=1,

ut ∈ Ct ≜ {u | Lu,tu ≤ lu,t},
(2)

where Lx,t, lx,t, Lu,t, and lu,t are given.
Assumption 3 (Bounded State and Control Input Domain).
The domain sets St and Ct are bounded for all t ∈ {1, . . . , T}.
Also, they are contained in the bounded sets S and C, respec-
tively, that both contain the zero point and have diameter D.3

Assumption 3 ensures that the loss function has a bounded
gradient with respect to the state and control input; this
helps to quantify Safe-OGD’s dynamic regret. Bounded state
constraints emerge, for example, when a quadrotor flies in
a cluttered environment (Fig. 1): its state must be in a
bounded flight corridor to ensure safety. Bounded control input
constraints are needed to avoid controller saturation.
Assumption 4 (Existance of Safe Controller). Given xt ∈ St,
there exists a safe controller ut ∈ Ct such that xt+1 ∈ St+1,
∀wt ∈ W .

Assumption 4 enables the constraint Lx,tx ≤ lx,t to be
used as a CBF, introduced in Section IV-A. This assumption
is reasonable if the robot is kept at a low speed and the control

2Our results hold true also for any constraints such that eq. (4) is convex
ut. We focus on polytopic constraints for simplicity in the presentation.

3A set S contains the zero point and has diameter D when 0 ∈ S, and
∥x− y∥ ≤ D for all x ∈ S,y ∈ S.

authority is large enough such that the robot is able to react
quickly and keep safe even if it is close to an obstacle. In
general, the constraint Lx,tx ≤ lx,t must be constructed by
taking into account the robot’s speed and acceleration capacity
such that there always exists a control input ut that satisfies
xt+1 ∈ St+1, an example of which is given in [25].

Control Performance Metric. We design the control inputs
ut to ensure: (i) safety; and (ii) a control performance that is
comparable to an optimal clairvoyant policy that knows the
future noise realizations w1, w2, . . . a priori. Particularly, we
consider the control performance metric defined below.
Definition 1 (Dynamic Regret). Assume a lookahead time
horizon of operation T , and loss functions ct, t = 1, . . . , T .
Then, dynamic regret is defined as

Regret-NSCD
T =

T∑
t=1

ct (xt+1, ut)−
T∑

t=1

ct
(
x∗
t+1, u

∗
t

)
, (3)

where (i) both sums in eq. (3) are evaluated with the same
noise {w1, . . . , wT } that is the noise experienced by the system
during its evolution per the control sequence {u1, . . . , uT }, (ii)
u∗
t is the optimal control input in hindsight, i.e., the optimal

input given a priori knowledge of the noise wt, which includes
the control inputs generated by a nonlinear control policy, (iii)
x∗
t+1 is the state reached by applying the optimal control inputs

u∗
t from state xt, which is the optimal state could have been

reached when the system is at xt, and (iv) x∗
t+1 and u∗

t satisfy
the constraints in eq. (2) for all t.
Assumption 5 (Convex and Bounded Loss Function, and with
Bounded Gradient). ct (xt+1, ut) : Rdx × Rdu→R is convex
in xt+1 and ut. Further, when ∥x∥ and ∥u∥ are bounded, then
|ct(x, u)|, ∥∇xct(x, u)∥, and ∥∇uct(x, u)∥ are also bounded.

A loss function that satisfies Assumption 5 is the commonly
used quadratic cost ct (xt+1, ut) = xt+1Qx⊤

t+1 + utRu⊤
t .

Problem Definition. We formally define the problem of
Safe Non-Stochastic Control of Control-Affine Systems:
Problem 1 (Safe Non-Stochastic Control of Control-Affine
Systems (Safe-NSC)). Assume that the initial state of the
system is safe, that is, x1 ∈ S1. At each t = 1, . . . , T , identify
a control input ut that guarantees safety, that is, xt ∈ St and
ut ∈ Ct, and such that Regret-NSCD

T is minimized by time T .

IV. ALGORITHM FOR SAFE NON-STOCHATIC CONTROL

We present the Safe Online Gradient Descent (Safe-OGD)
algorithm (Algorithm 1). We first provide background infor-
mation on control barrier functions since Safe-OGD utilizes
them to ensure safety (Section IV-A). Then, we present the
basic version of Safe-OGD that directly optimizes the control
inputs (Section IV-B). Finally, we discuss how the algorithm
is extended to optimize linear control policies (Section IV-C).

A. Preliminaries: Discrete-Time Control Barrier Functions

Consider a smooth function h : Rdx→R, a safety set D
and its boundary defined as D ≜ {x ∈ Rdx | h (x) > 0},
∂D ≜ {x ∈ Rdx | h (x) = 0}.
Definition 2 (Discrete-Time Exponentially Control Barrier
Function) (DCBF) [38]). A map h : Rdx→R is a Discrete-
Time Exponentially Control Barrier Function on D if there
exists a control input ut ∈ Ct and a positive constant
α ∈ (0, 1] such that ∆ht ≜ h (xt+1)− h (xt) satisfies

∆ht + αh (xt) ≥ 0. (4)

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 4

Algorithm 1: Safe Non-Stochastic Control Algorithm
for Control-Affine Systems.

