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Abstract—Accurate navigation is essential for autonomous
robots and vehicles. In recent years, the integration of the Global
Navigation Satellite System (GNSS), Inertial Navigation System
(INS), and camera has garnered considerable attention due to its
robustness and high accuracy in diverse environments. However,
leveraging the full capacity of GNSS is cumbersome because
of the diverse choices of formulations, error models, satellite
constellations, signal frequencies, and service types, which lead to
different precision, robustness, and usage dependencies. To clarify
the capacity of GNSS algorithms and accelerate the development
efficiency of employing GNSS in multi-sensor fusion algorithms,
we open source the GNSS/INS/Camera Integration Library
(GICI-LIB), together with detailed documentation and a compre-
hensive land vehicle dataset. A factor graph optimization-based
multi-sensor fusion framework is established, which combines
almost all GNSS measurement error sources by fully considering
temporal and spatial correlations between measurements. The
graph structure is designed for flexibility, making it easy to
form any kind of integration algorithm. For illustration, Real-
Time Kinematic (RTK), Precise Point Positioning (PPP), and four
RTK-based algorithms from GICI-LIB are evaluated using our
dataset and public datasets. Results confirm the potential of the
GICI system to provide continuous precise navigation solutions
in a wide spectrum of urban environments.

Index Terms—Sensor fusion, localization, datasets for SLAM.

I. INTRODUCTION

With the significant increase in computing capability and
the simultaneous reduction in power consumption and cost,
autonomous robots and vehicles have become ubiquitous [1].
For these applications, robust and accurate navigation is essen-
tial. Although the Visual-Inertial Navigation System (VINS)
has been recognized as a practical solution due to its high
accuracy and low cost over the years [2], it still suffers from
performance fluctuations under complex environments and
pose drift during long-term cases [3].

Fusing VINS and GINS together, namely GVINS, is an
effective approach to substantially enhance the robustness and
availability [4]. The two systems are complementary. GINS
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can provide robust and globally accurate pose solutions in
most outdoor settings and VINS can greatly constrain the
pose drift rate under GNSS-challenging conditions. There
are four typical GNSS formulations: Single Point Position-
ing (SPP), Real-Time Differential (RTD), Real-Time Kine-
matic (RTK), and Precise Point Positioning (PPP). SPP and
RTD are meter-level accuracy formulations, while RTK and
PPP are centimeter-level accuracy formulations. Previously,
centimeter-level GNSS was commonly used in cost-insensitive
applications, such as surveying and aviation. With the cost
reduction of high-precision GNSS chips and augmentation
services, centimeter-level GNSS devices are gaining momen-
tum in autonomous applications [5]. By incorporating high-
precision GNSS positioning formulations, the GVINS system
will be able to provide continuous centimeter-level solutions
under various environments.

Constructing a GVINS system is not difficult, which has
been done by several works [4], [6], [7], [8]. However, fully
utilizing the role of GNSS is cumbersome. Rigorously, there
are multiple measurement formulations, error models, satellite
constellations, signal frequencies, and service types. These
distinct options can significantly impact precision, robustness,
and usage dependencies. One can achieve an imprecise and
vulnerable solution via SPP formulations, and can also achieve
a precise and robust solution even in a typical urban envi-
ronment via multi-constellations multi-frequency RTK with
the augmentation of Observation Space Representation (OSR)
services. In environments where OSR service is unavailable
because of the absence of reference stations, one can still
achieve a precise solution within a few minutes via PPP
with the augmentation of State Space Representation (SSR)
services.

To clarify the capacity of GNSS algorithms and accelerate
the development efficiency of employing GNSS in multi-
sensor fusion algorithms, we present the GNSS/INS/Camera
Integration Library (GICI-LIB), together with detailed docu-
mentation and a comprehensive land vehicle dataset. The key
features are highlighted as follows:

• A factor graph optimization-based multi-sensor fusion
framework, which implements most of the possible GNSS
loose and tight integration factors, INS factors, visual factors,
and motion constraints, together with reliable initialization,
measurement sparsification, and outlier rejection algorithms.
The GNSS formulations are implemented towards four con-
stellations and full frequencies.

• Unlike other state-of-the-art (SOTA) integrated
INS/GNSS/camera systems, our system focuses on combining
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almost all measurement error sources of GNSS in space,
propagation, and ground segments by fully considering
temporal and spatial correlations between measurements. It is
in this way that our system outperforms the SOTA methods
on the majority of our open-source datasets and the evaluated
INS/GNSS/camera code repositories.

• For ease of use, the software is developed under object-
oriented programming features, and the graph is designed to
enable flexible addition of sensors. By simple instantiation,
one can easily form any kind of multi-sensor fusion algorithm
with considerable robustness.

• An open land vehicle dataset that collects necessary raw
data for all the above algorithms. The datasets contain multiple
short-term and long-term trajectories, covering open-sky, tree-
lined, typical urban, and dense urban environments. This is the
first dataset that includes real-time OSR and SSR corrections
accompanying with the raw GNSS observations.

