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Abstract— Robots are more capable of achieving manipula-
tion tasks for everyday activities than before. But the safety of
manipulation skills that robots employ is still an open problem.
Considering all possible failures during skill learning increases
the complexity of the process and restrains learning an optimal
policy. Beyond that, in unstructured environments, it is not easy
to enumerate all possible failures beforehand. In the context of
safe skill manipulation, we reformulate skills as base and failure
prevention skills where base skills aim at completing tasks and
failure prevention skills focus on reducing the risk of failures to
occur. Then, we propose a modular and hierarchical method for
safe robot manipulation by augmenting base skills by learning
failure prevention skills with reinforcement learning, forming
a skill library to address different safety risks. Furthermore, a
skill selection policy that considers estimated risks is used for
the robot to select the best control policy for safe manipulation.
Our experiments show that the proposed method achieves the
given goal while ensuring safety by preventing failures. We also
show that with the proposed method, skill learning is feasible,
novel failures are easily adaptable, and our safe manipulation
tools can be transferred to the real environment.

I. INTRODUCTION

Robots that are used in domestic environments require
manipulation skills to perform various manipulation tasks
[1]. Considering a kitchen environment, a robot can be
assigned to cook various recipes such as soup or a cake.
Primitive or compound motor skills such as stirring and
pouring are needed to make these recipes. Existing learning
methods enable learning such skills effectively [2], [3].It is
also crucial to ensure that these skills are executed safely.
However, even well-designed skills are prone to fail in the
real world due to wrong assumptions, perceptual errors, or
changing environmental conditions [4]. These may threaten
the integrity of the workspace. For example, a robot stirring
soup may spill the soup or slide the pan out of the stove
which can be harmful to the people nearby, its workspace,
and itself. Therefore, the capability of the robot should
not be limited to performing manipulation skills only, they
also need to monitor/detect potential failures and prevent
them for safety. For that purpose, we propose learning
failure prevention skills augmenting the safety of robotic
manipulation.

Manipulation skills are often considered closed-loop sen-
sorimotor control systems for robots to complete various
tasks. With recent developments in reinforcement learning
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Fig. 1: A sample base skill, stir, may have been learned without
taking into safety concerns. To make it safer, failure prevention
skills are added in the library, and selected when needed.

(RL), even though robots can learn and use manipulation
skills effectively for a limited number of objectives, they
struggle when the number of objectives increases due to the
curse of dimensionality. Therefore, RL-based skill learning
rather focuses on achieving a given task without considering
potential failures. Safe reinforcement learning approaches
[5]–[8] apply learning to satisfy the goal while keeping the
execution safe by estimating the risk. These approaches have
the intention to prevent failures by learning to avoid unsafe
states, however, they do not respond to scenarios with several
failures as in unstructured environments. A previous work
[9] addresses this issue but with a limited number of failures.
In summary, even though robots have better accuracy and
persistence in manipulation tasks, humans surpass robots in
detecting and preventing failures. Arguably, an optimal skill
policy can complete the task without failures, however, it
will be limited to the known failures which are experienced
during training. For a novel failure, the previous skill would
become obsolete and should be learned again.

Representing a skill as smaller skills combined with a
hierarchy [10]–[12] benefits from reduced complexity of
the goal for optimal skill learning. While such skills can be
predefined, it is also possible to learn smaller skills incre-
mentally [13], [14]. Even though hierarchical approaches
focus on learning several skills none of the learned skills
does not have an explicit focus on ensuring the safety of
the execution. For that purpose, the safety and the goal
can be considered as two different objectives, and learning
safe and robust skills can be expressed as a multi-objective
reinforcement learning problem by decomposing the reward.
Separating rewards and punishments can effectively perform
both the task and failure prevention (contextual inhibition and
spontaneous recovery) [15]. In the context of multi-objective
reinforcement learning, positive rewards (reward) can be
used to learn how to complete the task(main objective),
whereas negative rewards (risk) can be introduced to avoid
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potential failures(safety objective). Many recent works [16]–
[20] decompose the reward to learn to achieve the goal safely
but they only respond to a single failure type. It can make a
crucial difference to balance both rewards and risks whereas
several objectives would result in suboptimal results for each
objective. Especially, failures and their consequences are
not limited and can vary in a dynamic scene, therefore, an
increased number of objectives can make the multi-objective
reinforcement learning problem unfeasible.

