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Convex Geometric Trajectory Tracking using Lie
Algebraic MPC for Autonomous Marine Vehicles
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Abstract—Controlling marine vehicles in challenging environ-
ments is a complex task due to the presence of nonlinear
hydrodynamics and uncertain external disturbances. Despite
nonlinear model predictive control (MPC) showing potential in
addressing these issues, its practical implementation is often
constrained by computational limitations. In this paper, we
propose an efficient controller for trajectory tracking of marine
vehicles by employing a convex error-state MPC on the Lie
group. By leveraging the inherent geometric properties of the
Lie group, we can construct globally valid error dynamics and
formulate a quadratic programming-based optimization problem.
Our proposed MPC demonstrates effectiveness in trajectory
tracking through extensive-numerical simulations, including sce-
narios involving ocean currents. Notably, our method substan-
tially reduces computation time compared to nonlinear MPC,
making it well-suited for real-time control applications with long
prediction horizons or involving small marine vehicles.

Index Terms—Autonomous marine vehicles, Trajectory track-
ing, Model predictive control, Geometric control, Lie groups

I. INTRODUCTION

MARINE vehicles have become increasingly important
due to their diverse applications, such as underwater

exploration [1], the oil and gas industry [2], transportation and
environmental monitoring [3]. Advancements in automation
technology have led to the development of more advanced
marine vehicles capable of performing complex tasks in harsh
and challenging environments. However, controlling these
vehicles is still arduous due to their highly nonlinear dynamics
from complex hydrodynamic interactions and uncertain ex-
ternal disturbances. Additionally, characteristics such as low
controllability, low motion frequency, and long control signal
response time can lead to unstable behavior or overshoot,
posing potential risks in situations where precise control is
crucial, like collision avoidance, station keeping, and docking
[4].

While classical control methods like proportional-integral-
derivative (PID) controllers have been widely used for control-
ling marine vehicles [5], they struggle to operate effectively
in narrow waterways or heavy traffic circumstances [6]. As a
result, modern control techniques such as model predictive
control (MPC) have gained popularity in recent years [7],
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Fig. 1: The proposed geometric trajectory tracking algorithm framework. The
algorithm incorporates tracking error and hydrodynamics, which are defined
on a Lie group and linearized to construct a convex MPC algorithm. The
proposed MPC is applied to a marine vehicle within a simulation environment.

[8]. MPC is a powerful control approach that is capable of
handling constraints, nonlinear dynamics, and disturbances.
However, nonlinear MPC for marine vehicles requires solving
complex optimization problems, which can be computationally
demanding and difficult to implement in real-time applications.

With recent advancements in computational capabilities, di-
rect nonlinear optimization using nonlinear MPC (NMPC) has
been employed in real marine vehicle experiments [9]–[12].
However, real-time NMPC requires certain approximations.
For instance, [9] employs simplified hydrodynamics with first-
order and diagonal damping force terms, and [10]–[12] limits
the vehicle maneuverability by lowering control frequency
and speed of the vehicle. Moreover, these studies focus only
on 3D motion, which limits their applicability for general
marine vehicles control, such as station-keeping with heave
motion or underwater vehicle control. In the case of small
marine vehicles that cannot accommodate high-end computing
devices, there is a need to reduce computational demands
significantly.

Computationally-efficient control algorithms capable of
handling highly nonlinear hydrodynamics are crucial for ma-
rine vehicle control. Several promising approaches involve im-
proved system representation using reasonable approximation
or efficient control optimization to address this. Adaptive MPC
[13] utilizes multiple approximated linear models to reduce
the computational burden. MPC with projection neural net-
work [14] efficiently solves constrained optimization problems
with parallel computational capability. Distributed optimiza-
tion [15] decomposes the original optimization problems into
small subproblems by leveraging the dynamic properties of
marine vehicle motion and then solving them with a significant
reduction in computational complexity.

Another promising approach to achieving computational
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efficiency is geometric control, based on the Lie group frame-
work, to exploit existing symmetry in the problem [16], [17].
Unlike methods that rely on approximations of the hydrody-
namics model, geometric control leverages the intrinsic geom-
etry of the system and represents the dynamics in an invariant
and symmetric manner. Considering that the configuration of
the vehicle space is a nonlinear manifold rather than a linear
space, trajectory tracking algorithms for mobile robots and
surface vehicles on SE(2) are presented in [18], [19]. A recent
study introduces error-state MPC on SE(3) for controlling
legged robots [20], providing an accurate estimation of error
dynamics. Geometric control guarantees that the error dy-
namics are globally valid and evolve independently of the
system trajectory, enabling efficient quadratic programming
(QP)-based control optimization.

