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CoNi-MPC: Cooperative Non-inertial Frame Based
Model Predictive Control

Baozhe Zhang†1, 3, Xinwei Chen†1, 2, Zhehan Li1, 2,
Giovanni Beltrame4, Chao Xu1, 2, Fei Gao1, 2, and Yanjun Cao1, 2

Fig. 1: A quadrotor orbits a UGV by applying CoNi-MPC controller with a pre-computed circular trajectory in the UGV
non-inertial frame. (a) is the accumulated shots of the quadrotor from the view of a camera on the UGV, which shows the
relative circular trajectory of the quadrotor. (b) shows the experiment from a third-person view in the world frame, in which
the flight trajectory appears chaotic along with the UGV S-shape trajectory.

Abstract—This paper presents a novel solution for UAV control
in cooperative multi-robot systems, which can be used in various
scenarios such as leader-following, landing on a moving base, or
specific relative motion with a target. Unlike classical methods
that tackle UAV control in the world frame, we directly control
the UAV in the target coordinate frame, without making motion
assumptions about the target. In detail, we formulate a non-
linear model predictive controller of a UAV, referred to as
the agent, within a non-inertial frame (i.e., the target frame).
The system requires the relative states (pose and velocity), the
angular velocity and the accelerations of the target, which can
be obtained by relative localization methods and ubiquitous
MEMS IMU sensors, respectively. This framework eliminates
dependencies that are vital in classical solutions, such as accurate
state estimation for both the agent and target, prior knowledge of
the target motion model, and continuous trajectory re-planning
for some complex tasks. We have performed extensive simulations
to investigate the control performance with varying motion
characteristics of the target. Furthermore, we conducted real
robot experiments, employing either simulated relative pose
estimation from motion capture systems indoors or directly from
our previous relative pose estimation devices outdoors, to validate
the applicability and feasibility of the proposed approach.

Index Terms—Motion Control, Non-Inertial Model, Non-
Linear MPC, Leader-Follower, Autonomous Landing
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I. INTRODUCTION

RECENTLY, quadrotors or drones, due to their agility and
lightweight nature, have been widely used in surveil-

lance, search-and-rescue, and cinematography. The rapid de-
velopment has led to a growing demand for multi-robot sys-
tems such as UAV-UGV pairs [1], leader-follower systems [2],
multi-agent formation [3], autonomous landing [4], [5], etc.
This paper focuses on an air-ground robot system in which
the UAV (referred to as the agent/quadrotor/drone/follower) is
actively controlled to fulfill a task along with an independently
controlled UGV (referred to as the target/base/leader). State
estimation, planning, and controllers are crucial components
in developing versatile systems for interactive or cooperative
tasks. In classical pipelines, relative state, typically obtained
through direct mutual measurements or subtraction from
global state estimations, is used as a feedback to control the
motion of UAVs in the world frame [6]. In these pipelines,
controllers require a complete system model of the quadrotor.
Furthermore, in complex tasks such as in [7], [8], appropriate
trajectories and continuous re-planning are needed to achieve
good performance.

To achieve good performance for the air-ground system,
current state-of-the-art air-ground (agent-target) collaborative
planning-control systems such as [7], [8] have to face the
following challenges:

• Accurate absolute state estimations for both the agent
and the target to achieve demanding high-precision rela-
tive motion planning and control, which is hard to be
guaranteed in challenging environments (GPS denied,
feature-less) or for long-term tasks (accumulated drifts);

• A prior kinematic model of the target is necessary to
be known by the agent to predict the target’s movements,
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which may fail if the given model is not accurate or the
assumptions of the target model do not hold;

• Continuous trajectory re-planning of the agent is
needed to be responsive and adaptive to the target’s
motions, which can lead to heavy computation loads.

Therefore, we propose CoNi-MPC that directly controls the
agent in a target’s body frame utilizing relative estimations
and target’s IMU data, eliminating all dependencies in absolute
world frame.