Input: Time horizon T ; gradient descent step size η.
Output: Control ut at each time step t = 1, . . . , T .

1: Initialize u1 ∈ U1;
2: for each time step t = 1, . . . , T do
3: Apply control input ut;
4: Observe the state xt+1, and calculate the noise

wt = xt+1 − f(xt)− g(xt)ut;
5: Suffer the loss ct(xt+1, ut);
6: Express the loss function in ut as

ct(ut) ≜ ct(xt+1, ut) = ct(f(xt) + g(xt)ut + wt, ut);
7: Calculate gradient ∇t ≜ ∇uct(xt+1, ut);
8: Calculate domain set Ut+1 per eq. (5);
9: Update u′

t+1 = ut − η∇t;
10: Project u′

t+1 onto Ut+1, i.e., ut+1 = ΠUt+1(u
′
t+1);

11: end for

The value of DCBFs in control is that they can be used
to ensure safety: a control input ut renders the safety set D
forward invariant when eq. (4) is satisfied.
B. Safe-OGD Algorithm: The Basic Algorithm

We present Safe-OGD in Algorithm 1. The algorithm first
initializes u1 ∈ U1 (line 1). At each iteration t, Algorithm 1
evolves to state xt+1 applying the control inputs ut (line 3)
and calculates the noise wt upon observation of xt (line 4).
After that, the algorithm suffers a loss of ct (xt+1, ut) (line 5).
Then, Algorithm 1 expresses ct (xt+1, ut) as a function of ut,
i.e., ct(ut) ≜ ct(xt+1, ut) = ct(f(xt) + g(xt)ut + wt, ut) —
which is convex in ut, given functions f (·) and g (·), xt, and
wt, per Lemma 1 below— and obtains the gradient ∇t ≜
∇uct (xt+1, ut) (lines 6-7). To ensure safety, Algorithm 1
constructs the domain set Ut+1 per Lemma 2 (line 8). Finally,
Algorithm 1 updates the control gain and projects it back to
the domain set Ut+1 (lines 9-10).
Lemma 1 (Convexity of Loss function in Control Input). The
loss function ct (xt+1, ut) : Rdx × Rdu→R is convex in the
control input ut, given functions f (·) and g (·), xt, and wt.

Lemma 2 (Construction of Time-Varying Domain Set with
Safety Guarantee). Algorithm 1 guarantees xt+1 ∈ St+1 and
ut ∈ Ct at each time step t by choosing ut ∈ Ut, where
Ut ≜ {u | Lu,tu ≤ lu,t,

− Lx,t+1g (xt)u− ∥Lx,t+1∥W + lx,t+1

− Lx,t+1f (xt)− (1− α) (lx,t − Lx,txt) ≥ 0}.
(5)

The origin of the two inequalities in eq. (5) are as follows:
the first condition is due to the requirement ut ∈ Ct; and the
second condition is the result of applying the DCBF condition
in eq. (4) to guarantee xt+1 ∈ St+1.
C. Extension of Safe-OGD to Linear Control Policies

We extend Algorithm 1 to optimize any linearly parameter-
ized control policy in the form of control parameters multi-
plying state or noise, e.g., the linear state-feedback policy [26]
and the disturbance-action policy [5], [17]:
• Linear State-Feedback Control Policy: This policy takes the

form of ut = −Ktxt, where Kt ∈ Rdu×dx is the control
parameterization, and ∥Kt∥≤ κ with κ > 0.

• Disturbance-Action Control Policy: This policy is defined
as ut =

∑H
i=1 K

[i]
t wt−i, where Kt = (K

[1]
t , . . . ,K

[H]
t) ∈

RH×du×dx is the control parameterization, H is a positive
integer, and ∥K [i]

t ∥≤ κ.

The extension of Lemma 1 follows trivially as ut is linear in
Kt. The extension of Lemma 2 follows by substituting ut with
the choice of control policy, e.g., −Kxt, and

∑H
i=1 K

[i]wt−i.
Modification of Algorithm 1 to Learning Linearly Pa-

rameterized Control Policies. To enable Algorithm 1 to learn
linear control policies, the following modifications are needed:
• The domain sets Ut (lines 1, 8, 10) should be changed to Kt,

where Kt is the set of control parameterization that ensures
safety, calculated based on Lemma 2 for Kt;

• The loss function ct (line 6) and the gradient (line 7) should
be respected to the control parameterization Kt;

• The update and project steps (lines 9-10) are performed on
the control parameterization Kt.

V. DYNAMIC REGRET ANALYSIS

We present the dynamic regret bounds of Safe-OGD, both
for the basic algorithm and for its extension to learning linearly
parameterized control policies. We use the notation:
• ūt+1 ≜ ΠUt(u

′
t+1) is the control would have been chosen

at time step t+ 1 if Ut = Ut+1;
• ζt ≜ ∥ūt+1 − ut+1∥ is the distance between ūt+1 and ut+1,

which are the projection of u′
t+1 onto sets Ut and Ut+1,

respectively. Thus, it quantifies how fast the safe domain
set changes —ζt is 0 when Ut = Ut+1;

• ST ≜
∑T

t=1 ζt is the cumulative variation of control due to
time-varying domain sets. ST becomes 0 when domain sets
are time-invariant;

• CT ≜
∑T

t=2∥u⋆
t−1 − u⋆

t ∥ is the cumulative variation of the
optimal control sequence. It quantifies how fast the optimal
control input must change.