Motivated by the work of [20], we develop an error-
state MPC on the Lie group for marine vehicle control, as
illustrated in Fig. 1, constructing an efficient and accurate
trajectory tracking controller. The marine domain imposes
more challenging (and perhaps interesting) scenarios as the
higher water density leads to significant environmental forces
and state-dependent vehicle models. Our key contributions are
summarized as follows.

1) We establish a nonlinear hydrodynamics model on the Lie
group to ensure that error dynamics are globally valid and
evolve independently of the system.

2) We develop a convex error-state MPC by employing first-
order approximations of dynamics and error dynamics on
the Lie group.

3) We demonstrate the effectiveness of the proposed al-
gorithm in controlling surface vehicles for trajectory
tracking in the presence of external disturbances us-
ing the Marine Systems Simulator [21]. Our code is
publicly available at https://github.com/UMich-CURLY/
Lie-MPC-AMVs.

The remainder of this paper is organized as follows. The
dynamics of marine vehicles and its expression on the Lie
group are presented in Section II. The convex error-state
MPC is derived from the linearization of dynamics and error
dynamics on the Lie group in Section III. In Section IV, we
present numerical simulations to evaluate the performance of
our method in scenarios involving ocean currents and discuss
potential directions for future research. Finally, we conclude
the paper in Section V.

II. DYNAMICS OF MARINE VEHICLES

In this section, we present a background on the general
hydrodynamics model of marine vehicles and Lie groups. Sub-
sequently, we define the vehicle model within the framework
of Lie groups.

A. Marine vehicle equations of motion

Extensive research has been conducted to comprehend the
hydrodynamics of marine vehicles and approximate the main
forces acting on a vehicle. We follow Fossen’s analytical
approach [22] to select the most dominant forces and model
a marine vehicle.

Fig. 2: The 6-DOF velocities in the body-fixed reference frame following
Fossen’s convention [22].

In general, surface vehicles are modeled with 3-degrees
of freedom (DOF). However, for modeling and controlling a
general marine vehicle, such as an autonomous underwater
vehicle (AUV), we describe 6-DOF motion equations.

Let the rotation matrix R ∈ SO(3) and identity matrix I3 ∈
R3×3, where

SO(3) = {R|R ∈ R3×3, RRT = RTR = I3,det(R) = 1}.
(1)

We use the notation (·)∧ to represent the cross-product oper-
ation, where λ× a := λ∧a. λ∧ is a skew-symmetric matrix,

λ∧ =

 0 −λz λy
λz 0 −λx
−λy λx 0,

 . (2)

The transformation matrix for converting from body-fixed
frame to spatial frames is given by:

η̇ = JΘ(ν)ν, (3)

where JΘ is the Euler angle transformation matrix for 6-DOF
kinematic equations, the vector ν includes body-frame velocity
and angular velocity, ν = [u, v, w, p, q, r]T and the vector η is
the generalized position and orientation in North-East-Down
(NED) frame, η = [x, y, z, ϕ, θ, ψ]T. For a marine vehicle, the
six different motion components are conveniently defined as
shown in Fig. 2.

In Fossen’s model, the equations of motion for a marine
vehicle in the body frame are expressed as a set of equations
in the following form:

MRB ν̇ + CRB(ν)ν +MAM ν̇r + CAM (νr)νr

+D(νr)νr + g(η) = τc + τwind + τwaves,
(4)

where M is the mass matrix, C(v) is the Coriolis matrix,
D(v) is the drag (damping) matrix, and τ is the vector of
forces and moments. The subscripts RB and AM associated
with the mass and Coriolis matrices denote the rigid body
and additional mass, respectively. The added mass is assumed
to be proportional only to the relative velocity νr, which is
commonly used for marine vehicle models. The force τc is
generated by the propulsion system, which is the control input,
and τwind and τwave are the external disturbances caused by
the wind and waves. The vector νr is the relative velocity
vector to the ocean current velocity νc (i.e., νr = ν − νc).
Note that terms relating to νr represent hydrodynamic forces,
and g(η) is the hydrostatic force.