Typically, a full SLAM stack that fuses multiple sensors
(vision, lidar, GPS, IMU, etc.) is used to acquire accurate state
estimation. However, SLAM algorithms generally demand
high computational cost and rely on good environment features
to achieve robust estimation. Maintaining long-term SLAM
for a system that only requires interactive actions may be
also considered redundant. At the same time, having prior
knowledge of the kinematic model of the moving target is nec-
essary for the agent to predict the target’s following trajectory
accurately. However, this could be difficult to be guaranteed
considering the target’s individual tasks and motion. Even with
accurate state estimation and a precise kinematic model, the
dynamic evolution of both the target’s state and the agent’s
state demands continuous trajectory re-planning.

To overcome these challenges and directly control the
agent in the target’s body frame, we design CoNi-MPC, a
novel systematic solution that formulates a non-linear model
predictive controller of a UAV within a non-inertial frame,
specifically the target frame. The system only requires the
relative states (pose and velocity) , the angular velocity and the
accelerations of the target, which can be obtained by relative
localization methods and ubiquitous MEMS IMU sensors,
respectively. This solution eliminates the dependency on state
estimation information in the world frame, and only requires
relative estimation. We directly controls the UAV in the target
coordinate frame without making any motion assumptions
about the target. Additionally, the system does not require
trajectory re-planning even for some complex tasks.

This CoNi-MPC framework can be directly applied to
various application tasks, such as leader-following, directional
landing, and complex relative motion control. All these tasks
can be implemented by changing the reference within the
model. In the leader-follower control, a single fixed relative
point within the leader’s frame serves as an input to guide the
follower. For landing or more complex inter-robot interactive
tasks, the agent control only requires one pre-computed trajec-
tory relative to the target, without any re-planning requirement.
Fig. 1 shows snapshots of a drone circling over a ground
vehicle (orbit flight), where the drone is controlled in the
ground vehicle’s frame (non-inertial frame) and the vehicle
follows an S-shape trajectory (unknown to the drone). The
drone’s trajectory traces a circle, as viewed from the vehicle’s
perspective, while the trajectory of the drone in the world
frame is rather complex.

To the best of our knowledge, this is the first work realizing
complex interactions between an agent and a target that only
requires relative position estimation and the target’s IMU data.
The contributions of our work are:

• We propose a systematic framework for drone-target
relative motion control using MPC by fully modeling the
drone in the target’s non-inertial body frame. The system
does not need to know the absolute pose and motion of
target in the world frame.

• With the relative motion model, we group the target-
dependent elements together and substitute it with IMU
information from target body frame. This operation elim-
inates the dependency on the data in the world frame and
makes this method feasible in real-world setup.

• The proposed MPC controller works as a unified frame-
work supporting various UAV-target interaction tasks (eg.
leader-following, aggressive directional landing, dynamic
rings crossing, and orbit flight) with high tracking accu-
racy while eliminating continuous trajectory re-planning.

II. RELATED WORK

Autonomous landing [6], [9], leader-following systems [10],
[11], and tracking [12] have been extensively investigated
individually, considering their unique task characteristics and
challenges. Niu et al. [6] introduce a vision-based autonomous
landing method for UAV-UGV cooperative systems. They
employ multiple QR codes on the landing pad of the UGV to
obtain estimations of relative distance, velocity and direction
between the two vehicles, as well as UAV state from Visual
Inertial Odometry (VIO) or GPS. Based on these estimations,
a velocity controller utilizing a control barrier function (CBF)
and a control Lyapunov function (CLF) are designed for the
quadrotor landing on the moving UGV. Wang et al. [9] propose
a systematic approach for vision-based autonomous landing
that utilizes EKF and VIO for pose estimation and a similar
marker detection method obtaining the relative information
between the UAV and the UGV. Han et al. [10] utilize a com-
plex Laplacian based similar formation control algorithm over
leader-follower networks with the actively estimated relative
position. Giribet et al. [11] propose a tracking controller based
on dual quaternion pose representations and cluster-space in a
leader-follower task, with the objective of minimizing steady-
state error. The UAVs in these works are all controlled in
the world frame and therefore the global state estimation
is essential for the system. In our system, we formulate
the model in a pure relative motion control in the target
frame. The system avoids involving the state estimation in the
world frame, which can be difficult or fragile under specific
conditions.