To address these problems, we propose a modular method
where base skills are augmented by failure prevention skills,
enhancing their safety. We group skills in the skill library into
two categories according to their purposes: base skills and
failure prevention skills. Skills with the purpose of reaching a
goal to complete a task are defined as base skills (i.e., stirring
or pouring). Skills with the purpose of preventing failures
define failure prevention skills (such as prevention of sliding,
overturning, or spilling). The latter are more reusable skills
for augmenting different base skills. The proposed method
has a hierarchy between skills and skill selection. The lower
level of the hierarchy is a skill library which is composed of
base skills and failure prevention skills. For each potential
failure, a risk estimation model is defined to estimate the
risk of the failure happen in-near future. Note that for the
sake of simplicity, autonomous detection and identification
of failures [4] is out of the scope of this work. Failure
prevention skills are learned and added to the skill library
for preventing potential failures. The higher level in the
hierarchy rather involves a skill selection policy, triggering
the optimal skill from the skill library to safely accomplish
the task. Figure 1 illustrates this concept.

In the case of detecting a novel failure, the proposed
method can easily be revised by only learning a novel failure
prevention skill that mitigates this particular new failure type.
Therefore, it becomes easier to adapt to new environmental
conditions where novel failures could be encountered.

The proposed method is evaluated in a simulated en-
vironment and the skill library formed in the simulated
environment is transferred to a real environment for real
world evaluation. To the best of our knowledge, this is the
first study that addresses learning reusable failure prevention
skills to enable failure precautions into a skill library.

A. Contibutions

Our main contributions are as follows:

• the formulation and implementation of a modular and
hierarchical method for safe robot manipulation;

• enabling learning reusable failure prevention skills as
precautionary switching policies in a skill library for
safe manipulation;

• adapting to novel failures and augmenting incremen-
tally;

• real-world applicability by effective safety precautions
in the physical world.

II. LEARNING FAILURE PREVENTION SKILLS FOR SAFE
ROBOT MANIPULATION

Cognitive robots are equipped with either hand-coded or
learned motor skills to achieve a given task. Even though
these skills work well for controlled environments, in un-
structured environments, their outcomes are not always as
expected, and even worse, undesired/unsafe situations may
occur due to failures in changing situations. To ensure safety,
it is crucial for the robot to anticipate potential failures before
they occur, and to prevent them if possible. In this work, we
address this problem and formulate it as augmenting base
robot skills with appropriate precautions to make them safer
without changing them.

Fig. 2: Hierarchical Failure Prevention Model

We define a base skill, πb, as a motor skill to achieve
either a primitive or a compound action (e.g., pick and place
objects, pour liquids, stir a bowl of ingredients, etc.). During
performing this skill in a setting different than the trained
one, failures are inevitable due to either wrong assumptions
or unanticipated situations. The probability of a failure to
occur is defined as a risk, (ρk, in the range from 0 and 1). The
safety of the execution of πb can be monitored by continually
checking the occurrence of a finite set of risks: {ρ0, ...ρn}
which can be designed previously or discovered online. The
main problem that we address in this study asks; when the
execution of a base skill πb increases the risk of a failure (ρk),
to learn and activate necessary skills that enable transition to
a safe state. We call this type of a complementary skill as
failure prevention skill πpk that is responsible for reducing a
corresponding risk. Note that, these failure prevention skills
are generic skills that can be used to augment different
base skills. Therefore, the problem asks for learning these
failure prevention skills, and taking over control of these
skills (πp0 , ..., πpn ) when necessary during the execution of
the base skill such that the whole execution is safe. Thus, a
dynamic chain of skills (i.e., a linear sequence of the base
skill and the failure prevention skills in different orders or by
different selections) are executed based on the circumstances
of the world. This problem also asks for effective and
efficient selection of the prevention skills during execution.