The rest of this letter is structured as follows. In section
II, we review existing relevant works. Section III shows
the structure of the proposed system. Section IV illustrates
the formulation and methodology. In section V, we evaluate
our algorithms against other open-source algorithms. Finally
section VI concludes this letter.

II. RELATED WORK

In the past decades, almost all GNSS algorithms have uti-
lized filter-based methods. Unlike GNSS, the state estimation
problem for visual navigation can be categorized as either
filter-based methods [17], [18] or optimization-based methods
[19], [20], [21]. Filter-based methods can achieve consider-
able accuracy while ensuring high computational efficiency.
However, these methods are more susceptible to linearization
errors that have the potential to negatively impact the accuracy
and robustness of the estimator [1]. In contrast, optimization-
based methods excel at handling nonlinearity and achieve
higher accuracy [6], albeit with a trade-off in computational
efficiency.

There are several optimization-based GNSS or GNSS inte-
gration algorithms reported. To clarify their usage of GNSS
capacities, we summarize them together with our algorithms
in Table I. The fusion types are categorized into GNSS-only
(G), GNSS/INS (GI) Loose Couple (LC), GI Tight couple
(TC), GNSS/INS/Camera (GIC) SS (Fusing GNSS solution
with VINS solution), GIC Solution/Raw/Raw (SRR), and GIC
Raw/Raw/Raw (RRR). The frequencies are categorized into
Single (S), Double (D), and Multiple (M). The constellations
are categorized into GPS (G), GLONASS (R), Galileo (E), and
BDS (C). The robustness of the system is classified into three
categories: Fair (F), Good (G), and Extraordinary (E). These
categories are assigned based on the performance evaluation
conducted in Section V. There are three levels of SSR services:
SSR-I contains precise ephemeris and code biases, SSR-II
contains phase biases, and SSR-III contains local atmosphere
delays, which enables PPP, PPP with ambiguity resolution
(PPP-AR), and PPP with local reference network augmentation
(PPP-RTK), respectively. We use the term PPP to collectively
represent the three kinds of algorithms in GICI-LIB.

TABLE I
SUMMARY OF THE MOST RELEVANT OPTIMIZATION-BASED

ESTIMATORS FOR GNSS.

Type LC
cap.
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[9] G - - - ✓ × × × × S G m ×
Graph

GNSSLib
[10]

G - - - ✓ ✓ ✓1 ✓1 × S GC dm ✓

[11] G - - - ✓ ✓ ✓ ✓ × D GC cm ×
OB-GINS

[12] GI LC ✓ × - - - - - - - cm2 F ✓

[13] GI TC - - ✓ × × × × 3 G m ×

[14] GI LC
TC ✓ × ✓ × × × × S GC m ×

VINS-
Fusion

[15]
GIC SS ✓ × - - - - - - - cm F ✓

GOMSF
[16] GIC SS ✓ × - - - - - - - dm ×

IC-
GVINS

[6]
GIC SRR ✓ × - - - - - - - cm G ✓

[7] GIC RRR - - ✓ ✓ × × × GR m ×
GVINS

[4] GIC RRR - - ✓ ✓ × × × S GR
EC m ✓

P3-VINS
[8] GIC RRR - - ✓ ✓ ✓ × I D GR

EC dm ×

GICI-
LIB

G
GI

GIC

LC
TC

SRR
RRR

✓ ✓ ✓ ✓ ✓ ✓
I
II
III4

M GR
EC

m
dm
cm

E ✓

1 Its RTK module was only designed and tested for static motion and is
not capable of performing correctly under dynamic motion.

2 The precision level of GNSS loose integrations is influenced by the type
of GNSS solution employed. We present the precision reported in the
study here.

3 Blank means we cannot get the corresponding information.
4 We implemented the SSR-II and SSR-III features but did not instantiate

them, because there is currently no standard and stable open real-time
service that can be used.

It is clear that GICI-LIB fills lots of gaps for
the optimization-based GNSS algorithms. It is the first
optimization-based algorithm that utilizes GNSS velocity for
LC, incorporating multi-frequency processing for TC, and
supports multiple GNSS algorithms for multiple levels of
integrations. These features effectively unlock the full potential
of GNSS technology. Moreover, GICI-LIB is the first open-
source software that offers full capacity of optimization-
based RTK, PPP, and their tight integration with IMU and
cameras. These modules are implemented with the concept of
expansibility, greatly accelerating the development efficiency
of employing GNSS in multi-sensor fusion algorithms. Except
for the indexes listed in the table, our system also has various
progresses on GNSS error handling, ambiguity resolution,
outlier rejection, temporal sparsification, and initialization.
These details bring our system extraordinary performance.