While relative motion based control is more widely used
in the field of space technology, such as target tracking and
docking for approaching operations [13], a limited number of
works in robotics explore modeling and controlling relative
motion for UAV-UGV cooperation, particularly in the context
of quadrotor control. Marani et al. [14] investigate the dynam-
ics of a quadrotor in a non-inertial frame without rotation,
assuming the referencing non-inertial frame only performs
translational movement, and they use a sliding mode controller
for trajectory tracking. Jin et al. [15] investigate the relative
motion model of a quadrotor in a non-inertial frame and pro-
pose two controllers (relative position and attitude controllers)
for a quadrotor landing on a moving vessel. Although they
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directly address relative motion constraints, the control input
remains reliant on attitude in a world frame, necessitating
global state estimation. Li et al. [16] propose a robocentric
model-based visual servoing method for hovering and obstacle
avoidance for a single drone, employing model predictive
control. Their method constructs the “relative” states in the
drone’s body frame by using the RGB-D camera to detect
targets, which eliminates the state dependency on the world
frame. DeVries et al. [17] proposed a distributed formation
controller in a non-inertial reference frames but still map the
agent’s states and control inputs to an inertial frame.

The model predictive control framework serves as the base
of many works related to direct control and trajectory planning
in the literature. Falanga et al. [12] propose a non-linear MPC
(PAMPC) method for quadrotors, combining perception and
action terms into the optimization. A VIO estimator and the
PAMPC method are applied to allow the quadrotor to follow
a trajectory while maintaining a point of interest in its field of
view. Ji et al. [18] propose a disturbance-adaptive receding
horizon low-level replanner for autonomous drones, which
can generate collision-free and temporally optimized local
reference trajectories. Similarly, Romero et al. [19] handle
the problem of generating temporal optimized trajectories
for quadrotors. The proposed MPCC also integrates temporal
optimization into the standard MPC formulation to solve the
time allocation problem online. In [20], a stochastic and
predictive MPC (SNMPC) is proposed to minimize the total
amount of uncertainty in the target observation and the robot
state estimation, to effectively maintain the desired pose of the
robot relative to the moving target.

The aforementioned works or their applications in multi-
robot cooperation still require global state estimation and
frequent global path re-planning. Our work, based on relative
estimation, is inherently suitable for cooperation tasks without
requiring global state estimation. Moreover, costly global path
re-planning can be avoided thanks to the system model in the
non-inertial frame.

III. PROBLEM FORMULATION AND CONI-MPC

We consider a cooperative system consisting of a UGV as
the target and a UAV as the agent. The objective is to regulate
the motion of the UAV in conjunction with the UGV for multi-
robot cooperation tasks, such as leader-follower, landing, orbit
flight, etc.

A. Notations

As shown in Fig. 2, we define the agent frame as B attached
to the body frame of the quadrotor, the target frame as N
attached to the body frame of the UGV, and frame W is the
inertial world frame. We denote scalar numbers with lower-
case letters, vectors with bold lowercase letters, and matrices
with bold uppercase letters. The left superscript indicates the
coordinate system where the variable is expressed. If no other
specification, values without any left superscript are expressed
in the world frame W . For example, we denote the relative
position of frame B w.r.t. frame N (non-inertial) by NpB ,
the relative velocity by NvB , and the relative orientation by
NqB . The right superscript x, y, or z on a vector means the

Fig. 2: The transformation relationship among the quadrotor
(the agent) body frame, the non-inertial (the target) frame,
and the world frame. The target is controlled externally, and
the agent is controlled by feeding reference (e.g. trajectory)
defined in the target’s frame.

TABLE I: Table of Notations

NpB ≜ Relative position of the agent in the
target’s frame

NvB ≜ Relative velocity of the agent in the
target’s frame

∗q# ≜ Unit quaternion from # to ∗
∗R# ≜ Rotation matrix from # to ∗
∗t−−→NB ≜ Translation vector from N to B ex-

pressed in ∗
t# ≜ Translation vector from W to # ex-

pressed in W

g ≜ Gravitational acceleration
BTB ≜ Normalized collective thrust of B, sys-

tem input
BΩB ≜ Body rate of B, system input
NaN ≜ Linear acceleration of N expressed in N
NΩN ≜ Body rate (angular velocity) of N
NβN ≜ Angular acceleration of N

(r, v, ω) ≜ Experiment parameter configuration

element of the vector, e.g., tx is the x element of t. ⊙ means
quaternion Hamilton product. The skew-symmetric matrix of
a vector t is denoted as [t]×. The measured vector v from
sensors is denoted as v̂. Table I lists the main notations used
in this paper.