The rigid body mass matrix is symmetric and represented

https://github.com/UMich-CURLY/Lie-MPC-AMVs
https://github.com/UMich-CURLY/Lie-MPC-AMVs
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as:

MRB =


m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ixx −Ixy −Ixz

mzg 0 −mxg −Iyx Iyy −Iyz
−myg mxg 0 −Izx −Izy Izz


=

[
M11 M12

M21 M22

]
,

(5)

where xg, yg , and zg are the distances to the center of gravity
from the origin coordinate, and I is the inertia dyadic about the
origin coordinate. In an ideal fluid, the hydrodynamic system’s
added inertia matrix at infinite frequency is represented as
positive definite and constant.

The Coriolis matrix captures the inertial forces in the
dynamics of marine vehicles and is skew-symmetric. The
Coriolis matrix is derived from the mass matrix and the relative
velocity vector,

C(ν) =[
0 −(M11ν1 +M12ν2)

∧

−(M11ν1 +M12ν2)
∧ −(M21ν1 +M22ν2)

∧

]
,

(6)

where ν1 = [u, v, w]T and ν2 = [p, q, r]T.
The hydrodynamic damping matrix, D(νr), accounts for

the forces due to various hydrodynamic effects, including
potential damping, skin friction, wave drift damping, vortex
shedding, and lifting forces. It is expressed as a sum of
linear and quadratic terms, where the linear damping matrix
Dl is constant, and the quadratic damping matrix Dn is
proportional to the absolute value of the relative velocity |νr|.
The dominance of linear or nonlinear damping depends on the
surge velocity of the vehicle.

In the case of noncoupled motion, where the motion in
one axis does not affect the other axes, a diagonal damping
structure can be assumed. This simplifies the hydrodynamic
damping matrix, which can be expressed as:

D(νr) =− diag([Xu, Yv, Zw,Kp,Mq, Nr]
T)

− diag([X|u|u|ur|, Y|v|v|vr|, Z|w|w|wr|,
K|p|p|pr|,M|q|q|qr|, N|r|r|rr|]T),

(7)

where diag(x) denotes a diagonal matrix where diagonal
elements are composed of elements of vector x. The damping
allows the vehicle to dissipate energy, ensuring stability in
both roll and pitch motions.

For establishing a practical controller, we assume that the
vehicle is neutrally buoyant, thereby neglecting the hydrostatic
force g(η). Additionally, we consider the external disturbances
caused by current, wind and waves are either unknown or
negligible, and treat them as noise or modeling errors.

Mν̇ + C(ν)ν +D(ν)ν = τ, (8)

where M =MRB +MAM and C = CRB + CAD.

It is important to note that while our controller uses this
simplified model and does not explicitly account for the
external forces, in the simulation, we will incorporate an
external force to assess the ability of the controller to handle
significant disturbances.

B. Dynamics on a Lie group

This section briefly introduces the dynamics model on a Lie
group SE(3) and the commonly used notation. For a more
comprehensive understanding of Lie groups, refer to [23]–
[26]. A group is a set, G, with a composition operation for its
elements that satisfies the axioms of closure, identity, inverse,
and associativity. In a Lie group, the manifold is symmetric
and looks the same at every point, making all tangent spaces
isomorphic. The tangent space at the identity (since all groups
have the identity element), TeG = g, is defined as the Lie
algebra of G. The exponential map, exp : g → G, maps
elements of the Lie algebra to elements of the Lie group. The
inverse operation of the exponential map is the log map.