III. SYSTEM OVERVIEW

GICI-LIB is comprised of various hardware I/O controllers,
data decoders, encoders, and estimation processors. These
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Fig. 1. Structure of GICI-LIB.

nodes operate in multiple threads, ensuring concurrent execu-
tion. The system structure is shown in Figure 1. By configuring
nodes defined by our configuration file, the system can be
used not only for real-time and post-processed algorithmic
processing, but also for stream transformation and conversion.

The estimator node is designed using a two-layer inheri-
tance. The first layer implements necessary functionalities for
each sensor, while the second layer inherits the sensor features
to facilitate specific integration algorithms. The estimator node
operates in its own dedicated thread, which is composed of
three sub-threads: frontend, backend, and export. The frontend
thread handles time-consuming preprocessing tasks. When
fusing GNSS, INS, and camera, the front-end thread will
solely process the raw data from the camera since only the
feature detection and tracking procedures are time-consuming.
The backend conducts initialization and optimization with the
Factor Graph Optimization (FGO) algorithm. Its solution can
be used by the frontend to help improve the quality of feature
tracking. Finally, the export thread will integrate the data
from the backend thread according to desired timestamps. The
integrated solution can be delivered to the stream threads for
hardware output or file storage. Additionally, it can also be
fed into other estimator threads for loose coupling.

As examples, in the code repository, we instantiate several
algorithms for the estimator nodes, including SPP, RTD,
RTK, PPP, SPP-based LC and TC GINS, SPP-based Solu-
tion/Raw/Raw SRR and RRR GVINS, RTK-based LC GINS,
TC GINS, SSR GVINS, and RRR GVINS.

IV. METHODOLOGY

In order to emphasize the key points of this letter, we
focus solely on the architecture design and GNSS positioning
algorithms in this section. Details of additional features, such
as the visual and INS factors, outlier detection algorithms,
and measurement sparsification algorithms, will be omitted.
Readers are invited to refer to our documentation for these
omitted features.

In this section, we first introduce the FGO architecture.
Afterward, we present GNSS factors, RTK algorithm, and

Fig. 2. Structure of the FGO-based estimation. χr , χI , and χc represent the
estimated parameters of the GNSS receiver, INS, and camera respectively.
M, R, C, I, and

∫
stands for the marginalization factor, the GNSS factors,

the visual factors, the INS pre-integration factor, and the time-propagation
factors, respectively.

PPP algorithm. Finally, we illustrate the GNSS ambiguity
resolution process, which is the key technology for achieving
centimeter-level positioning accuracy.

A. Factor Graph Optimization

The GVINS integration structure is shown in Figure 2. The
GNSS-only and GNSS/INS integration graphs are subsets of
the GVINS integration graph, and thus, are not individually
delineated here. This graph describes a non-linear Least-
Square (LSQ) problem

χ̂ = argmin
χ

{∥zp −Hpχ∥2 + ∥zr − hr(χr,χI)∥2+

∥zI − hI(χI)∥2 + ∥zc − hc(χc,χI)∥2} (1)

where χ = [χI ,χr,χc] are the parameters to be estimated.
The subscripts r, I , and c represent GNSS receiver, INS, and
camera, respectively. z is the measurements. h is the cor-
responding non-linear measurement models. The constitution
of the parameters and measurements varies depending on the
utilized formulation. We will introduce them later. zp and Hp

are the pseudo-measurement and linearized Jacobian of prior
information, which are computed during marginalization.

The graph is designed towards flexibility, see Figure 3. The
flexibility is enabled by three features: 1) The measurement
timestamps of different sensors are not necessarily aligned. 2)
New measurement data can be added to the graph at any point,
not necessarily at the end. 3) Solutions can be generated at any
desired time point and frequency.

Commonly, even if the sensors are hardware synchronized,
they still measure at distinct time points, causing the times-
tamps to be misaligned. Rather than interpolating [6] or
rounding [15] to align the timestamps, we create nodes in
distinct timestamps for each sensor. The INS pre-integrations
are then used to connect the nodes. This strategy is more
effective because the INS time-propagation is more accurate
than interpolating or rounding.

We should also consider the hardware delay of sensors in
the real-time scenarios. The hardware delays differ between
sensors, leading to instances where measurements with earlier
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Fig. 3. Flexibility of the FGO structure.

timestamps are received after the processing of measurements
with more recent timestamps. In such situations, the new
coming state may be inserted or prepended to the graph.
One solution is to introduce a delay in order to re-sequence
the arriving measurements. However, it will lead to a loss
of real-time performance. Instead, our choice is to apply
inserting or prepending by re-establishing states using INS
pre-integration. All the sensors can be added timely to ensure
real-time performance.

Furthermore, we facilitate the integration of backend solu-
tions at any timestamps and frequencies, within the capabilities
of the INS, instead of limiting the output solely to camera or
GNSS timestamps [4], [6], [15]. This approach will provide
advantageous for downstream algorithmic modules and in
particular, control algorithms, as it guarantees both strict real-
time performance and bandwidth for navigation solutions.