B. Quadrotor System Model in Non-Inertial Frame

In this section, we derive the quadrotor system model
in the non-inertial frame N by introducing an intermediate
inertial world frame W . Our derivation shows that all the
dependencies on this world frame are eliminated at the end.
Fig. 2 shows the relationship among the three frames. The
relative position is:

NpB = NRW t−−→NB (1)

where t−−→NB = tB−tN is the translational vector pointing from
the origin of frame N to frame B. Then we get the relative
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velocity by applying a time derivative as following

N ṗB = NvB =
d

dt
(NRW )t−−→NB + NRW ṫ−−→NB

= −[NΩN ]×
NRW t−−→NB + NRW ṫ−−→NB

= −[NΩN ]×
NpB + NRW ṫ−−→NB

(2)

The relative acceleration is the time derivative of the relative
velocity

N v̇B = − d

dt
([NΩN ]×)

NpB − [NΩN ]×
N ṗB

− [NΩN ]×
NRW ṫ−−→NB + NRW ẗ−−→NB

= − d

dt
([NΩN ]×)

NpB − [NΩN ]×
NvB

− [NΩN ]×(
NvB + [NΩN ]×

NpB) +
NRW (ẗB − ẗN )

= −[NβN ]×
NpB − 2[NΩN ]×

NvB − [NΩN ]2×
NpB

+ NRB
BTB + NRWg − NRWaN︸ ︷︷ ︸

values relying on estimations in W

(3)
where ẗB in Equ. 3 is the acceleration of a quadrotor modeled
in the world frame as a rigid body as in [21]

ẗB = WRB
BTB + g (4)

BTB = [0, 0, T ]⊤ is the normalized collective thrust of the
quadrotor and T =

∑
i Ti, i ∈ {1, 2, 3, 4} is the normalized

thrust force from four motors, g = [0, 0,−g]⊤ is the gravity,
NΩN is the body rate of the non-inertial frame, NβN is the
angular acceleration of the non-inertial frame, NRWaN is the
linear acceleration of the non-inertial frame expressed in the
non-inertial frame.

The rotation matrix from B to N is
NRB = NRW

WRB (5)

The time derivative of the above rotation matrix is

NṘB =
d

dt
(NRW )WRB + NRW

d

dt
(WRB)

= −[NΩN ]×
NRB + NRB [

BΩB ]×

(6)

At the same time, we show the quaternion here for model
implementation in the next section

N q̇B = N q̇W ⊙ WqB + NqW ⊙ W q̇B

= −1

2
NΩN ⊙ NqB +

1

2
NqB ⊙ BΩB

(7)

In the system model of Equ. 3 and Equ. 7, we almost
eliminate the dependency on values in world frame W except
for NRW in Equ. 3. We notice that the last two terms
(NRWg−NRWaN ) in Equ. 3 are actually the total measured
acceleration of target expressed in target’s frame, which can
be handled using the data from an IMU attached to the
non-inertial frame to the relative system model directly. In
detail, Equ. 3 contains the projected gravitational accelera-
tion NRWg and the acceleration of the non-inertial frame
NaN (= NRWaN ). The true acceleration of a MEMS IMU
sensor can be calculated by applying the negative gravity in

the target’s body frame as

NaN = NRW

W 0
0
−g

+

Nâxây
âz

 (8)

where âx, ây , and âz are the measured acceleration data from
the IMU. With Equ. 8, Equ. 3 can be reformulated to
N v̇B = −[NβN ]×

NpB − 2[N Ω̂N ]×
NvB − [N Ω̂N ]2×

NpB

+ NRB
BTB − N âN

(9)
where N âN and N Ω̂N are the measured linear acceleration
and angular velocity from the IMU, respectively.