The Lie algebra is a vector space whose elements can be
associated with vectors ξ ∈ Rn, where dim g = n. The
conversion between g and Rn is facilitated by the following
isomorphism, commonly known as the hat and vee operators:

(ξ)∧ : Rn → g, (ξ)∨ : g → Rn. (9)

In matrix Lie groups, the exp map naturally arises by
exactly integrating the group reconstruction equation,

Ẋ = Xξ∧. (10)

The vehicle state in SE(3) can be represented by a rotation
matrix R ∈ SO(3) and position p ∈ R3. The homogeneous
representation of an SE(3) element is given by:

X =

[
R p
0 1

]
. (11)

We define the twist as the concatenation of the angular
velocity ω and the linear velocity v in the body frame, denoted
as ξ = [νT2 , ν

T
1 ]

T = [ωT, vT]T ∈ R6. The hat operator is then
used to obtain the corresponding TeSE(3) = se(3) element:

ξ∧ =

[
ω∧ v
0 0

]
. (12)

For an X ∈ SE(3), it can be shown that both X−1Ẋ and
ẊX−1 belong to se(3). The former is the body velocity in the
body-fixed frame, while the latter is the spatial velocity in the
spatial frame. The relationship between these two velocities is
given by the adjoint map, AdX : g → g, that enables change of
frame for velocities defined in the Lie algebra via the following
matrix similarity.

AdXξ = Xξ∧X−1. (13)

The adjoint map describes how elements of a Lie group or a
Lie algebra act on other elements of a Lie algebra. The adjoint
map is a linear transformation that maps an element ξ ∈ g to
AdX(ξ). For an element ξ ∈ g, its derivative at the identity
denoted adξ : g → g and it maps an element from η ∈ g
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to adξ(η). The (little) adjoint describes how the Lie bracket
acts on an element of the Lie algebra. The Lie bracket is a
bilinear operation on the Lie algebra that measures the failure
of the product of two Lie group elements to commute (Lie
derivative).

The adjoint map and adjoint in the Lie algebra in SE(3)
can be represented by matrices as follows:

AdX =

[
R 0
p∧R R

]
, adξ =

[
ω∧ 0
v∧ ω∧

]
. (14)

Euler-Poincaré equations [27] is aligned with the hydrody-
namic equation (8) as:

Mξ̇ = adTξMξ + f

= −C(ξ)ξ −D(ξ)ξ + τ,
(15)

[
Ṙ ṗ
0 0

]
=

[
R p
0 1

] [
ω∧ v
0 0

]
. (16)

where f ∈ g∗ 1 is the external force applied to the body
fixed principal axes, including damping force and control
force, i.e., f := −D(ξ)ξ + τ . The dynamics model, defined
using Lie groups, is applied to a state that resides on a
symmetric manifold, thereby ensuring its preservation in a
globally identical form.

Note that the variables ν and ξ are equivalent, but they differ
in the order of their elements. Consequently, the matrices M ,
C, and D have different orderings.

III. GEOMETRIC CONVEX ERROR-STATE MPC

In this section, we develop a convex error-state MPC by
linearizing the error and motion dynamics. The use of error
defined in Lie algebra enables the linearzed error dynamics
to be independent from the orientation of the robot, thus
rendering it suitable for long-term prediction. Additionally, we
will demonstrate that the nonlinearity of the vehicle dynamics
model can also be readily accommodated in convex form
through linearization, resulting in a versatile and generalized
convex MPC problem.

We consider a desired trajectory in the Lie group G as a
function of time t, denoted Xd,t ∈ G. We define the left-
invariant error [29] Ψ and its dynamics as:

Ψ = X−1
d,tXt ∈ G, (17)

d

dt
Ψ =

d

dt
(X−1

d,t )Xt +X−1
d,t

d

dt
Xt = Ψtξ

∧
t − ξ∧d,tΨt. (18)

where ξt and ξd,t are the velocity vectors corresponding to Xt

and Xd,t, respectively.
To compare velocities from different reference frames, we

use the transport adjoint map AdΨ and obtain the error
dynamics as:

Ψ̇ = Ψt(ξ
∧ −Ψ−1

t ξ∧d,tΨt) = Ψ(ξt −AdΨ−1
t
ξd,t)

∧. (19)

1Technically, quantities that depend on mass and inertial belong to the co-
tangent space g∗ [28].