Theorem 1 (Dynamic Policy Regret Bound of Algorithm 1).
Assume η = O

(
1√
T

)
for the gradient descend step size. Then,

(i) when Algorithm 1 is employed to chose online control
inputs u1, u2, . . ., then it achieves

Regret-NSCD
T ≤ O

(√
T (1 + CT + ST)

)
, (6)

against any control inputs (u⋆
1, . . . , u

⋆
T) ∈ U1 × · · · × UT .

(ii) When Algorithm 1 is employed to choose online control
parameters K1,K2, . . ., then it achieves

Regret-NSCD
T ≤ O

(√
T (1 + CT + ST)

)
, (7)

against any control policies (K⋆
1 , . . . ,K

⋆
T) ∈ K1 × · · · ×

KT , where CT ≜
∑T

t=2∥K⋆
t−1 − K⋆

t ∥F and ST ≜∑T
t=1

∥∥ΠKt
(K ′

t+1)−Kt+1

∥∥
F

.

The regret bounds in Theorem 1 reflect the difficulty of the
safe non-stochastic control problem. Ideally, the bounds would
be O(

√
T), which would imply that Algorithm 1 asymptoti-

cally guarantees the same performance as the optimal clairvoy-
ant controller because then limT→∞ Regret-NSCD

T /T = 0.
But the bounds depend on CT and ST , which in the worst-
case can make the regret linear in T :

a) Dependency on ST : The bounds in Theorem 1 depend
on ST due to the optimization domain sets being time-varying
(Lemma 2): expectedly, when the safety sets change across
time, while the system is threatened by non-stochastic noise,
the control becomes more challenging, and, thus, it is more
difficult for Algorithm 1 to match the performance of the
optimal controller in hindsight. In contrast, ST is zero when
the domain sets are time-invariant. Then, in particular, the

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 5

TABLE I: Performance Comparison given the Pendulum System in
Section VI-A. The table reports the average value and standard deviation
of computational time and cumulative loss. The performance is quantified per
the computational time, cumulative loss, and safety rate. The red numbers
correspond to the worse performance.

Computational Time (ms) Cumulative Loss Safety Rate

Ours 21.6903± 7.8186 20.0022± 1.9933 100%

DDPG 27.6517± 30.7014 26.4953± 1.1261 100%

iLQR 575.6701± 14.7182 9.3902± 0.5825 60%

LF 10.9756± 2.2418 26.6495± 1.2891 100%

regret bounds in Theorem 1 reduce to the near-optimal bounds
for the standard OCO setting with time-invariant domain sets:
Remark 2 (Optimality under Time-Invariant Domain of Op-
timization). When the optimization domain sets are time-
invariant, that is, U1 = . . . = UT (or K1 = . . . = KT), then
ST = 0. Therefore, the regret bounds in Theorem 1 reduce
to O

(√
T (1 + CT)

)
, which are near-optimal [44], matching

the regret bound of the seminal OGD algorithm for the
standard OCO setting with time-invariant constraints [27].4

More broadly, ST can be sublinear in applications where
any two consecutive safe sets differ a little.

b) Dependency on CT : The bounds in Theorem 1 depend
on CT due to the optimal control sequence/policy being
in general time-varying. Specifically, [44] proved that any
optimal dynamic regret bound for OCO must depend on CT ,
being lower bounded by Ω

(√
T (1 + CT)

)
. Expectedly, when

the unknown noise sequence requires the system to adapt its
control input frequently, then the harder for Algorithm 1 is to
match the optimal control sequence.
Remark 3 (Optimality under also Time-Invariant Control Poli-
cies). When both the domain sets and the optimal control input
sequence in hindsight are time-invariant, i.e., ST = CT = 0,
then the regret bounds in Theorem 1 reduce to O(

√
T).

This implies Safe-OGD converges to the optimal controller
in hindsight since then limT→∞ Regret-NSCD

T /T = 0. For
example, the classical LQG optimal-control problem has an
optimal solution with the form ut = −Kxt, where K is time-
invariant [26]. Thus, if we apply Safe-OGD to learn K, then
Safe-OGD will converge to an optimal one.

VI. NUMERICAL EVALUATIONS

We evaluate Algorithm 1 in extensive simulated scenarios
of safe control, where the controller aims to track a refer-
ence setpoint/path while satisfying the state and control input
constraints. Particularly, we first consider an inverted pendu-
lum aiming to stay upright despite noise disturbances (Sec-
tion VI-A) and learn a linear feedback policy. Then, we
consider a quadrotor flying in cluttered environments subject to
unknown external forces (Section VI-B) and learn directly the
control input. Our algorithm is observed in the simulations to
(i) achieve comparable or better tracking performance than the
linear feedback, DDPG, geometric control, and R-NMPC, and
(ii) guarantee the safety of the system, in contrast to the iLQR
and geometric controllers, which violate the safety guarantees.
A. Inverted Pendulum

Simulation Setup. We consider an inverted pendulum
model with the state vector its angle θ and angular velocity θ̇,

4An example is the case of no safety constraints. Then, Regret-NSCD
T is

measured with respect to the counterfactual state and input trajectory, where
x⋆
t+1 = f (x⋆

t) + g (x⋆
t)u

⋆
t + wt, and the regret bound is guaranteed with

respect to the counterfactual state and input trajectory.