C. CoNi-MPC

We propose a Cooperative Non-inertial Frame Based Model
Predictive Control (CoNi-MPC) with the above system model
targeting relative motion control. We define the cooperative
system state x = [NpB ;

NvB ;
NqB ;

N âN ; N Ω̂N ; NβN ] ∈
R19. The first three vectors NpB , NvB , and NqB , as defined
in above section, are the relative quantities in the system. The
last three vectors N âN , N Ω̂N , and NβN contain the dynamic
information of the non-inertial frame. The time derivative of
the angular velocity is d

dt (
N Ω̂N ) = NβN . For the linear and

angular accelerations, we assume their change rates are 0 in
each control window, i.e., N ˙̂aN = 0 and β̇N = 0. As they are
relatively high order values, this assumption does not affect the
performance very much for our system. We put the dynamic
information of the non-inertial frame in the state vector
for convenience in the implementation part and for future
improvement on a actively collaborative system (expanding
the control vector and adding the dynamic evolution of frame
N ). The control input is u = [T ; BΩx

B ;
BΩy

B ;
BΩz

B ] ∈ R4

where T =
∑4

i=1 Ti.
We define the quadratic cost

C(x,u) = ∥x(t)− x(t)ref∥Q + ∥u(t)− uh∥R

where ∥x∥M = x⊤Mx and uh = [g; 0; 0; 0] is the hover
input. The discretized optimization problem is

min
u0,...,uN−1

N−1∑
k=0

(∥x(k)− x(k)ref∥Q + ∥u(k)− uh∥R)

+ ∥x(N)− x(N)ref∥Qfinal

s.t. x(0) = x0

x(k + 1) = fd(x(k),u(k))

Tmin ≤ T ≤ Tmax

∥BΩx
B∥ ≤ Ωrp

∥BΩy
B∥ ≤ Ωrp

∥BΩz
B∥ ≤ Ωyaw

(10)
where x0 is the state estimation of the system in each control
iteration, fd is the discretized system model, Tmin is the
minimum thrust, Tmax is the maximum thrust constraint, Ωrp
is the maximum roll and pitch angular speed, and Ωyaw is the
maximum yaw angular speed.
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As our system does not rely on any information in the
global world frame and only relates to the agent and target, the
system can handle the cooperation between robots elegantly.
Tasks like leader-follower, landing, orbit flight, rings crossing,
etc. can be solved by simply defining the reference in the
CoNi-MPC. The advantage of the system is that the reference
is fixed, which is just a pre-computed expression of the
relative motion between robots and does not need any online
replaning. We classify the reference into two categories, fixed-
point scheme and fixed-plan scheme, corresponding to leader-
follower and complex motion respectively.

1) Fixed point scheme (leader and follower): The proposed
method can be easily used for leader-follower control. CoNi-
MPC only needs a fixed point (containing the full state) so
as to let the agent track that point while the target moves.
For example, an array containing the same point reference,
x(k) = [(0, 0, z),0⊤, (1, 0, 0, 0),0⊤,0⊤,0⊤]⊤, fed to the
controller will let the agent hover at the NpB = (0, 0, z)⊤

point in the non-inertial target frame with the same orientation
of the target frame, even if the target frame may arbitrarily
move in the world frame.

2) Fixed plan scheme (complex trajectories): For complex
tasks such as landing, orbit flight, and rings crossing, we
simply need to define the trajectory of the agent in the target
frame. The landing tasks can use a trajectory approaching the
origin of N frame and the orbit flight is a circle trajectory
directly. We adopt our previous work of a minimum control
effort polynomial trajectory class named MINCO [22] to
define the relative trajectory between robot. MINCO trajectory
can achieve smooth motions by decoupling the space and
time parameters of the trajectory for users, which greatly
improves the quality and efficiency of trajectory generation.
We only need to take initial and terminal relative states of
the UAV as boundary conditions, and specify the position of
intermediate waypoints and the time duration of each piece
to obtain a polynomial trajectory p(t) with minimum jerk.
Furthermore, we limit the maximum relative velocity and ac-
celeration to guarantee dynamic feasibility. After discretizing
p(t) and calculating the orientation based on the differential
flatness of multicopters [23], we can get a series of reference
states {[NpB(k) ;

NvB(k) ;
NqB(k)]}Nk=0. Thus, the proposed

controller can be fed with only one fixed global trajectory
to achieve autonomous landing and tracking while the UGV
moves.
D. Implementation