Given the first-order approximation of the exponential map,
we define the error in the Lie algebra corresponding to Ψt as:

Ψt = exp(ψ∧
t ) ≈ I + ψ∧

t . (20)

We then obtain the linearized error dynamics in the Lie
algebra as:

Ψ̇t ≈ ψ̇t
∧
≈ (I + ψ∧

t )(ξt −AdI−ψ∧
t
ξd,t)

∧. (21)

Here, ψt is the corresponding error in the Lie algebra for Ψt,
and we use the property AdΨ = exp(adψ). Given a first-
order approximation, AdI+ψ∧ = I + adψ . Finally, we obtain
the linearized velocity error in the Lie algebra as:

ψ̇t = −adξd,tψt + ξt − ξd,t. (22)

Since we now have a linear model for the error dynam-
ics, we proceed with the linearization of the hydrodynamics
described in (15). The linearization is performed around the
operating point ξ̄:

Mξ̇ ≈ −C(ξ̄)ξ̄ −D(ξ̄)ξ̄

− ∂C(ξ)ξ

∂ξ
|ξ̄(ξ − ξ̄)− ∂D(ξ)ξ

∂ξ
|ξ̄(ξ − ξ̄) + τ

= (−C(ξ̄)−D(ξ̄)− ∂C(ξ)ξ̄

∂ξ
− ∂D(ξ)ξ̄

∂ξ
)ξ

+ (
∂C(ξ)ξ̄

∂ξ
+
∂D(ξ)ξ̄

∂ξ
)ξ̄ + τ

= Htξ + bt.

(23)

As shown in (6) and (7), C(ξ) and D(ξ) are generally rep-
resented as first-order functions of ξ, so partial differentiation
will yield a constant. In such cases,

∂C(ξ)ξ̄

∂ξ

= − ∂

∂ξ
(

[
(M21v +M22ω)

∧ (M11v +M12ω)
∧

(M11v +M12ω)
∧ 0

] [
ω̄
v̄

]
)

=
∂

∂ξ
(

[
ω̄∧M22 + v̄∧M12 ω̄∧M21 + v̄∧M11

ω̄∧M12 ω̄∧M11

]
ξ)

=

[
ω̄∧M22 + v̄∧M12 ω̄∧M21 + v̄∧M11

ω̄∧M12 ω̄∧M11

]
,

(24)

∂D(ξ)ξ̄

∂ξ
= −diag([X|u|u|ū|, Y|v|v|v̄|, Z|w|w|w̄|,

K|p|p|p̄|,M|q|q|q̄|, N|r|r|r̄|]T).
(25)

We define the system states as xt = [ψt, ξt]
T. Then, the

linearized dynamics become:

ẋt = Atxt +Btτ + ht, (26)

where

At =

[
−adξd,t I

0 Ht

]
, Bt =

[
0

M−1

]
, ht =

[
−ξd,t
bt

]
. (27)

We set the operating point ξ̄ to be the reference trajectory
ξd,t and set the cost function to regulate the tracking error ψt
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and its derivative ψ̇t, rather than the difference between ξd,t
and ξt. With the tracking error defined as yt = [ψT

t , ψ̇
T
t ]

T,

yt = Gtxt − dt (28)

Gt =

[
I 0

−adξd,t 0

]
, dt =

[
0
ξd,t

]
, (29)

the cost function is formulated as follows.

J = yTtHPytH +

∫ tH

t=0

(yTt Qyt + τTt Rτt)dt, (30)

where tH is the length of the prediction horizon time in MPC,
and P , Q, and R are semi-positive definite cost matrices. After
discretizing the system given the time step {tk}Nk=1, we can
construct a QP problem that can be solved efficiently using a
QP solver such as OSQP [30].

Problem 1: (Proposed MPC) Find τk ∈ g∗ such that

min
τk

yTNPyN +

N−1∑
k=1

yTkQyk + τTk Rτk

s.t. xk+1 = Akxk +Bkτk + hk

x(0) = x0, τk ∈ Tk, k = 0, 1, ..., N − 1.

where g∗ is the cotangent space, T is the feasible control force
set, Ak = I +Atk∆t, Bk = Btk∆t, and hk = ht∆t.

IV. NUMERICAL SIMULATIONS

We evaluate the performance of our controller by applying
it to a marine vehicle simulator. To thoroughly evaluate its
robustness, we compare our controller with NMPC methods
while considering the presence of external disturbances.

A. Surface vehicle dynamics model

We validate the control performance of the proposed algo-
rithm using Marine Systems Simulator [21]. The simulator has
hydrodynamic models of various types of real-world vehicles,
including the autonomous surface vehicle Otter. The Otter is a
2 m catamaran equipped with two propellers on the starboard
and port sides, allowing it to achieve a maximum speed of 5.5
knots.