Controller

Mapping Path Planning

Quadrotor
Simulator

grid map

safety constraint,
reference path

odometry

input

Estimator

external force
estimation

Goal Position

External Force

Fig. 2: Autonomous system architecture in Section VI-B.

and control input u the torque. The goal of the pendulum is
to stay at (θ, θ̇) = (0, 0). The dynamics of the pendulum are:

θt+1 = θt +∆tθ̇t, θ̇t+1 =
3g

2l
sin θt +

3∆t

ml2
ut, (8)

where g = 10 m/s2 is the acceleration of gravity, m = 1kg
is the mass, l = 1m is the length of the pendulum, and
∆t = 0.05s is the time step. We use: [−π/2 − π/2]⊤ ≤
[θt θ̇t]

⊤ ≤ [π/2 π/2]⊤ and −4 ≤ ut ≤ 4. We
use the loss functions with the form of ct(θt+1, θ̇t+1, ut) =
θ2t+1+0.1θ̇2t+1+0.001u2

t to learn a linear feedback controller.
We simulate the setting for T = 500 time steps. We

corrupt the system dynamics with process noise drawn for the
Gaussian, Uniform, or Laplace distribution; and we assume
∥wt∥≤ 0.1. We perform the simulation 5 times for each noise
distribution in Python with CVXPY solver [45].

Compared Algorithms. We compare Algorithm 1 with: a
linear feedback (LF) controller that stabilizes the linearized
pendulum dynamics, the Deep Deterministic Policy Gradient
(DDPG) [28], [29], [46], and the iterative linear–quadratic
regulator (iLQR) [6]. The LF and DDPG handle the safety
constraints by projecting the control input onto the safe domain
set constructed by Lemma 2; the iLQR, instead, adds a penalty
about the constraint violation to the objective function [6].

Results. The results are given in Table I. Algorithm 1
demonstrates better cumulative loss compared to DDPG and
LF , achieving 100% safety rate. The iLQR, instead, achieves
the lowest loss but only with a 60% safety rate.

B. Quadrotor

Simulation Setup. The quadrotor dynamics and the Gazebo
simulation environment and system architecture are as follows:

1) Quadrotor Dynamics:

ṗ = v, mv̇ = mg + f + fw, (9)

Ṙ = R [ω]
∧
, J ω̇ = −ω × Jω + τ , (10)

where p ∈ R3 and v ∈ R3 are position and velocity in the
iniertial frame, R ∈ SO(3) is the attitude rotation matrix,
ω ∈ R3 is the body angular velocity, m is the quadrotor mass,
J is the inertia matrix of the quadrotor, the wedge operator
∧ : R3 → se(3) is the skew-symmetric mapping, g is the
gravity vector, f = R [0 0 T]

⊤ ∈ R3 and τ ∈ R3 are the
total thrust and body torques from four rotors, T is the thrust
from four rotors along the z−axis of the body frame, and
fw ∈ R3 is the unknown external force.

2) Gazebo Environment and System Architecture: The
Gazebo environment is illustrated in Figure 1. We simulate
the quadrotor using RotorS [47]. The quadrotor is equipped
with an Inertial Measurement Unit (IMU) and a camera.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 6

TABLE II: Performance Comparison for the Quadrotor Experiments in Section VI-B. The table reports the average value and standard deviation of
flight time, trajectory length, tracking error, and computational time. The red numbers correspond to the worse performance. Our method achieves better
performance in terms of flight time, trajectory length, tracking error, and safety rate. [30] has the worst tracking error, resulting in low safety rates. [31] either
collides due to latency or has longer flight time and length as it aims to guarantee safety against worst-case disturbances over a lookahead horizon.

Goal Position (m) Disturbance (m/s2) Method Flight Time (s) Trajectory Length (m) Tracking Error (m) Safety Rate
Computational Time (ms)

Planner Controller

[
14 −10 1

]⊤ [
2 2 0

]⊤ Ours 9.9720± 0.0944 18.0600± 0.6542 0.0811± 0.0130 100% 0.8333± 2.8868 0.1837± 1.3433

[30] 10.1433± 0.1914 18.0333± 0.2309 0.3022± 0.0078 60% 0.7692± 2.7735 0.1049± 1.0192

[31] 11.9675± 1.0678 19.0597± 0.7588 0.1657± 0.0055 80% 10.0833± 1.8277 0.1091± 1.0392

[
10 10 1

]⊤ [
3 3 0

]⊤ Ours 8.7340± 0.2050 15.8600± 0.6877 0.1000± 0.0134 100% 0.9091± 3.0151 0.1692± 1.2902

[30] 10.2625± 0.2869 16.5250± 0.6185 0.2694± 0.0056 40% 0.9091± 3.0151 0.1350± 1.1546

[31] 10.4967± 0.6469 16.4467± 0.4520 0.1874± 0.0391 60% 9.4624± 2.2616 0.1081± 1.0344