By defining the factor graph and concretizing the graph
as the LSQ problem in Equation 1, the problem can be
solved by any non-linear optimization algorithm. In GICI-
LIB, we use Ceres-Solver [22] for solving such LSQ problem.
To concretize the graph, we should define the residual and
Jacobian computation of the edges, i.e. factors. Hence, we
will discuss the factors in the following.

B. GNSS Factors

The GNSS factors are classified into two levels: LC factors
and TC factors. The LC factors mainly contain position
factor and velocity factor, and the TC factors mainly contain
pseudorange factor, doppler factor, and carrier-phase factor.
Since the LC factors are simple, we only describe the TC
factors here.

The non-linear models of pseudorange, carrier-phase, and
doppler measurements can be described as follows

P s
r,i = ρsr + c (dtr − dts) + Isr,i + T s

r + dr,i − dsi + εP (2)

Ls
r,i = ρsr+c (dtr − dts)+Isr,i+T s

r +br,i−bsi +Ns
r,i+εL (3)

Ds
r,i = ρ̇sr + c (dfr − dfs) + εD (4)

where indices s, r, and i refer to the satellite, receiver, and
carrier frequency band, respectively. ρsr = ∥pr − ps∥2is the
geometric distance between the receiver antenna phase center
and satellite phase center. c is the speed of light in vacuum. dtr
and dts represent receiver clock offset and satellite clock offset

TABLE II
AMPLITUDE BEFORE AND AFTER CORRECTION (BY MODEL OR SERVICE)
FOR GNSS ERROR SOURCES IN UNITS OF METERS. FOR SIMPLICITY, WE

SET THE AMP. AS 0 IF IT IS LESS THAN 1 MM.

Error source Amp. Amp. cor.

Space
segment

Orbit error - 0.01 ∼ 5
Clock offset - 0.01 ∼ 5
Code bias 1 ∼ 10 0 ∼ 0.1
Phase bias 0.01 ∼ 0.1 0 ∼ 0.02
Phase center offset 1 ∼ 5 0 ∼ 0.01
Phase center variation 0 ∼ 0.02 0
Phase wind-up 0 ∼ 0.05 0
GPS inter-frequency clock bias 0 ∼ 0.2 0 ∼ 0.02
BDS satellite multipath 0.1 ∼ 0.8 0 ∼ 0.1

Propagation
segment

Sagnac effect 102 ∼ 103 0
Ionosphere delay 5 ∼ 30 1 ∼ 3
Troposphere delay 1 ∼ 5 0.2 ∼ 1
Relativistic effect 0 ∼ 0.02 0

Ground
segment

Clock offset 0 ∼ 102 -
Code bias 1 ∼ 10 -
Phase bias 0.01 ∼ 0.1 -
Multipath 0 ∼ 102 -
Random noise 0.01 ∼ 0.1 -
Phase center offset 0.01 ∼ 5 0 ∼ 0.01
Phase center variation 0 ∼ 0.02 0
Earth tide 0 ∼ 0.1 0 ∼ 0.01
GLONASS inter-frequency bias 0.1 ∼ 2 0 ∼ 0.1

respectively. dfr and dfs are the corresponding frequency
offsets. Isr,i is the ionospheric delay. T s

r is the tropospheric
delay. dr,i and dsi are code biases for receiver and satellite. br,i
and bsi are phase biases. Ns

r,i is the phase ambiguity, which
has an integer nature. εP , εL, εD are the un-modeled errors,
mainly containing multipath and random noise.

There are also some other error sources that should be
specially considered in addition to the above. We list all the
error sources in Table II. The ways to handle these errors vary
among algorithms. In Equation 2, 3, and 4, we only maintain
the items that may be estimated in GNSS formulations, pre-
suming that all other errors have been handled appropriately.

As shown in Equation 2 and 3, there are still several
error items maintained in the pseudorange and carrier phase
equations. In GICI-LIB, we implemented 12 different formu-
lations for each measurement type to account for the diverse
characteristics of various GNSS algorithms. The formulations
are combinations of two frame definitions, i.e. the Earth-
Centered and Earth-Fixed (ECEF) frame or the East-North-Up
(ENU) frame, three GNSS linear combination types, i.e. Zero-
Difference (ZD), Single-Difference (SD), or Double Differ-
ence (DD), and two approaches handling atmosphere delays,
i.e. estimated or non-estimate (corrected or eliminated). Table
III summarizes those models and names the corresponding
algorithms implemented in GICI-LIB.

The doppler measurement in Equation 4 exhibits less error
than other measurements. Therefore, its differential or atmo-
sphere handling is unnecessary. There are only two formu-
lations implemented for doppler, categorized by their frames
of reference. The doppler measurements are used in all the
algorithms in Table III.
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TABLE III
FORMULATIONS OF PSEUDORANGE AND CARRIER-PHASE
MEASUREMENTS TOWARDS THE OPTIMIZATION PROBLEM.