The skill library L of the robot includes both the base
skills and failure prevention skills (Equation 1). L can be
gradually built by adding novel skills online. Each learned
skill extends the skill library to make it robust against each
failure type that is observed.

L = {πb0 , ..., πbm} ∪ {πp0 , ..., πpn} (1)

In our solution to this problem, augmentation of a base
skill πb with safety precautions is done in three steps;
observing failures and obtaining risk estimation models,
learning failure prevention skills, and learning to select which
skill to execute. In the first step, a failure is observed during
the execution of the base skill πb. In the second step, a
corresponding novel failure prevention skill πk is learned. In
the third step, a skill selection policy πΩ is used to select a
skill from L using the estimated risk models. The resulting
model is depicted in Figure 2. The following subsections
describe this process in detail.

A. Learning a Base Skill

A base skill πb can be hand-coded by an expert or
learned by optimizing models such as Markov Decision Pro-
cess (MDP) and Dynamic Movement Primitives (DMP) [21]
using reinforcement learning (RL) or learning from demon-
stration (LfD). However, these models may not work as well
as desired when the robot is exposed to reality as unexpected
failures are likely in different settings other than the trained
one. Therefore, a learned skill needs to be adapted to changes
that occur in the environment. However, this adaptation may
degrade the effectiveness of actual task performance (i.e.,
base skill) for the sake of adapting to changes. Therefore, we
propose to augment the base skill to make it safer without
changing it. This also ensures a more reusable solution to be
used as a library of skills that can be used to augment other
base skills as well.

B. Risk Estimation Models

A risk ρn is a binary safety estimate (safe - risky) against
a failure, and presents the probability of a failure to occur
in the near-future. In order to continue the execution safely,
failure prevention decisions should be given based on risk
estimations in real time.

Since the failure detection is not the main focus of this
work, we use a rule-based risk estimation model which is
expressed as a finite state machine ρn = FSM (χn, κna , κ

n
d )

as illustrated in Figure 3. A risk ρn uses an observable
parameter χn from the environment, and evaluates the risk
using the activation threshold κna and the deactivation thresh-
old κnd where κna 6= κnd . A safe state is transitioned to a risky
state if χn is observed to be larger than κna . A risky state
is transitioned to a safe state if χn is observed to be smaller

Fig. 3: Safe - Risky transition model

than κnd . The interval between κna and κnd prevents undesired
fluctuations between states when the observed parameter is
close to thresholds.

C. Learning Failure Prevention Skills

In our method, a failure prevention skill is modelled with
MDP and learned to prevent a risky situation. The reward of
a failure prevention skill is determined by the corresponding
risk estimation as given in Equation 2. Since risk estimations
are binary, the reward is sparse. During the training, the
failure prevention skill policy is optimized to maximize the
reward as it minimizes the risk.

Rrisk = 1− ρrisk (2)

Risky states are expected to be observed occasionally. To
learn to prevent risky states, the robot should observe these
cases quite often. However, this is not the case if it is
not intended. In order to improve the sample efficiency of
learning a failure prevention skill policy, the robot should
be able to experience risky states more often. For that
purpose, specific procedures are designed to create different
failure situations. Therefore the robot uses these procedures
to create a situation with a risk. Then the robot will be able
to experience sequences of actions from risky situations to
safety and learn an optimal policy that prevents failures.

D. Skill Selection

Once the skill library L is formed, the robot can execute
the task safely with a skill selection policy πΩ that arbitrates
over all skills in L. πΩ achieves this selection in a hierarchi-
cal fashion (See Figure 2). πΩ selects a skill from L using
risk estimations {ρ0...ρn}, thus, it is expected to select an
appropriate failure prevention skill to reduce a risk to prevent
any catastrophic situations before they occur, and select the
base skill when appropriate to complete the task.

We use a rule-based mapping from risk estimations to
skills in L to form the skill selection policy πΩ. With πΩ,
the robot executes the base skill πb in a state without any
risk. With the observation of a risk ρk, the corresponding
failure prevention skill πpk is selected to reduce the risk
ρk. Upon detection of multiple risks, predefined priorities
between failure prevention skills determine which skill to
be executed first. Priorities are determined by the impact of
the failure on the manipulation’s safety reliability. Note that
in risks are sorted from most important to least important,
therefore, the failure prevention skill corresponding to the
risk with the greatest index is selected first.