Fig. 3 shows the system overview of UAV-UGV cooperative
motion control system. A CoNi-MPC controller, implemented
using ACADO toolkit [24], is employed by the UAV and
works as a high-level controller to produce thrust and body rate
control command u0. A low-level multi-stage PID controllers
is used to track the control command. CoNi-MPC needs a pre-
defined desired relative motion trajectory refer to the UGV
as motion control target. With input of UGV’s IMU mea-
surements and relative state estimations, CoNi-MPC solves a
optimization via multiple shooting technique and Runge-Kutta
integration scheme. An average signal filter is applied to the
IMU data from the non-inertial frame, which is transmitted
through ROS’s multi-machine communication mechanism in

Fig. 3: System overview and implementation of UAV-UGV
cooperative motion control using CoNi-MPC.

current setup. The relative estimation can be generated either
from a motion capture system or directly from our previous
work of CREPES [25], a relative estimation device. For each
control iteration of the MPC optimization problem, we set
the time window as T = 2 seconds and discretization time
step dt = 0.1 second. The real control loop time of the MPC
is around 10 ms, which is smaller than dt = 100 ms. This
implementation differs from standard MPC formulation, where
CoNi-MPC uses latest relative state to produce the control
command much more frequently, but with relatively small
scale optimization problem to save computation cost. In each
iteration, the initial state is set as the current estimated relative
state xest. For N âN , N Ω̂N , and NβN , the penalty terms for
them are set to Q(i, i) = 0, ∀i = 10 . . . 19. Note that in the
simulation and experiment, since the angular acceleration is
hard to retrieve, we set this term to 0 both in estimations and
references, which assumes that the non-inertial frame rotates
with a constant angular velocity in each prediction horizon.

IV. EXPERIMENTS

Consider a UAV-UGV cooperative system, the uncontrolled
motions of the UGV place a crucial role for the system
performance. Most results of UAV-UGV cooperative tasks,
such as the autonomous landing in [6] and [9], only show the
UGV with constant linear velocities without any aggressive
rotational movements. However, whether that UAV can track
the UGV with both aggressive linear and angular motions
well is the key point to consider when applying this system
to corresponding tasks. From Equ. 9 it can be inferred that
NpB , N Ω̂N , NβN , and N âN affect the relative acceleration
N v̇B . Meanwhile, NΩN , NpB , and the relative linear velocity
in W , ṫ−−→NB, are coupled in the relative velocity (Equ. 2).
In order to test the performance of the proposed controller,
we decouple the variables and pick the parameters (r, v, ω)
to conduct parameter study. These parameters stand for the
range (x-y plane) between robots, linear and angular velocity
of the target, which also fits the cooperative task intuitively.
Parameters definition and theoretical analysis is as following.

• r ≜ −Npx
B , s.t. Npx

B < 0, Npy
B = 0, Npz

B = z(t) ≥ 0
where z(t) can be fixed or time-varying

• v ≜ (NRW ṫN )x, s.t. (NRW ṫN )x > 0, (NRW ṫN )y = 0,
(NRW ṫN )z = 0
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Fig. 4: Mean errors for tracking a point with different (r, v, ω) settings. (a-b) error distribution of r − v with ω = 0.31 and
0.71. (c-d) error distribution of ω − r with v = 0.3 and 0.7. (e-f) error distribution of ω − v with r = 0.3 and 0.7.

Fig. 5: Mean errors for tracking a landing trajectory with different (r, v, ω) settings. (a-b) error distribution of r− v with ω =
0.31 and 0.71. (c-d) error distribution of ω − r with v = 0.3 and 0.7. (e-f) error distribution of ω − v with r = 3.3 and 3.7.

Fig. 6: Mean errors for tracking a point with different (r, v, ω)
settings. (a) illustrates the data points with tracking error ≤
0.30 m. (b) shows three surfaces of data points with around
tracking errors of 0.10 (red), 0.05 (green), and 0.01 (blue) m.