The Otter model is suitable for demonstration because it
is defined in 6-DOF and accounts for hydrostatic forces. In
the hydrodynamics model of the Otter, the Coriolis matrices
CRB and CAM are set differently. Specifically, the elements
in CAM related to the yaw angle and horizontal velocity are
neglected. To handle this, we separately calculate the partial
differentiations (24) of the Coriolis matrices. The damping
matrix of the Otter model is set to be diagonal with an
additional nonlinear term only for the yaw motion.

The Otter is an under-actuated system that requires control-
ling its position and orientation using only two control inputs,
the rotational speeds of the two motors. The propulsion force
generated by each motor is modeled as proportional to the
square of the rotational speed, with the coefficient changing
for reverse motion. Although this relationship is nonlinear, it is

bijective, allowing us to use the propulsion forces as a control
input.

τ = Tu =

[
0 0 l 1 0 0
0 0 −l 1 0 0

]T [
u1
u2

]
, (31)

where u1 and u2 represent the port and starboard thrust forces,
respectively, and l denotes the distance from the thrusters to
the center of gravity along the y-axis.

B. Nonlinear MPC

Due to the intricate hydrodynamics model of the vehicle,
nonlinear optimization is required for a controller, which
can be time-consuming. Contrarily, the proposed geometric
MPC provides computational efficiency by formulating the
problem as a convex QP problem. However, the employment
of linearization in the proposed algorithm has the potential
to undermine control performance. Therefore, we consider
NMPC as the baseline and regard its tracking performance
as the benchmark for comparison with our method.

The NMPC algorithm was implemented using CasADi [31]
with MPCTools [32], which is an open-source software tool
for nonlinear optimization and algorithmic differentiation. We
distinguish between two forms of NMPC: the original form,
referred to as NMPC, which considers hydrostatic forces; and
NMPC-simple, which utilizes a simplified model (8) equivalent
to the model employed in the proposed method. We assume
that no information pertaining external disturbances, such as
ocean current speed, is available. Therefore, we use the model
with νc = 0 to optimize the control inputs.

Let the error variables be denoted as zt = ([ηTd,t, ξ
T
d,t] −

[ηTt , ξ
T
t ])

T, then NMPC is defined as follows:
Problem 2: (NMPC) Find uk ∈ R such that

min
uk

zTkPzk +

N−1∑
k=1

zTkQzk + uTkRuk

s.t. ξk+1 =M−1(−C(ξk)ξk −D(ξk)ξk − g(ηk) + Tuk)

ηk+1 = JΘ(ηk)ξk

η(0) = η0, ξ(0) = ξ0, uk ∈ Uk, k = 0, 1, ..., N − 1 ,

where U is the feasible control input set.
NMPC-simple is an equivalent optimization problem, but it

does not take into account the hydrostatic term g(η).

C. Simulation setup

The control frequency of the MPC was set to 20 Hz,
while the simulation frequency was set to 80 Hz to capture
the nonlinear dynamics of the vehicle accurately. The MPC
horizon length is chosen as 100 steps (i.e., N = 100),
which corresponds to predicting 5 second future trajectories.
The prediction horizon was determined to be the minimum
length required to prevent control divergence. Each simulation
episode has a duration of 60 seconds. The MPC cost weights
P,Q,R are adjusted to facilitate smooth tracking of the desired
trajectory with minimal steady-state error. We empirically
found that while position error plays a significant role in
achieving accurate tracking, considering angle and velocity
errors help prevent divergence and fluctuations.
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(a) (b)

Fig. 3: Simulation results in a current-free environment for Otter USV trajec-
tory tracking in (a) zigzag motion and (b) turning motion. The reference path
is represented by the solid black line, which includes the desired orientation
and velocity over time. The controlled trajectories according to each method
are represented by the dashed line. The proposed controller exhibits less sharp
turning compared to NMPC controllers where rapid turning motion requires
reducing surge speed. However, after the tracking error converges, the vehicle
accurately follow the reference path.

To assess the control performance of the vehicle, we
evaluated the tracking accuracy during zigzag and constant
turning maneuvers. The initial position and orientation of the
vehicle are randomly placed within a 5 m radius. The desired
trajectory has a surge speed of 0.5 m/s. For turning motion,
a desired yaw velocity is 0.1 rad/s, and for zigzag motion, a
desired yaw velocity is designed using a sinusoidal function,
0.1 sin(t/5) rad/s.