Differential Atmosphere Frame
ZD SD DD Cor./Eli. Est. ECEF ENU

SPP P P P
RTD P P P
RTK P&L P&L P&L
PPP P&L P&L P&L

SPP TC P P P
RTK TC P&L P&L P&L

The above categories are formed towards the optimization
problem, which are formulated by types of the estimated
parameters and measurement models. To clarify, we only focus
on the formulation of (short-baseline) RTK and PPP in the
following. Detailed illustrations of all the formulations can be
found in sections 3.3 and 3.4 of our documentation.

C. Real-Time Kinermatic

The measurements of RTK are DD pseudorange, DD
carrier-phase, and ZD doppler. The DD operation differences
measurements between GNSS receivers and satellites. For
short-baseline RTK, we assume all the atmosphere delays are
eliminated by DD [23]. After correcting all the necessary
errors, the DD pseudorange and carrier-phase residuals can
be written as

rP = P ssb
rrb,i

− ρssbrrb
(5)

rL = Lssb
rrb,i

− (ρssbrrb
+ (N s

rrb,i
−N sb

rrb,i
)) (6)

rD = Ds
r,i − (ρ̇sr + c (dfr − dfs)) (7)

where P ssb
rrb,i

and Lssb
rrb,i

are the DD pseudorange and carrier-
phase measurement respectively. ρssbrrb

is the DD geometric
distance. N s

rrb,i
is the SD ambiguity. We do not write the DD

ambiguity here because we estimate the SD ambiguity instead
to avoid having to frequently handle base satellite switching
due to signal disruption from shadowing or dropouts.

Consequently, the GNSS-related parameters at epoch k are
defined as

χk :=
[
χI,k,χr,k

]T
(8)

χI,k :=
[
W tI,k, q

W
I,k,

WvI,k

]T
(9)

χr,k :=
[
Btr, dfr,k,N

s
rrb,i,k

]T
(10)

where W tI , qW
I , and WvI are the position, orientation, and

velocity of INS respectively, Btr is the translation of the
GNSS receiver in the body frame B, namely lever-arm. dfr,k

is a vector of frequency offsets dfr,k for different satellite
constellations. N s

rrb,k
is a vector of SD ambiguities Ns

rrb,k

for different satellites s and frequencies i.
The above formulation can be used to form the RTK-

only algorithm and then feed its solution into GNSS loose
integration algorithms, and can also be used directly to form
the GNSS tight integration algorithms. In comparison, the
latter can utilize the propagated parameters assisted by other
sensors to apply outlier detection on GNSS raw measurements.

This feature makes it easier to reject problematic satellite sig-
nals and fully leverage the information provided by qualified
signals.

D. Precise Point Positioning

The PPP algorithm employs undifferenced formulations,
i.e. Equation 2, 3, and 4, to deliver positioning solutions at
centimeter-level accuracy, without requiring local reference
stations. Unlike RTK, the PPP algorithm should carefully
handle several error items because it cannot apply the between-
station difference to eliminate errors.

By applying SSR-I corrections, the satellite positions ps,
satellite clocks dts, and satellite code biases dsi are corrected
to centimeter-level accuracy, while still retaining a bias for
each satellite system. The bias exists due to the coupling
between the clock and the code bias, preventing the estimation
of their absolute values. This unobservability also exists on
the receiver side, due to the coupling between the receiver
clock and bias. In brief, all the remaining code biases will
be estimated or absorbed into the estimated parameters during
estimation. One can find the detailed discussion on the bias
aspect in section 3.4 of our documentation.

For a multi-constellation and multi-frequency PPP, the es-
timated parameters, despite the INS parameters defined in
Equation 9, are as follows:

χr,k :=
[
Btr, dtr,k, dfr,k,N

s
r,i,k, TZ,w,k, I

s
r,1,k,dr,IFBi

]T
(11)

where dtr,k and dfr,k are vectors of receiver clocks and
frequencies dtr,k and dfr,k for each system. N s

r,i,k is a vector
of ZD ambiguities Ns

r,i,k. TZ,w,k is the zenith total delay of
the wet component of the troposphere. Is

r,1,k is a vector of
ionosphere delays Isr,1,k. dr,IFBi is a vector of inter-frequency
biases dr,IFBi

, which should be estimated for each frequency
if the number of used frequencies is larger than two. Note that
the aforementioned code biases will be absorbed into dtr,k,
Is
r,1,k, and dr,IFBi

, rendering these parameters biased.
As we have not yet addressed the phase biases in Equation

3, the estimated ambiguities Ns
r,i,k absorb these bias values,

leading to the loss of their integer nature and cannot be
used to solve integer ambiguities. In response, the SSR-II
correction can be utilized to correct the satellite phase bias
bsi . Meanwhile the receiver phase bias br,i can be eliminated
by forming a Between-Satellite-Difference (BSD). Then the
ambiguity resolution algorithm can be applied.