III. EMPIRICAL EVALUATION OF AUGMENTING STIR
SKILL

In this section, we present our case study on a continuous
stirring task. To accomplish this task, a Baxter humanoid
robot uses a spoon to stir particles in a bowl. The goal
is for the robot to move particles in the bowl for a given
time. During the nominal execution of the stirring skill,
one natural failure is observed: spilling the particles from
the bowl. For different objects, environments, and/or control



conditions two additional failures might occur in our setup,
sliding the bowl and overturning the bowl. Failure prevention
skills are learned and used to augment the stir skill for the
safety of the execution.

(a) (b)

Fig. 4: Experimental setups. (a) Real (b) Simulated Environment.

In the real world environment, a Baxter humanoid robot
with a spoon attached to its gripper is situated in front
of a table. A bowl (r = 8cm, h = 8cm) is placed on
the table, and several white-colored, sphere-shaped particles
(r =1±0.5 cm) are placed in the bowl. In front of the table,
a Kinect One RGBD sensor is placed to track the bowl
and the particles. The real environment is shown in Figure
4a. The simulated environment is created using CoppeliaSim
[22] and designed similar to the real environment. 40 sphere-
shaped particles are placed in the bowl. The number of the
particles is experimentally determined, and the best number
is selected according to the competence to observe the
mentioned failures. During the simulated experiments, red
and blue colors are used for the particles to observe the
performance of the robot on the stirring task with the human
eye. The simulated environment is shown in Figure 4b.

In the simulated environment, two setups are used to
obtain optimal skill policies; the fixed bowl setup and the
unrestricted setup. The fixed bowl setup restricts the effect
of forces from the robot to apply on the bowl, resulting
bowl to keep its position and orientation. Therefore, the robot
focuses on the goal without considering failures related to the
bowl pose. Then, the unrestricted setup is used for learning
failure prevention skills for previously unconsidered failures.
Forces acting on the bowl result in failures such as sliding
and overturning.

First, we present our method in the simulated environment.
Details of learning the stir base skill, forming risk estimation
models, and learning failure prevention skills are given in
Section III-A, Section III-B, and Section III-C respectively.
The skill selection among these skills and the evaluation of
the proposed method that uses these skills is given in Section
III-D. Then, the learned skills are transferred into the real
environment, and the proposed method is evaluated in the
real world; whose results are presented in Section III-E. The

additional materials and videos of both simulated and real
robot are available1.

A. Learning Stir Base Skill
We use the stir skill as the base skill in our study. With

the stir base skill, the robot uses a spoon to continuously stir
the particles inside a bowl without considering any potential
failures. Therefore the fundamental goal of the stir base skill
is to move particles as much as possible. By focusing on only
one objective while omitting potential failures, we reduce
the problem from multi-objective learning to single-objective
learning, making the learning more straightforward.

In this work, we formulate the skill learning problem as an
MDP with a tuple: 〈S,A, T,R, γ〉 where st ∈ S is a contin-
uous state, at ∈ A is a continuous action, T (st+1|st, at) is
transition probability, R(st, at, st+1) is the reward and γ is
the discount factor. In continuous state/action environments,
Deep Deterministic Policy Gradients (DDPG) [23] is one
of the most prominent approaches for skill learning. With
DDPG, a skill is denoted by two policies; an actor policy
π and a critic policy Q. The actor policy π maps states
st ∈ S to actions at ∈ A in a continuous domain, and
the critic policy Q estimates values of state-action st − at
pairs. For exploration, a noise ν from an Ornstein-Uhlenbeck
[24] process is used. Acting according to at results in a
transition to state st+1, thus, the robot obtains a reward
rt ∈ R depending on the task to learn. Transitions (st, at,
st+1, rt) are collected into an experience replay memory, and
they are used for the optimization of the target actor and the
target critic policies. Actor and critic policies are updated
with target policies periodically.