• ω ≜ NΩz
N , s.t. NΩx

N = 0, NΩy
N = 0, NΩz

N > 0

For simplicity, if no other specification, the units of the config-
uration (r, v, ω) are m, m/s, and rad/s by default, respectively.
We expand Equ. 2 and 9 in three dimensions to show how
(r, v, ω) are involved in the system model:
Nvx

B = (NRW ṫB)
x − v

Nvy
B = (NRW ṫB)

y − wr
Nvz

B = (NRW ṫB)
z

N v̇x
B = 2ω(NRW ṫB)

y + (NRB
BTB)

x − (N âN )x

N v̇y
B = −2ω(NRW ṫB)

x + 2ωv + (NRB
BTB)

y − (N âN )y

N v̇z
B = (NRB

BTB)
z − 9.8

(11)
In the experiment, apart from the range parameter, the target

UGV is programmed with a circular motion with different v, w
combination in the world frame (the radius of circle is v/ω).
We classify the experiments into two schemes, fixed point and
fixed plan scheme. The first is to control the quadrotor follow
a fixed point (e.g., NpB = (−r, 0, z)⊤) in the non-inertial
frame. We set the z as 2.0 m in simulation and 1.0 m in
real experiment. For example, the configuration (r, v, ω) =

Fig. 7: Mean errors for tracking a landing trajectory with
different (r, v, ω) settings. (a) illustrates the data points with
tracking error ≤ 0.30 m. (b) shows three surfaces of data points
with around tracking errors of 0.25 (red) and 0.20 (green) m.

(1.0 m, 1.0 m/s, 0.5 rad/s) represents the quadrotor will follow
a fixed point (−1.0 m, 0.0 m, 2.0 m) in the non-inertial frame
with forward 1.0 m/s speed and counter-clockwise 0.5 rad/s
rotating speed. The other test scheme is fixed plan experiment.
The configuration has same meaning with the (v, w) but the r
stands for the inertial range of the fixed landing trajectory.
The quadrotor will follow the pre-computed trajectory to
land at the origin of the non-inertial frame. For example,
r = 1.0 represents that the landing trajectory will start at
NpB = (−1.0, 0.0, 2.0)⊤ and end at NpB = (0, 0, 0)⊤. For
each scheme, we define the tracking error ei at each control
iteration i as ei = ∥(NpB)est − (NpB)ref,i(0)∥ which is the
distance that the the current estimated point deviates from the
first point of the reference window. The mean tracking error
for each scheme is defined as ē =

∑
i ei/M , where M is the

total number of iterations.

A. Simulation

The numerical simulation is performed on a work station
with an AMD Ryzen PRO 5995WX CPU, where we use
64 Docker containers simultaneously simulating the quadrotor
system model with different parameter configurations using
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Fig. 8: The quadrotor and UGV in our real experiments.

the proposed controller. The MPC in the simulation runs over
100Hz. For all simulations, the range of the control inputs is
set to

• T ∈ [2.0, 20.0] m/s2

• BΩi
B ∈ [−3.14, 3.14] rad/s ∀i ∈ {x, y, z}

The penalty matrices Q and R and the constraints are the
same. The simulated relative estimation is added with a
Gaussian noise to represent real sensors, where σ(NpB)

i =
0.025 m, σ(NvB)

i = 0.025 m/s, σ(θ(NqB))
i = 0.044 rad

(5◦, θ(·) is the rotation angle of the quaternion along the
rotation axis), σ(N âN )i = 0.025 m/s2, and σ(NΩN )i =
0.044 rad/s (5◦/s), where i ∈ {x, y, z}.

The parameter configurations of the fixed-point scheme are
set with r ∈ [0.0, 2, 0], v ∈ [0.0, 2.0], and ω ∈ [0.01, 2.01] all
with stepsizes of 0.1. Fig. 4 illustrates the tracking errors for
different r, v, ω combinations by selecting two example values
for each parameter. The parameters for the fixed-plan scheme
are: r ∈ [3.0, 5.0], v ∈ [0.0, 2.0], and ω ∈ [0.01, 2.01] all with
stepsizes of 0.1. Fig. 5 illustrates the mean tracking errors
with the same logic. We consider tracking error more than
0.30 m as tracking failure and they are shown in the dark red
regions in Fig. 4 and 5. In Fig. 6 and 7, we show all the errors
in 3D in the left and selected error surfaces (relation between
result error and r, v, ω) in the right. From these figures, we can
conclude that the angular velocity ω of the non-inertial frame
affects the tracking error most. For a fixed ω, the tracking
error increases as v grows. For a landing task, the simulations
can help find the safe (r, v, ω) parameters that can guarantee
the success of landing.