[
10 10 1

]⊤ [
−2 2 0

]⊤ if x ∈ [1, 4], Ours 8.8788± 0.4825 15.9125± 0.5111 0.1156± 0.0080 100% 0.9091± 3.0151 0.2050± 1.1418[
−2 0 0

]⊤ if x ∈ (4, 7), [30] 12.1800± 0.5675 16.8600± 1.3012 0.2543± 0.0178 100% 0.9091± 3.0151 0.1243± 1.1085[
−2 −2 0

]⊤ if x ∈ [7, 10] [31] 10.6400± 0.5915 16.4388± 0.1008 0.1889± 0.0244 60% 9.6109± 2.3058 0.1053± 1.0212

(b) R-NMPC & Geometric

External Force

(d) R-NMPC & Geometric (e) Ours(a) Geometric (c) Ours

Fig. 3: Simulation results with goal position [10 10 1]⊤ and disturbances [3 3 0]⊤ in Section VI-B. The black line is the trajectory, the blue line is the
reference trajectory, the red zone is the area where the external forces are applied to the quadrotor, the shaded polytope is the safety constraint, and the gold
star is the goal position. (a) [30] collides with obstacles and often has poor safety rate; (b) [31] collides with obstacles due to latency of R-NMPC; (d)
R-NMPC in [31] has longer flight time and trajectory length since it aims to guarantee safety against worst-case disturbances over a lookahead horizon; (c)
& (e) Our method achieves collision avoidance while having better performance in flight time, trajectory length, and tracking error.

The system architecture is illustrated in Figure 2. We use
occupancy grid mapping [48] for mapping the unknown envi-
ronment. The external force estimator using VID-Fusion [49]
provides an estimate f̃w of fw. The path planning module us-
ing EGO-Planner [50] provides a sequence of desired position
pr, velocity vr, acceleration v̇r, yaw angle, and yaw rate. We
generate polytopic safety constraints using DecompROS [51],
which uses maps of inflated obstacles to account for a quadro-
tor’s size. We use OSQP solver [52] for the projection step.

3) Control Design: Similar to [53], [54], we focus on the
translational dynamics in eq. (9) and use Algorithm 1 to
design the desired force fd, which is then decomposed into
the desired rotation matrix Rd and the desired thrust Td given
a desired yaw angle. To this end, we assume that a nonlinear
attitude controller, e.g., [30], generates the desired torque such
that the desired rotation matrix Rd is tracked.

The desired force takes the form of fd = −kpep − kvev +
mv̇r − mg − f̃w + ma, where ep and ev are tracking
errors in position and velocity, kp and kv are control gains,
f̃w is the estimation of the external force, and a is the
control input learned by Algorithm 1 using loss function
250∥ep∥2+10∥ev∥2. We use the second-order Runge-Kutta
(RK2) method [55] for discretization.

4) Source of Non-Stochastic Noise: Since a stochastic
model for the estimation error ∥f̃w − fw∥ is generally
unknown, we assume the bound ∥f̃w − fw∥≤ 0.1; i.e.,
fw = f̃w + n, where ∥n∥≤ 0.1, and n plays the role of
non-stochastic noise in the quadrotor dynamics.

5) Benchmark Experiment Setup: We consider that the
quadrotor is tasked to fly to prescribed goal positions in the
presence of unknown constant external forces that simulate
sudden wind gusts; the goal positions and the direction of the
wind gusts are specified in Table II. Particularly, the external

forces are applied to the quadrotor as long as its x and y
positions are within the box (x, y) ∈ [1, 10]× [−10, 10]. We
use as performance metrics the flight time, trajectory length,
tracking error, computational time, and safety rate.

Compared Algorithms. We compare Algorithm 1 with
[30] and [31]. [30] is a geometric controller that tracks a
desired path based on the feedback of the tracking errors.
[31] uses a robust nonlinear model predictive control (R-
NMPC) as a planner with the translational dynamics in eq. (9)
and a simplified attitude dynamics model. Particularly, given
the external force estimation from VID-Fusion, the desired
acceleration v̇r provided by R-NMPC in [31] compensates
the external force fw. With the R-NMPC working as a low-
frequency outer-loop controller, [31] then use [30] as a high-
frequency inner-loop tracking controller.

Results. The results are given in Table II and Figure 3.
Algorithm 1 demonstrates improved performance to [30], [31]
in terms of the flight time, trajectory length, tracking error,
and safety rate. Moreover, our method is able to achieve
100% safety rate across all tested scenarios, in contrast to
[30], [31]. The reasons that [30], [31] do not achieve 100%
safety rate appear to be the following: [30] has higher tracking
error under unknown forces (Figure 3 a) and R-NMPC in [31]
results in a collision due to latency (Figure 3b). Under varying
disturbances, the high tracking error of [30] leads to the worst
performance in flight time and trajectory length. Additionally,
R-NMPC in [31] has longer flight time and trajectory length
than Algorithm 1 since it aims to guarantee safety against
worst-case disturbances over a lookahead horizon (Figure 3d).