However, both PPP and PPP-AR suffer from long conver-
gence periods, typically lasting several or tens of minutes.
To speed up their convergence, the SSR-III, containing local
atmosphere delay corrections, could be applied as further
constraints. Since this feature relies on local reference station
networks, just as RTK, it is named PPP-RTK. The convergence
period depends on the scale of reference station networks,
ranging from tens of minutes to several seconds.

Currently, worldwide PPP services are underdeveloped and
some of the standards have not been unified. Due to the
absence of standardized and stable public products, we only
support the SSR-I stream I/O in the current version.
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E. GNSS Ambiguity Resolution

Ambiguity Resolution (AR) is a major procedure for high-
precision GNSS algorithms to achieve centimeter-level solu-
tions. This procedure is implemented for RTK and PPP (as
well as the corresponding integration algorithms). We illustrate
the RTK AR here.

The AR starts with the estimated float ambiguities N s
rrb,i,k

and their covariance matrix PNSD
. A BSD is first applied

by selecting base satellites for each satellite constellation to
eliminate the receiver phase biases br,i absorbed by float am-
biguities during estimation. Herein we get the DD ambiguities
N ssb

rrb,i,k
and covariance matrix PNDD

. For convenience, we
denote the DD ambiguities and their covariance as N and P .
Then the problem becomes solving an integer LSQ problem

N̂ = argmin
N̂

∥N̂ −N∥2P (12)

where N̂ is the integer ambiguities to be solved.
The problem can be solved by two steps: decorrelation and

search. We use the MLAMBDA [24] algorithm to solve the
problem. Once the integer ambiguities have been resolved and
judged as valid resolutions, they will be constrained to FGO
using pseudo-measurements with low variances.

Moreover, we apply partial ambiguity resolution and (ultra-
) wide-lane combination technologies to further improve the
fixation rate and reliability. The two technologies are essential
to ensure AR performance, but have not been implemented in
existing FGO-based GNSS-relevant algorithms.

V. EXPERIMENTS AND RESULTS

We conducted multiple land vehicle experiments and em-
ploy public datasets, UrbanNav [25], to evaluate our PPP,
RTK, and RTK-based integration algorithms, together with
SOTA open-source algorithms with centimeter precision level,
including RTKLIB [23], OB-GINS [12], IC-GVINS [6] and
VINS-Fusion [15]. In this section, we first introduce the
experiment configurations of the datasets. Then the evaluation
results are presented. Finally, an extra experiment is conducted
to examine whether the performance is degraded when apply-
ing our flexible FGO structure.

Fig. 4. Experiment configuration of land vehicle experiments.

Fig. 5. Type of scenes in short-term experiments. Top left, top right, bottom
left, and bottom right are open-sky, tree-lined, typical urban, and dense urban,
respectively.

TABLE IV
GNSS PROPERTIES OF THE SCENES.

SPP Performance Satellite Number
Avail. RMSE Max Mean Max

Open-sky 1.00 1.57 5.75 36 44
Tree-lined 1.00 4.04 18.1 32 42
Typical Urban 1.00 8.12 205.4 22 35
Dense Urban 0.99 18.2 746.2 21 37
UrbanNav mid 1.0 30.2 209.0 13 21
UrbanNav deep 0.93 20.7 442.8 12 20
UrbanNav harsh 0.99 39.3 472.1 13 18

A. Experiment Configurations

The configuration of our dataset is shown in Figure 4.
We developed a GICI board to collect IMU and camera
data and applied hardware synchronization with other sen-
sors in the whole platform. The onboard IMU and camera
are Bosch BMI088 and Onsemi MT9V034 respectively. The
GNSS receiver is a Tersus David30 multi-frequency receiver.
We also collected the reference station data from the Qianxun
SI stream for RTD and RTK formulations, and the State-
Space-Representation (SSR) data from the International GNSS
Service (IGS) stream for PPP formulations. The fiber optic
IMU is used to provide the ground truth by post-processing
its data together with GNSS raw data.

We collected two kinds of datasets: short-term (3-10 min-
utes) experiments in different scenes, and long-term (20-50
minutes) experiments to cover different durations of con-
sidered challenging environments. For the short-term exper-
iments, we categorize the scenes into 4 types: Open-sky, tree-
lined, typical urban, and dense urban. And for each scene, we
recorded 2 ∼ 3 trajectories. The scenes are illustrated in Figure
5. For the long-term experiments, we provide two trajectories
collected in the city center of Shanghai that cover those 4
types of scenes.

Furthermore, we employ the UrbanNav dataset [25] for a
more comprehensive evaluation. We utilize a subset of its
sensor configurations, including a Ublox F9P double frequency
receiver, an Xsens-MTI-30 IMU, and the left camera of
the ZED module. Additionally, we utilize the Hong Kong
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TABLE V
ABSOLUTE POSE ERROR (APE) FOR EACH FUSION ALGORITHM IN UNITS OF METERS OR METERS/DEGREES. THE MINIMUM APES IN EACH DATASET

ARE BOLDED. ’-’ MEANS THE ESTIMATOR DIVERGED OR THE APE IS LARGER THAN 100 M/DEG.