All simulations were conducted with 10 random Monte
Carlo tests and were performed using a Geforce GTX 1050 Ti,
Intel(R) Core i7-8850H CPU @ 2.60 GHz × 12, a memory
of 64 GB, and Ubuntu 22.04.

D. Trajectory tracking in a current-free environment

In a current-free environment, the known dynamics model
used in MPC is equivalent to the simulation model except
for the difference in sampling time. Figure 3 illustrates the
results of trajectory tracking control, aligned with the desired
zigzag and turning trajectory. Direct optimization using precise
nonlinear dynamics, such as NMPC and NMPC-simple, yields
accurate optimization and rapid convergence. The proposed
algorithm, which employs first-order approximations in the
dynamics and error dynamics models, follows a roundabout
path. Once convergence is achieved, the algorithm successfully
tracks the predetermined reference path, similar to the NMPC
methods.

Fig. 4 shows the positional errors over time for 10 episodes
in each maneuver. Both NMPC and NMPC-simple achieve fast
convergence, and their performance are nearly indistinguish-
able. The proposed algorithm performs similarly to NMPC
methods in cases with small initial errors. However, for larger
initial errors, the algorithm exhibits some overshoot, result-
ing in longer stabilization times. Nevertheless, the algorithm
converges within 30 seconds in all cases and successfully
performs trajectory tracking. The proposed MPC and NMPC-
simple exhibits a small position error bias since they do not
use perfect dynamics, although the value is very marginal, less
than 0.1 m.

(a) (b)

Fig. 4: Tracking errors of the controllers evaluated in a current-free en-
vironment using 10 randomly sampled initial states for (a) zigzag motion
and (b) turning motion. Our controller may exhibit overshoot; however, the
performance difference is negligible once it converges.

E. Trajectory tracking in a current-carrying environment

To validate the applicability of the proposed algorithm in
the presence of an external disturbance, experiments were
conducted in an environment with the ocean current. The
current is assumed to have a constant direction with speeds
ranging from 0 to 0.5 m/s in 0.1 m/s increments. Despite
the controller’s lack of knowledge about the ocean current
information, the iterative feedback of MPC enables robust
system control in response to the disturbance. Fig. 5 and
6 depict the trajectories generated by each controller and
tracking errors of 10 episodes, respectively, at an ocean current
speed of 0.5 m/s.

As observed in previous control results without the ocean
current, NMPC methods exhibit aggressive turning compared
to the Proposed MPC, enabling them to converge to the desired
path quickly. However, this aggressive turning behavior can
lead to fluctuations in the presence of modeling gaps. NMPC-
simple, which utilizes a less accurate dynamics model, deviates
more in terms of the vehicle’s position and orientation from the
desired path. When the orientation error becomes significant, it
makes aggressive adjustments to the vehicle’s position, result-
ing in a fluctuated trajectory. In contrast, although Proposed
MPC also employs an equivalent approximated model, it gen-
erates a smoother trajectory by utilizing linearized dynamics,
which is desirable in practical applications.

Figure 7 illustrates the average final position error in the
turning maneuver at each ocean current speed. The position
error at the final position increases with the current speed ex-
cept for NMPC-simple. As NMPC-simple produces fluctuated
vehicle trajectory, the final position error is not significantly
affected by the ocean current. Propsed MPC exhibits slightly
higher errors compared to NMPC. Nevertheless, given the low
maneuverability of the marine vehicle, the maximum position
error not exceeding 0.4 m even at high ocean currents of
0.5 m/s indicates that the proposed algorithm demonstrates
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(a) (b)

Fig. 5: Simulation results under an ocean current speed of 0.5 m/s for (a)
zigzag motion and (b) turning motion. NMPC shows a smooth trajectory with
low steady-state error. While both proposed MPC and NMPC-simple employ
the same approximated dynamics model, propsed MPC generates a smoother
trajectory during turning maneuvers.