The stir skill policy πb is learned as the base policy in
the simulated environment. The policy has been optimized
by formulating the execution as an MDP with the following
state and action spaces:

Sstir = [x, φ]

A = [∆x]
(3)

where Sstir is composed of the position of the spoon relative
to the bowl (x) and the phase(φ) of the execution, and
A is composed of the displacement of the position of the
spoon (∆x). Parameters in the state and the action spaces are
selected as their relevance to the problem and for simplicity,
positions are represented with 2D coordinates of the plane
parallel to the table. x is the Cartesian positions between
[−η, η] where η is the safety perimeter for the robot to
operate within the allowed range. φ is the phase value
representing the relative time of the execution, making the
system time-variant. Using φ adds a temporal aspect to the
skill, and we experimentally found it useful for periodic
movements such as stir skill. It is a value between [0, φmax],
and updated after each movement decision with φstep using:

φ = (φ+ φstep) mod φmax (4)

Stir base skill is expected to reflect the essence of stirring
without safety concerns, reducing the complexity of the

1https://air.cs.itu.edu.tr/projects/tubitak-119e436.html



problem. Therefore, an optimal stir base skill policy that
focuses specifically on stirring is obtained with fixed bowl
setup. Stirring can be considered as the continuous movement
of the particles in the bowl hence the reward is formulated
as the sum of the displacement of the particles in 50ms. The
reward function is given as follows:

Rb(st, at) =

n∑
k=0

rb(xkt , x
k
t+1) ,

rb(xkt , x
k
t+1) =

{
||xkt − xkt+1||2, if in(xkt+1, bowl)

0, else

(5)

where rb is the displacement of a particle between two
consecutive states 50ms apart, if the particle is in the bowl
and 0 otherwise. n is the number of particles in the bowl
which is 40 in our setup. Rb is the reward of the base skill
which is the sum of individual rewards for each particle.

Both actor and critic neural networks are designed with
two linear feed-forward layers with 400 and 300 neurons
respectively, and with ReLU activation layer in between.
Networks are trained with Deep Deterministic Policy Gradi-
ents (DDPG) [23] for 1500 episodes with 500 steps where
the batch size is 128, learning rates(αa, αc) are 0.0001 and
discount factor (γ) is 0.99. For exploration, linearly decaying
epsilon is used and the noise is modelled with Ornstein-
Uhlenbeck [24] process with parameters µν = 0, σν =
1, θν = 0.15.

As the result of the training, the best policy πb is selected
as the optimal policy for the stir base skill and added to L.

(a) (b) (c)

Fig. 5: The observed failures during testing the learned stir base
skill. (a) Sliding the bowl (b) Overturning the bowl (c) Spilling
contents from the bowl

B. Risk Estimation Models

Potential failures that may occur are observed during test
executions of πb in the simulated environment. When the
stir base skill (πb) is tested in the fixed bowl setup, spill
failure is observed. spill failure happens when the particles
in the bowl get out of the bowl by the forces applied
by the spoon. However, when the stir base skill (πb) is
tested in the unrestricted setup, two additional failures are
observed: slide and overturn failures. During the execution,
the bowl is expected to stay close to the starting position.
But forces applied on the spoon may slide the bowl away
from the starting point resulting in slide failure. Especially,
the increased amount of particles results in the bowl sliding

TABLE I: Risk Estimation Models

χ κa κd
slide d 0.05m 0.02m
overturn θ 0.3rad 0.1rad
spill V 0.66 0.33

away frequently. While the bowl slides away, the friction
between the bowl and the table can act as a hinge, rotating
the bowl and spilling most of the particles, resulting overturn
failure. Depictions of these failures are shown in Figure 5.
These failures are used as testbeds to learn failure prevention
skills to augment the stir skill for safety.

For that purpose, relevant risk estimation models are
designed as finite state machines(FSM) with two states,
safe and risky. The distance between the current and the
initial position of the bowl (d), the angle between the z-
axis of the bowl and the normal vector of the table (θ), and
the maximum excluded volume ratio of particles (V ) are
the parameters in the design of risk estimation models for
slide, overturn, and spill failures, respectively. An observed
parameter greater than risk activation κa triggers the risk.
Risk disappears when the observed parameter is reduced to
risk deactivation κd. Designed risk estimation models for stir
base skill (πb) and their empirically selected parameters are
given in Table I.