GNSS-only Algorithms Multi-sensor Fusion Algorithms
GICI-LIB RTKLIB GICI-LIB SOTA

Dataset ID RTK DPPP MPPP RTK DPPP RTK LC RTK TC RTK SRR RTK RRR OB-GINS IC-GVINS VINS-F

Open-sky
1.1 0.05 0.81 0.38 0.40 0.70 0.03 / 0.56 0.03 / 0.55 0.03 / 0.54 0.03 / 0.54 0.05 / 2.46 0.48 / 2.23 0.36 / 3.99
1.2 0.02 0.35 0.38 0.07 0.35 0.03 / 1.70 0.03 / 1.69 0.04 / 1.74 0.04 / 1.69 0.09 / 4.54 0.04 / 0.88 0.37 / 10.7

Tree-lined
2.1 0.19 2.09 1.25 0.85 5.52 0.19 / 0.57 0.16 / 0.58 0.19 / 0.56 0.16 / 0.56 - / - 1.32 / 1.60 0.41 / 8.73
2.2 2.58 3.62 2.54 0.96 4.55 2.57 / 1.51 0.27 / 1.53 2.57 / 1.49 0.31 / 1.39 2.52 / 7.07 2.58 / 2.22 2.61 / 15.9

Typical
Urban

3.1 0.88 1.92 1.62 2.07 6.40 0.87 / 1.49 0.16 / 1.60 0.87 / 1.56 0.29 / 1.58 56.8 / 26.7 32.0 / 16.4 17.6 / 34.1
3.2 0.81 6.46 2.64 10.2 21.2 0.73 / 1.45 0.19 / 1.47 0.71 / 1.39 0.19 / 1.26 - / - 72.3 / 2.36 2.65 / 23.8
3.3 0.60 3.38 2.31 1.57 4.48 0.28 / 1.45 0.28 / 1.45 0.29 / 1.43 0.30 / 1.28 12.9 / 4.12 0.60 / 0.90 - / -

Dense
Urban

4.1 0.11 3.94 3.07 3.07 6.27 0.10 / 0.52 0.07 / 0.52 0.10 / 0.51 0.08 / 0.54 0.14 / 1.56 0.22 / 0.68 0.37 / 33.9
4.2 6.45 4.82 2.96 10.2 8.07 10.7 / 1.99 2.45 / 1.45 10.1 / 1.64 2.09 / 1.39 55.1 / 97.5 13.8 / 4.30 - / -
4.3 - 8.59 16.8 33.0 28.0 88.6 / 3.05 2.19 / 1.75 83.7 / 2.90 1.61 / 1.76 - / - - / - - / -

Long
Term

5.1 1.89 2.44 1.65 3.78 5.62 1.87 / 0.68 0.48 / 0.60 1.28 / 0.63 0.21 / 0.63 5.09 / 3.01 3.79 / 1.13 - / -
5.2 2.46 2.38 3.59 2.71 3.99 2.40 / 0.52 0.14 / 0.53 2.39 / 0.43 0.11 / 0.49 33.6 / 2.16 2.96 / 0.91 - / -

UrbanNav mid 6.69 / / 7.84 / 6.70 / 3.31 2.24 / 1.17 8.36 / 1.98 3.40 / 1.30 - / - 48.1 / 7.75 14.6 / 13.2
UrbanNav deep 8.74 / / 13.8 / 8.85 / 3.16 3.93 / 1.88 7.81 / 2.14 2.46 / 1.64 - / - 54.1 / 11.0 - / -
UrbanNav harsh 21.0 / / 33.2 / 18.0 / 5.14 7.04 / 3.55 21.3 / 2.65 6.73 / 1.44 - / - - / - - / -

Satellite Positioning Reference Station Network (SatRef) as
the reference station for the RTK algorithm. Since there are no
SSR messages recorded, we can not apply the PPP algorithm
for this dataset.

To demonstrate the criteria for selecting scenarios, we
present the GICI-SPP results and the number of satellites
in Table IV. Here, the availability represents the percentage
of valid solutions over the whole period with an expected
solution output rate (10 Hz for the GICI dataset and 1 Hz for
UrbanNav). Please note that the data in Table IV is influenced
by both the scenes and the quality of GNSS equipment.