(a) (b)

Fig. 6: Tracking errors of the controllers under an ocean current speed of
0.5 m/s for (a) zigzag motion and (b) turning motion. Although the external
disturbance is not accounted for in MPC algorithms, MPC can robustly
respond to the disturbance and successfully track the desired trajectory, albeit
with some steady-state errors.

sufficiently high control performance.
While the tracking performance of the proposed MPC is

comparable to that of NMPC, the proposed algorithm pro-
vides a significant computational efficiency advantage. Table I
presents the average time taken for each optimization. The
optimization time encompasses all the processes necessary for
generating control inputs, including formulating a problem,
constructing a solver, and performing optimization. In the case
of the Proposed MPC with OSQP, a solver needs to be built in
each iteration, whereas NMPC methods utilizing CasADi build
the problem once and update problem parameters to minimize
the overall computation time. In NMPC methods, a warm start
that utilizes the solution from the previous iteration as an initial
guess is employed to expedite the optimization process. The
proposed algorithm can run at 20 Hz, while NMPC methods
can run at 1 to 2 Hz. Proposed MPC requires approximately
10 times less computation time compared to NMPC methods,
even when using simplified dynamics. This indicates that using
NMPC is difficult for real-time control in such long-horizon

Fig. 7: Average final position error in the turning motion when a constant
ocean current occurs. As the speed of the ocean current increases, the final
position error increases. The final error varies depending on the angle of
encounter with the current; thus, these results are made when the final error
is maximized. Proposed MPC demonstrates the ability to control within an
appropriate range of errors like NMPC, even with relatively high ocean current
speeds.

prediction problems.

TABLE I: Average computation time (ms) for single optimization.

Current Proposed MPC NMPC NMPC-simple

0 m/s 49 (±2) 764 (±13) 478 (±12)
0.5 m/s 50 (±1) 953 (±125) 460 (±11)

F. Discussions
The proposed algorithm leverages the geometric properties

of the Lie group to define error dynamics and construct a con-
vex error-state MPC for rapid control optimization. Although
it exhibits slightly inferior trajectory tracking performance
compared to NMPC due to linearization, it offers significant
reductions in computation time, rendering it suitable for real-
time control in scenarios requiring long prediction horizons or
involving a small marine vehicle. We may assume knowledge
of the initial position and orientation of the vehicle, and the
path planning algorithm can generate a reference path based
on this; thereby, slow convergence at large initial errors can
be mitigated in practical applications.

QP-based optimal control problems offer advantages over
nonlinear optimization for control performance, feasibility,
and stability analysis. As the proposed MPC only considers
the input constraints, it does not suffer from feasibility issues
compared to methods with state constraints. To verify the
stability of the proposed algorithm, the quadratic cost function
in exponential coordinates [16] can be used as a candidate
Lyapunov function. As we linearize the dynamics around the
reference trajectory, the sum-of-square methods in [33] can
be applied to certify the region of attraction considering the
control input constraints. Since the error-state MPC are derived
in exponential coordinates, special treatment is required to in-
corporate [16] and [33] for verification, which is an interesting
future direction.
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Promising future work includes exploring stability and ro-
bustness where disturbances are incorporated into the model,
as demonstrated in tube-MPC [34], could be a valuable re-
search direction. Our MPC assumes a control-affine system
based on the forced Euler-Poincaré equation, where control
inputs act linearly on the vehicle state. However, since a ma-
jority of large ships rely on a rudder system, which introduces
nonlinearity between control inputs and actuated force, our
method cannot be directly applied. Although linearizing the
control force as with the dynamics model may be feasible,
further investigation is required to ensure the effectiveness of
our approach.

V. CONCLUSION

We propose a Lie algebraic convex error-state MPC algo-
rithm, leveraging the intrinsic geometric properties of SE(3).
We define the hydrodynamics of a marine vehicle on the Lie
group and construct a convex error-state MPC by lifting the
linearized problem to the Lie algebra. By using a globally
valid model leveraged by the symmetry of tangent spaces in
Lie groups, linearization of dynamics and error dynamics does
not produce significant modeling gaps and can be optimized
efficiently using a QP solver. Our results demonstrate that
the proposed MPC has comparable tracking performance to
nonlinear MPC but significantly reduces computation time, en-
abling real-time implementation with longer planner horizons.
The proposed MPC is also robust to external disturbances
such as ocean currents and generates smoother trajectories than
NMPC using the same simplified hydrodynamics model. The
proposed MPC will gain large benefits in real-time control
applications.
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