The risk estimation model of slide failure uses the dis-
tance (d) between the initial location of the bowl (x0),
and the current location (xt) of the bowl, calculated as
d = ∆(x0, xt). The risk estimation model of overturn
failure uses the rotation angle (θ) between the initial pose
of the bowl (θ0) and the current pose (θt) of the bowl,
calculated as θ = θt− θ0. The risk estimation model of spill
failure uses the overflown volume of particles (V en) from
the volume of the bowl (V b). The ratio of the overflow of
each particle (Vn) is calculated as the overflown volume of
the particle (V en−V b) over the volume of the particle (V cn)
as V n = (V en − V b)/V cn. Then the overflown volume(V )
is calculated as the maximum ratio of overflow (max(Vn))
among the particles. The pose of the bowl and particles are
directly acquired from the simulation as its ground truth
value, and particle volumes are predefined.

C. Learning Failure Prevention Skills

Failure prevention skills are acquired by learning failure
prevention policies for corresponding risk estimation models.
They are learned in the simulated environment with the same
network design and optimization parameters as the learning
of the base skill (Section III-A). Different from base skill
learning, these skills have different state representations and
reward functions. Additionally, they use initial procedures to
increase the risk at the start of the episode letting the robot
encounter the corresponding risk easily.

Failure prevention skills require additional parameters
related to the failure they respond to on top of the base skill
state representation. They use d, θ, and V parameters from
the corresponding risk estimation model to learn the optimal
robot movement that avoids the risk. The state of a failure
prevention skill is obtained by concatenating Sstir with χ



TABLE II: Evaluation results of augmentation of the stir skill with failure prevention skills in the simulated environment

Model Stir Reward Spill Slide Overturn
mean std mean std mean std mean std

πb-F 329.00 17.57 4.55 1.50 N/A N/A N/A N/A
πb-U 251.29 12.90 2.2 1.32 0.11 0.01 0 0
L4-U 159.64 34.67 0.20 0.52 0.05 0.03 0 0
L2-F 87.20 53.98 0.10 0.30 N/A N/A N/A N/A
πc-U 126.76 10.70 0.15 0.36 0.022 0.007 0 0

from the corresponding risk estimation model; d for slide
failure, θ for overturn failure and V for spill failure as given
in Equation 6. The reward for each failure prevention skill is
sparse and acquired with the corresponding risk estimation
model as explained in Equation 2.

Sslide = [xspoon, φ, d]

Soverturn = [xspoon, φ, θ]

Sspill = [xspoon, φ, V ]

(6)

To learn a failure prevention skill effectively, risky states
should be experienced during training which may not occur
often enough. Initial procedures are designed to move the
robot to a risky state, thus, letting the robot experience
risky states. Each failure has different initial procedures.
For prevention of slide, the initial position of the bowl is
sampled randomly triggering the risk ρslide. For prevention
of overturn, the robot moves the spoon toward a random
direction until the risk ρoverturn is triggered. For prevention
of spill, the robot moves the spoon toward a random location
in the bowl until the risk ρspill is triggered. The episode
starts once the corresponding risk is triggered using initial
procedures, and the robot learns how to reduce the risk.

As the results of trainings, best policies of πpslide ,
πpoverturn , πpspill are selected as optimal failure prevention
policies for sliding, overturning, spilling failures respectfully.
Selected policies are added to the skill library forming L4.

D. Overall Results

A skill library is initialized with the learned base skill
πstir (Section III-A). Then, learned failure prevention skills
(Section III-C) are added to the skill library (L) augmenting
the base skill for safe robot manipulation. We define safe
robot manipulation as skill selection in real time from the
skill library consisting of a base skill to complete the task
and failure prevention skills to reduce failure risks. We use a
rule-based skill selection policy (Section II-D). The priorities
are given in Equation 7 where I(πpk) is the importance of
the failure k which is determined by its effect on the task.
Overturning restrains completion of the task, therefore, it is
the most prior failure. Spilling restrains obtaining the best
outcome from a completed task, and it is set as the second
most prior failure. Sliding results in soft failures such as
reducing observability, and extending workspace which may
lead to additional failures. In our setup, since it does not
prevent the completion and the success of the task directly,
it is the least prior failure.