B. Performance Evaluation

We evaluate the Absolute Pose Error (APE) for each trajec-
tory by comparing the real-time outputs of the algorithms with
the ground truth. The results are summarized in Table V. The
PPP algorithms are divided into dual-frequency PPP (DPPP)
and multi-frequency PPP (MPPP) to ensure a fair comparison
because the RTKLIB only supports DPPP. Since OB-GINS,
IC-GVINS, and VINS-Fusion rely on GNSS solutions as
inputs, their workflows are fed using the solution produced
by GICI-LIB RTK. Moreover, the initialization procedure of
IC-GVINS often fails under non-fixed GNSS statuses, so we
adjusted the starting point of the trajectories for IC-GVINS
to ensure valid initialization. Besides, OB-GINS lacks an
initialization algorithm, thus we use the initialization output of
IC-GVINS for OB-GINS as they are part of the same software
series.

It is clear that our algorithms outperform the other open-
source software in most of the datasets. For the RTK algo-
rithms, GICI-LIB leverages the advantage of FGO in better
handling the non-linearity, compared with the EKF-based
RTKLIB. Furthermore, the improved AR algorithm, as de-
scribed in Section IV-E, enhances the performance of GICI-
RTK by increasing the fixation rate and reliability, thereby
enabling the attainment of more centimeter-level epochs. In

terms of PPP algorithms, GICI-PPP outperforms RTKLIB due
to the use of the FGO algorithm, improved handling of various
GNSS error sources, and support for multiple frequencies.

The multi-sensor fusion algorithms also outperform other
SOTA algorithms. The result of the VINS-Fusion is expected
owing to its loose integration paradigm. Although OB-GINS
and IC-GVINS have the same formulation as our LC and SRR
algorithms, they still failed to perform as expected. The major
reason is that they only utilized GNSS position, but did not use
GNSS velocity, which makes their estimator having difficulty
in handling the significant nonlinearity. There are also some
other minor helpers for our better performance, such as more
comprehensive motion constraints and better outlier detection.

Focusing on the GICI-LIB algorithms, we notice that the
estimators achieving greater accuracy are those using GNSS
tight integrations. This is because raw GNSS measurements
are utilized, which enables easier identification of outliers
for each satellite, and permits satellite measurements to be
used when the number of observed satellites is insufficient for
RTK-only estimation. Moreover, the RRR estimator reaches
the best performance in most of the trajectories due to the
exhaustive utilization of multi-sensor measurements, but the
improvement is not as much as one can expect relative to the
TC estimator because of our greater tendency towards GNSS
when we design the entire estimator. One can explore the
ability of visual estimation to further improve the performance
of the visual-relevant estimators.

C. Validation of the Flexible FGO Structure

In this section, we validate whether the performance is de-
graded when applying our flexible FGO structure to arbitrarily
add sensor measurements. The GICI RTK SRR algorithm is
used to conduct several strategies of measurement addition.
The strategies are: S1) Re-sequencing measurements with a 0.2
s time buffer, and rounding the GNSS timestamps to nearby
image timestamps, as similar as [15]. S2) Re-sequencing with
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TABLE VI
ABSOLUTE POSE ERROR (APE) FOR THE FOUR STRATEGIES OF FGO

CONSTRUCTION IN UNITS OF METERS/DEGREES.

Dataset ID S1 S2 S3 S4
5.1 1.46 / 0.64 1.34 / 0.65 1.42 / 0.61 1.28 / 0.63
5.2 2.64 / 0.44 2.57 / 0.45 2.54 / 0.46 2.39 / 0.43

the same configuration, and interpolating GNSS timestamps to
nearby image timestamps, as similar as [6]. S3) Re-sequencing
and creating nodes in distinct timestamps. S4) Flexible in-
serting and creating nodes in distinct timestamps, which is
utilized in GICI-LIB. To ensure real-time performance, the
output timestamp is aligned to the latest timestamp of IMU
measurement. Every time when a new IMU measurement is
received, the latest backend solution will be integrated to the
IMU timestamp and outputted.

We revisit our long-term datasets to conduct these exper-
iments. The APEs of the four strategies are shown in Table
VI. The results show that our proposed strategy achieves the
highest performance. Strategies S1 and S2 perform unsatisfac-
torily due to the loss of measurement precision when applying
rounding or interpolating. Strategy S3 does not outperform due
to the longer INS integration duration for output, caused by
the re-sequencing buffer.

Consequently, our FGO structure is able to guarantee high
precision whilst ensuring user flexibility.

VI. CONCLUSION

In this letter, we proposed a GNSS/INS/Camera integrated
navigation library and released a comprehensive dataset to
fully leverage the potential of GNSS algorithms. The inte-
gration scheme and precision grade of GNSS formulations
are clarified. By evaluating the GNSS-only and RTK-based
integration algorithms, we demonstrated that GNSS can ex-
hibit an extraordinary and crucial role in providing precise
fused solutions if the capabilities of its measurements are
exhaustively exploited. While our implementations were based
on the fundamental GNSS formulations, we anticipate that
exploring the relationships between these formulations and
improving outlier rejection strategies will further enhance the
performances. We hope this work could assist the community
to further explore the potential of GNSS-based multi-sensor
integrated navigation.
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