VII. CONCLUSION

Summary. We studied the problem of Safe Non-Stochastic
Control for Control-Affine Systems (Problem 1), and provided

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 7

the Safe-OGD algorithm. Safe-OGD guarantees safety and
bounded dynamic regret against any time-varying control pol-
icy (Theorem 1). Safe-OGD is near-optimal for classical online
convex optimization and optimal control problems: (i) when
the domain of optimization is time-invariant, Safe-OGD’s per-
formance bound reduces to the bound of the OGD algorithm
for online convex optimization, which is near-optimal [27];
and (ii) when also the optimal clairvoyant control policy is
time–invariant, Safe-OGD can learn it asymptotically, imply-
ing, for example, that Safe-OGD will converge to the optimal
linear state-feedback controller if applied to the classical LQG
problem. We evaluated our algorithm in simulated scenarios of
an inverted pendulum aiming to stay inverted, and a quadrotor
flying in an unknown cluttered environment (Section VI). We
observed that our method demonstrated better performance,
guaranteeing safety, whereas state-of-the-art methods, such as
the iLQR [6] and R-NMPC [31] did not.

Future work. We will investigate the regret bound of
the Safe-OGD algorithm under unknown stochastic noise,
providing Best-of-Both-Worlds guarantees in mixed stochastic
and non-stochastic environments.

ACKNOWLEDGEMENTS

We thank Yuwei Wu from the GRASP Lab, University of
Pennsylvania, for her invaluable discussion on the numerical
simulations of the quadrotor experiment.

APPENDIX
A. Proof of Theorem 1

We present the proof for the basic approach. The proof for
learning a linear controller follows the same steps.

We define ūt+1 ≜ ΠUt
(u′

t+1) and ζt ≜ ∥ūt+1 − ut+1∥. By
convexity of ct, we have

ct (ut)− ct (u
⋆
t)

≤⟨∇ct (ut) , ut − u⋆
t ⟩ =

1

η

〈
ut − u′

t+1, ut − u⋆
t

〉
=

1

2η

(
∥ut − u⋆

t ∥
2 −

∥∥u′
t+1 − u⋆

t

∥∥2 + ∥∥ut − u′
t+1

∥∥2)
≤ 1

2η

(
∥ut − u⋆

t ∥
2 − ∥ūt+1 − u⋆

t ∥
2
)
+

η

2
G2,

(11)

where the last inequality holds due to the Pythagorean theorem
[24], Assumption 3, and Assumption 5.

Consider the term ∥ūt+1 − u⋆
t ∥

2
= ∥ut+1 − u⋆

t ∥
2
+

∥ut+1 − ūt+1∥2 − 2 ⟨ut+1 − u⋆
t , ut+1 − ūt+1⟩, we have

ct (ut)− ct (u
⋆
t)

≤ 1

2η

(
∥ut − u⋆

t ∥
2 − ∥ut+1 − u⋆

t ∥
2 − ∥ut+1 − ūt+1∥2

+ 2 ∥ut+1 − u⋆
t ∥ ∥ut+1 − ūt+1∥

)
+

η

2
G2

≤ 1

2η

(
∥ut − u⋆

t ∥
2 − ∥ut+1 − u⋆

t ∥
2
)
+

Dζt
η

+
η

2
G2

=
1

2η

(
∥ut∥2 − ∥ut+1∥2

)
+

1

η
(ut+1 − ut)

⊤
u⋆
t +

Dζt
η

+
η

2
G2,

(12)
where the second inequality holds due to ∥ut+1 − ūt+1∥2 ≥ 0,
∥ut+1 − u⋆

t ∥ ≤ D by Assumption 3, and ζt ≜ ∥ūt+1 − ut+1∥.

Summing eq. (12) over all iterations, we have
T∑

t=1

ct (ut)−
T∑

t=1

ct (u
⋆
t)

≤ 1

2η
∥u1∥2 +

1

η

(
u⊤
T+1u

⋆
T − u⊤

1 u
⋆
1

)
+

1

η

T∑
t=2

(
u⋆
t−1 − u⋆

t

)⊤
ut +

D

η

T∑
t=1

ζt +
ηT

2
G2

≤7D2

4η
+

D

η
CT +

D

η
ST +

ηT

2
G2,

(13)

where the last step holds due to Assumption 3 and the
Cauchy-Schwarz inequality, i.e., ∥u1∥2 ≤ D2, u⊤

T+1u
⋆
T ≤

∥uT+1∥ ∥u⋆
T ∥ ≤ D2, −u⊤

1 u
⋆
1 ≤ 1

4 ∥u1 − u⋆
1∥

2 ≤ 1
4D

2,(
u⋆
t−1 − u⋆

t

)⊤
ut ≤

∥∥u⋆
t−1 − u⋆

t

∥∥ ∥ut∥ ≤ D
∥∥u⋆

t−1 − u⋆
t

∥∥,
along with the definition of CT and ST .

Choosing η = O
(

1√
T

)
gives the result in eq. (6).

B. Proof of Lemma 1
The proof follows by the convexity of ct (xt+1, ut) : Rdx ×

Rdu 7→ R in xt+1 and ut by Assumption 5, and the linearity of
xt+1 in ut, i.e., xt+1 = f (xt)+g (xt)ut+wt, given functions
f (·) and g (·), xt, and wt.