I(πpoverturn
) > I(πpspill) > I(πpslide) (7)

Note that, for a different setup, the importance of failures
can be different from what we present. For example, if the
robot stirs a pan on a stove, keeping the pan on the stove
would be more important than spilling the content.

1) Evaluation of the Augmented Stir Skill: The compar-
ative results are presented in Table II where all methods
are tested for 20 episodes with 1000 steps. The table re-
ports mean and standard variation of performance measures
(R, d, θ, V ). We first evaluate πb in the fixed bowl setup for
benchmarking (πb-F). Evaluation results indicate that πb stirs
effectively while spilling occasionally. Then, our method is
evaluated in the unrestricted setup (L4-U). Comparing πb-F
and L4-U, we can claim that the proposed method is signif-
icant for failure prevention with a tradeoff of stir efficiency.
The loss of stir efficiency is tolarable as the environment of
our method is more challenging and vulnerable to failures
than the former. Therefore, it uses its time effectively to
prevent any of the failures and stir whenever it is safe.

For a fair comparison between our method and πb, the
latter is also tested in the unrestricted setup (πb-U). Com-
paring πb-U and L4-U, we see that our method is safer
with a tradeoff of stir efficiency. Note that πb-F does not
perform better than πb-U for safety even though the number
of spill events decreased. In the unrestricted setup, forces
affecting particles get diminished since a part of the force is
transferred to the bowl, causing the number of spill events to
decrease. Note that no overturn event is detected in the results
because overturn failure occurs when the robot interacts
with the bowl which only happens with πpslide . While this
never happens for πb-F and πb-U, L4-U successfully prevent
overturn failure with πpoverturn

.
2) Adaptability to Novel Failures: To show the adaptabil-

ity of our method, we show how a robot working in the
fixed bowl setup adapts its library to the unrestricted setup.
In the fixed bowl setup, only spill failure can be observed
since the bowl is fixed, and the skill library L2 is formed
with πb and πpspill . When the bowl orientation restrictions
are removed from the environment, novel failures; sliding
and overturning are observed, and πpslide and πpoverturning

skills are learned to prevent them, respectively. Now the skill
library is extended (L4) with these skills. When we compare
L2-F and L4-U, it can be seen that with our method, it is
easy to adapt to new conditions by discovering novel failures,
and learning corresponding failure prevention skills.

3) Modularity vs Compound Skill: One of the main
question that should be discussed is whether the modularity
helps with the failure prevention problem or not. For this
investigation, a compound base-failure prevention skill(πc)



is learned that takes into account all three failures during
learning to stir, and penalizes accordingly. πc is trained in
the unrestricted setup with a the same training setup(III-A),
except the reward function. As the reward, the sum of all
rewards for each objective is used as given in Equation 8.

Rbp = Rb +Rslide +Roverturn +Rspill (8)

Comparing L4-U and πc-U from Table II, we can deduce
that our method performs slightly better for the stir efficiency
and the compound skill performed slightly better for failure
prevention. However, when we compare the learned stir
patterns of both methods (see a randomly selected particle’s
trajectories in Figure 6), we see that πc-U does not perform
a circular movement, it rather moves the spoon linearly in a
narrow area resulting in only slight changes in particle loca-
tions and not an effective stir. This performance degradation
also supports the decrease in the observed in the average stir
reward. Due to this slow pattern of movement, the probability
of failures are observed are small compared to that of our
method. The differences in percentages are not significant.
Our further analysis shows that modular methods reward is
highly dependent on how fast the prevention policy reduces
the risk.

Fig. 6: Trajectory that a particle travels using compound skill πc-
U(orange) and modular method L4-U(blue)

E. Transfer to the Real World

In this work, we directly transfer d and θ parameters
from simulation to the real world. However, we use domain
adaptation for the rest of the parameters(V ) that can not be
represented directly.