B. Real-World Experiment

We have conducted both indoor and outdoor experiments
to verify our system. The relative estimation can be gener-
ated directly from CREPES [25] or computed from NOKOV
motion capture system for outdoor or indoor experiments
respectively. Fig. 8 shows the UAV and UGV platform and
their dimensions. The quadrotor weighs 591.8g and has a
thrust-to-weight ratio of 2.03. The CoNi-MPC of UAV runs
on a onboard computer with an Intel Celeron J4125 processor
(2 to 2.7 GHz) and 8GB RAM. The proposed CoNi-MPC has
computation time (one iteration) of 4.58 ms on average with
standard deviation of 1.2 ms, which runs over 100Hz on the
onboard computer.

According to the numerical simulation results, we select
several representative parameters for both the fixed point and
fixed plan schemes. The constraints in the MPC formulation

TABLE II: Average Tracking Errors of Real Experiments

Fixed point Fixed plan

(r, v, ω) Error [m] (r, v, ω) Error [m]

(1.0, 1.0, 0.31) 0.13 (4.0, 1.0, 0.31) 0.15
(1.0, 1.0, 0.71) 0.23 (4.0, 1.0, 0.71) 0.19
(1.0, 0.3, 1.0) 0.13 (4.0, 0.3, 1.0) 0.21
(1.0, 0.7, 1.0) 0.14 (4.0, 0.7, 1.0) 0.24
(0.3, 1.0, 1.0) 0.11 (3.3, 1.0, 1.0) 0.18
(0.7, 1.0, 1.0) 0.16 (3.7, 1.0, 1.0) 0.23

Fig. 9: Fixed point experiment with (1.0, 1.0, 0.71) setting.
Blue (I) is for off-board mode; orange (II) is for UGV moving.

Fig. 10: Fixed plan experiment with (4.0, 1.0, 0.71) setting.
Blue (I) is for off-board mode; orange (II) is for UGV moving.

are the same as that in the simulation. The parameters and
the corresponding average tracking errors of both schemes are
listed in Table II, We plot the tracking performance alone with
time of two tests in details in Fig. 9 and 10.

Fig. 11 shows an qualitative result of a more demanding
task, dynamic multi-ring crossing experiment. By simply apply
a pre-computed 8-shape trajectory to CoNi-MPC, the quadro-
tor can continuously cross four rings attached to the four sides
of a UGV while the UGV moves along an S-shape trajectory
in the world frame. The diameter of rings for the UAV to
cross is only two times of the UAV’s width, about 100 mm
free at each side. Based on CREPES [25], we also performed
outdoor experiments where the UGV is controlled arbitrarily
and the UAV follows a circle trajectory. Please note there is
no GPS/SLAM/anchors technology used to realize this task.
Fig. 12 shows the tracking snapshots.

V. CONCLUSION

In this work, we present a thorough relative system dynamic
model for a quadrotor in a non-inertial frame with linear and
angular motions. Based on this model, we design and imple-
ment CoNi-MPC targeting cooperative UAV-UGV cooperation
tasks, by taking the UGV as a non-inertial frame. Unlike
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Fig. 11: Rings crossing experiment. The UGV moves with an
average speed of 0.15 m/s and a maximal speed of 0.38 m/s
while the UAV can cross the ring attached to it.

Fig. 12: Outdoor experiment. (a) is shot from the camera on
the UGV, and (b) is shot from third-person view. The UAV
follows a circular trajectory while the UGV arbitrarily moves.
(c) shows CREPES devices we use in the outdoor experiment.

traditional methods, this method bypasses the dependency
of global state estimation of the agent and/or the target in
the world frame. The system also avoids relying on prior
knowledge of the target and does not need complex trajectory
re-planning. CoNi-MPC only requires the relative states (pose
and velocity), the angular velocity and the accelerations of the
target, which can be obtained by relative localization methods
and ubiquitous MEMS IMU sensors, respectively. We have
performed extensive fixed-point and fixed-plan simulations and
considerable real world experiments to test the proposed sys-
tem. Experiment results show that the controller has promising
robustness and tracking performance. For future works, this
method can be extended to achieve multi-agent formation
control and more demanding cooperative tasks.
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