C. Proof of Lemma 2
Consider at time step t, we aim to choose ut such that

xt+1 = f (xt) + g (xt)ut + wt

∈ St+1 ≜ {x | Lx,t+1x ≤ lx,t+1}, ∀wt ∈ W, (14)

ut ∈ Ct ≜ {u | Lu,tu ≤ lu,t}, (15)

given f (·), g (·), xt, Lx,t+1, lx,t+1, Lu,t, and lu,t.
The second constraint on control input, ut ∈ Ct, can be

directly imposed. We now consider the constraint on state xt+1

and define the control barrier function at time step t and t+1:
ht (x) = lx,t − Lx,tx, ht+1 (x) = lx,t+1 − Lx,t+1x.

The DCBF condition in eq. (4) gives
∆ht + αht (xt) = −Lx,t+1g (xt)ut − Lx,t+1wt + lx,t+1

− Lx,t+1f (xt)− (1− α) (lx,t − Lx,txt)

≥ 0, ∀wt ∈ W.
(16)

By applying robust optimization [56], eq. (16) becomes
∆ht + αht (xt) ≥ −Lx,t+1g (xt)ut − ∥Lx,t+1∥W + lx,t+1

− Lx,t+1f (xt)− (1− α) (lx,t − Lx,txt) ≥ 0.
(17)

By combining eqs. (15) and (17), we construct Ut as

Ut ≜ {u | −Lx,t+1g (xt)u− ∥Lx,t+1∥W + lx,t+1

Lu,tu ≤ lu,t, −Lx,t+1f (xt)− (1− α) (lx,t − Lx,txt) ≥ 0},
(18)

which is convex in ut. Choosing ut ∈ Ut ensures that the
safety constraints in eqs. (14) and (15) are satisfied.

REFERENCES

[1] E. Ackerman, “Amazon promises package delivery by drone: Is it for
real?” IEEE Spectrum, Web, 2013.

[2] J. Chen, T. Liu, and S. Shen, “Tracking a moving target in cluttered
environments using a quadrotor,” in 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
446–453.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER 2023 8

[3] A. Rivera, A. Villalobos, J. C. N. Monje, J. A. G. Mariñas, and C. M.
Oppus, “Post-disaster rescue facility: Human detection and geolocation
using aerial drones,” in IEEE 10 Conference, 2016, pp. 384–386.

[4] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
Theory, computation, and design. Nob Hill Publishing, 2017, vol. 2.

[5] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[6] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr for
on-road autonomous driving motion planning,” in 2017 IEEE 20th
International conference on intelligent transportation systems (ITSC).
IEEE, 2017, pp. 1–7.

[7] R. K. Cosner, P. Culbertson, A. J. Taylor, and A. D. Ames, “Robust
safety under stochastic uncertainty with discrete-time control barrier
functions,” arXiv preprint arXiv:2302.07469, 2023.

[8] O. Faltinsen, Sea loads on ships and offshore structures. Cambridge
University Press, 1993, vol. 1.

[9] K. J. Åström, Introduction to stochastic control theory. Courier
Corporation, 2012.

[10] W. Khalil and E. Dombre, Modeling identification and control of robots.
CRC Press, 2002.

[11] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predic-
tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[12] G. Goel and B. Hassibi, “Regret-optimal control in dynamic environ-
ments,” arXiv preprint:2010.10473, 2020.

[13] O. Sabag, G. Goel, S. Lale, and B. Hassibi, “Regret-optimal full-
information control,” arXiv preprint:2105.01244, 2021.

[14] A. Martin, L. Furieri, F. Dörfler, J. Lygeros, and G. Ferrari-Trecate, “Safe
control with minimal regret,” in Learning for Dynamics and Control
Conference (L4DC), 2022, pp. 726–738.

[15] A. Didier, J. Sieber, and M. N. Zeilinger, “A system level approach to
regret optimal control,” IEEE Control Systems Letters (L-CSS), 2022.

[16] H. Zhou and V. Tzoumas, “Safe perception-based control with minimal
worst-case dynamic regret,” arXiv preprint:2208.08929, 2022.

[17] N. Agarwal, B. Bullins, E. Hazan, S. Kakade, and K. Singh, “Online
control with adversarial disturbances,” in International Conference on
Machine Learning (ICML), 2019, pp. 111–119.

[18] M. Simchowitz, K. Singh, and E. Hazan, “Improper learning for non-
stochastic control,” in Conference on Learning Theory (COLT), 2020,
pp. 3320–3436.

[19] Y. Li, S. Das, and N. Li, “Online optimal control with affine constraints,”
in AAAI Conference on Artificial Intelligence (AAAI), vol. 35, no. 10,
2021, pp. 8527–8537.

[20] P. Zhao, Y.-H. Yan, Y.-X. Wang, and Z.-H. Zhou, “Non-stationary
online learning with memory and non-stochastic control,” arXiv preprint
arXiv:2102.03758, 2021.

[21] N. M. Boffi, S. Tu, and J.-J. E. Slotine, “Regret bounds for adaptive
nonlinear control,” in Learning for Dynamics and Control. PMLR,
2021, pp. 471–483.

[22] H. Zhou, Z. Xu, and V. Tzoumas, “Efficient online learning with memory
via frank-wolfe optimization: Algorithms with bounded dynamic regret
and applications to control,” arXiv preprint arXiv:2301.00497, 2023.