For the stir base skill, the position of the spoon xspoon
which is attached to the gripper is obtained by the kinematic
chain of the robot. φ is initialized as 0 and φmax is set
to 50. For πpslide , πpoverturn , πpspill , the pose of the bowl
is observed using a particle filter-based tracking algorithm
[25]. Then d and θ are estimated from the pose of the bowl.
Detecting and tracking particles in the bowl is impractical
in the real world. In order to obtain V , we used a point
cloud filtering approach using Point Cloud Library (PCL)2,
sampling points from particles in the bowl. We estimated

2https://pointclouds.org

max(z), where z is the position of a sample point on the
z-axis, and max(z) is transferred to V using Equation 9 as
the mapping function.

V ≈ (max(z)− zbowl)/2r (9)

zbowl is the tip position of the bowl on the z-axis. r is
assumed to be a predefined fixed radius of a particle. The vi-
sualization of the observations from the real world is given in
Figure 7. Action from a skill represents a desired movement
vector for the gripper in the Cartesian domain. The robot is
controlled using a set of position controllers in the joint state
domain. We implemented a high-level controller that gets
action from L4 and calculates joint state goals with 100ms
frequency. First, the Cartesian goal is calculated by shifting
the position of the gripper with the desired movement vector.
Then, the joint state goal is calculated from the Cartesian
goal using MoveIt3. Then, the joint state goal is used to set
desired positions of position controllers. Additionally, with
100ms frequency, φ is increased by one (Equation 4).

Fig. 7: Visualization on the point cloud: Green is for tracking the
bowl, red is for the sampled points from the content of the bowl

By transferring L4 model, we have shown our method’s
capability to prevent failures in the physical world. Since
the exact positions of the particles in the bowl cannot be
observed directly as in the simulation, the cumulative reward
of the execution can not be determined in the real world.
Therefore, the model’s success can be stated qualitatively.
Based on our observations, we can conclude that continuous
stirring with preventative skills can be successfully applied.
An example execution trace is given in Figure 8.

We conducted additional tests to analyze the performance
of L4 model’s preventative ability. At first, L4 model is
tested for each failure individually by starting the scenario
in a risky condition. In these tests, the robot easily avoided
failure and continued with the base skill after the risk
is reduced. Then L4 model is tested for 2-minute long
executions. In these tests, different amounts of particles are
used. When the bowl is about 70% or less full, the robot
runs as expected, prevents failures in risky states, and stirs
continuously in safe states. When the bowl is more than
70% full, the robot can not reduce the max(z) easily and
gets stuck in failure prevention. In some cases with high
amount of particles, the actions of the robot can result in

3https://moveit.ros.org



(a) (b) (c)

Fig. 8: An example execution trace of L4 model in the real world:
(a) Robot uses πpslide to correct the position of the bowl (b) While
executing πpslide , bowl starts to overturn and the robot decides
executing πpoverturn (c) After executing failure prevention skills,
the robot continues to stir with πb.

some particles popping out of the bowl. This failure is
not observable by the available risk estimation models, yet
may be estimated by using additional sensors such as force
sensors which are not available in this work. Additionally,
L4 model is tested with interference by the operator. The
operator interferes the execution by changing the location of
the bowl, adding additional particles, and removing particles
from the bowl. The model adapts robustly to new conditions
without stopping and preventing possible failures.

IV. CONCLUSION AND FUTURE WORK

In this work, we propose a modular method where base
skills and failure prevention skills are combined. Failure
prevention skills are learned for preventing potential failures
and used for augmentation of base skills to make them
safer by using rule-based skill selection. Evaluation results
indicate that learned failure prevention skills help base skills
to complete their tasks safely. The method is also extendable
upon novel failures. We also transferred learned skills to be
used in the real world successfully. Additional materials, and
videos of simulated and real results are available online.
Even though potential failures are determined using base
skills, failure prevention skills are learned independently and
whether they can be used for augmenting different base skills
is a question that we want to address in the near future.
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