[23] H. Zhou and V. Tzoumas, “Safe non-stochastic control of linear dynam-
ical systems,” arXiv preprint arXiv:2308.12395, 2023.

[24] E. Hazan et al., “Introduction to online convex optimization,” Founda-
tions and Trends in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[25] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
6271–6278.

[26] D. Xue, Y. Chen, and D. P. Atherton, Linear feedback control: analysis
and design with MATLAB. SIAM, 2007.

[27] M. Zinkevich, “Online convex programming and generalized infinites-
imal gradient ascent,” in Interna. Conf. on Machine Learning (ICML),
2003, pp. 928–936.

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. Pmlr, 2014, pp. 387–395.

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[30] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se (3),” in 49th IEEE conference on decision and
control (CDC). IEEE, 2010, pp. 5420–5425.

[31] Y. Wu, Z. Ding, C. Xu, and F. Gao, “External forces resilient safe motion
planning for quadrotor,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 8506–8513, 2021.

[32] B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-Quadratic estimation
and control: A unified approach to H2 and H∞ theories, 1999.

[33] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). IEEE, 2017, pp.
2242–2253.

[34] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M. Oishi, and G. A.
Dumont, “Lagrangian methods for approximating the viability kernel in
high-dimensional systems,” Automatica, vol. 49, no. 7, pp. 2017–2029,
2013.

[35] J. Darbon and S. Osher, “Algorithms for overcoming the curse of
dimensionality for certain hamilton–jacobi equations arising in control
theory and elsewhere,” Research in the Mathematical Sciences, vol. 3,
no. 1, p. 19, 2016.

[36] S. Herbert, J. J. Choi, S. Sanjeev, M. Gibson, K. Sreenath, and
C. J. Tomlin, “Scalable learning of safety guarantees for autonomous
systems using hamilton-jacobi reachability,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
5914–5920.

[37] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.

[38] A. Agrawal and K. Sreenath, “Discrete control barrier functions for
safety-critical control of discrete systems with application to bipedal
robot navigation.” in Robotics: Science and Systems, vol. 13. Cam-
bridge, MA, USA, 2017.

[39] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in 2021 American
Control Conference (ACC). IEEE, 2021, pp. 3882–3889.

[40] A. Clark, “Control barrier functions for complete and incomplete in-
formation stochastic systems,” in 2019 American Control Conference
(ACC). IEEE, 2019, pp. 2928–2935.

[41] M. Jankovic, “Robust control barrier functions for constrained stabiliza-
tion of nonlinear systems,” Automatica, vol. 96, pp. 359–367, 2018.

[42] H. K. Khalil, Nonlinear control. Pearson New York, 2015, vol. 406.
[43] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza,

“A comparative study of nonlinear mpc and differential-flatness-based
control for quadrotor agile flight,” IEEE Transactions on Robotics,
vol. 38, no. 6, pp. 3357–3373, 2022.

[44] L. Zhang, S. Lu, and Z.-H. Zhou, “Adaptive online learning in dynamic
environments,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 31, 2018.

[45] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[46] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

[47] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating
System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo
MAV Simulator Framework, pp. 595–625. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26054-9_23

[48] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45,
no. 3, pp. 52–57, 2002.

[49] Z. Ding, T. Yang, K. Zhang, C. Xu, and F. Gao, “Vid-fusion: Robust
visual-inertial-dynamics odometry for accurate external force estima-
tion,” in 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2021, pp. 14 469–14 475.

[50] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully
autonomous and decentralized quadrotor swarm system in cluttered
environments,” in 2021 IEEE international conference on robotics and
automation (ICRA). IEEE, 2021, pp. 4101–4107.

[51] S. Liu, “Mrsl decomputil library.” [Online]. Available: https://github.
com/sikang/DecompROS

[52] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[53] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Swarm assignment
and trajectory optimization using variable-swarm, distributed auction
assignment and model predictive control,” in AIAA guidance, navigation,
and control conference, 2015, p. 0599.

[54] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandku-
mar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing con-
trol using learned dynamics,” in International Conference on Robotics
and Automation (ICRA), 2019, pp. 9784–9790.

[55] P. E. Kloeden, E. Platen, P. E. Kloeden, and E. Platen, Stochastic
differential equations. Springer, 1992.

[56] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization.
Princeton university press, 2009, vol. 28.

http://dx.doi.org/10.1007/978-3-319-26054-9_23
https://github.com/sikang/DecompROS
https://github.com/sikang/DecompROS

	Introduction
	Related Work
	Problem Formulation
	Algorithm for Safe Non-Stochatic Control
	Preliminaries: Discrete-Time Control Barrier Functions
	Safe-OGD Algorithm: The Basic Algorithm
	Extension of Safe-OGD to Linear Control Policies

	Dynamic Regret Analysis
	Numerical Evaluations
	Inverted Pendulum
	Quadrotor
	Quadrotor Dynamics
	Gazebo Environment and System Architecture
	Control Design
	Source of Non-Stochastic Noise
	Benchmark Experiment Setup

	Conclusion
	Appendix
	Proof of theorem:SafeOGD_Control
	Proof of lemma:cvx_u
	Proof of lemma:u_t

	References

