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Abstract—Existing object-search approaches enable robots
to search through free pathways, however, robots operating
in unstructured human-centered environments frequently also
have to manipulate the environment to their needs. In this
work, we introduce a novel interactive multi-object search
task in which a robot has to open doors to navigate rooms
and search inside cabinets and drawers to find target objects.
These new challenges require combining manipulation and
navigation skills in unexplored environments. We present HIMOS,
a hierarchical reinforcement learning approach that learns to
compose exploration, navigation, and manipulation skills. To
achieve this, we design an abstract high-level action space around
a semantic map memory and leverage the explored environment as
instance navigation points. We perform extensive experiments in
simulation and the real world that demonstrate that, with accurate
perception, the decision making of HIMOS effectively transfers to
new environments in a zero-shot manner. It shows robustness to
unseen subpolicies, failures in their execution, and different robot
kinematics. These capabilities open the door to a wide range of
downstream tasks across embodied AI and real-world use cases.

I. INTRODUCTION

Autonomous navigation and exploration in unstructured
indoor environments require a large variety of skills and
capabilities. Pathways may be blocked and objects of interest
may be stored away. Thus far, existing multi-object search
tasks and methods have focused on environments that can
be freely navigated with openly visible target objects [1]–
[3]. However, as we move to human-centered environments
such as households, neither of these assumptions hold. We
introduce a novel Interactive Multi-Object Search task in which
target objects may be located inside articulated objects such
as drawers and closed doors have to be opened to explore
the environment. As a result, only navigation is insufficient to
accomplish the task and the robotic agent has to physically
interact with the environment to manipulate it to its needs.

Multi-object search tasks pose long-horizon problems with
non-trivial optimal policies. Methods such as frontier explo-
ration [4] offer guarantees to explore the entire environment if
given enough time. However, they often do not take the context
of the environment into account and result in long far from opti-
mal paths while moving from one frontier point to the next. On
the other end of the spectrum, learning-based methods can take
unstructured observations into account and have been shown to
learn good exploration strategies [1], [3], but they struggle with
the long-horizon nature of the task. Moreover, since the robot
also has to interact with the environment, both the action space
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Fig. 1. We introduce the Interactive Multi-Object Search task in which an
agent has to autonomously search and manipulate the environment to find a
set of target objects. To succeed, the agent has to free pathways by opening
doors and searching inside articulated objects such as cabinets and drawers.

and task horizon increase even further, and existing exploration
methods are insufficient to accomplish the task.

In this work, we propose Hierarchical Interactive Multi-
Object Search (HIMOS), a hierarchical, reinforcement learning-
based approach to learn both exploration and manipulation
skills and to reason at a high level about the required steps.
Reinforcement learning has shown to work well in unexplored
environments with high-dimensional observation spaces [5], [6].
We combine learned motions for local exploration in continuous
action spaces [3] and frontier exploration for long-horizon
exploration [4] together with mobile manipulation skills for
object interactions [7]. We use semantic maps as the central
memory component, which have shown to be an expressive
and sample-efficient representation for these tasks [3] and
design a high-level action space that exploits the acquired
knowledge about the environment. By leveraging explored
object instance locations as navigation waypoints, our approach
efficiently learns these complex tasks from little data and
consistently achieves success rates above 90% even as the
number of target objects increases. By equipping all the low-
level skills with mobility, we remove the “hand-off” problem
in which subpolicies have to terminate in the initial set of the
following skill [8], [9]. Lastly, we transfer the trained agent to
the real world and demonstrate that it successfully accomplishes
these tasks in a real office environment. In particular, we
replace the subpolicies from simulation with unseen real-world
variations and find that the policy is able to generalize to these
unseen subpolicies and is robust to failures in their execution,
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making it highly modular and flexible for transfer. Finally, we
present ablation studies to evaluate the impact of the main
design decisions.

To summarize, the following are the main contributions:
1) We propose an interactive multi-object search task that

requires physical interactions with articulated objects,
opening doors, and searching in cabinets and drawers.

2) We present a hierarchical, reinforcement learning-based ap-
proach that combines exploration and manipulation skills
based on semantic knowledge and instance navigation
points to efficiently solve these long-horizon tasks.

3) We demonstrate the capabilities of this approach in both
simulated and real-world experiments and show that, given
accurate perception, its decision making achieves zero-shot
transfer to the real world, unseen environments, unseen
subpolicies, and is robust to unseen failures.

4) We make the code for both the task and models publicly
available at http://himos.cs.uni-freiburg.de.

II. RELATED WORK

Object search tasks: Exploration and the ability to find items of
interest is a key requirement for a wide range of downstream
tasks. Previous works have proposed methods to maximize
coverage of explored space [10] and to find specific objects of
interest based on vision [5], auditory signals [6], [11] or target
object categories [12], [13]. In ordered multi-object search
tasks, the agent has to find k items in a fixed order in game
environments [14] or realistic 3D apartments [1]. In unordered
multi-object search, the agent simply has to find the target
objects as fast as possible, irrespective of the order [2], [3]. We
focus on this unordered task. As we aim to demonstrate our
system on a real robot, we follow Schmalstieg et al. [3] and
use the full continuous action space. This is in contrast to most
previous works which focus on a simplified granular discrete
action space. Existing search tasks assume that the desired goals
can be freely reached by the agent. The interactive navigation
task [15] relaxes this assumption by placing objects that the
robot has to push away to reach the target. In contrast, we
introduce an interactive search task for mobile robots equipped
with a manipulator, that requires interaction with articulated
objects to clear the path or reveal concealed objects. This
requires integrating navigation and manipulation. Lastly, in
contrast to most previous works, we demonstrate that our
approach successfully transfers to the real world.

Exploration requires both understanding and memorizing the
seen environment and decision-making to explore the remaining
space. Previous work has introduced both implicit and explicit
memory mechanisms. Implicit memory agents either learn a
direct end-to-end mapping from RGB-D images to actions
or store embeddings of previous observations and retrieve
them with an attention mechanism [2]. Other methods build
explicit maps of the environment by projecting the RGB-
D inputs into a global map. Commonly, this map is also
annotated with semantic labels [1], [3], [14]. Further, combining
short- and long-term exploration by learning an auxiliary
prediction of the direction to the next closest object has

proven to result in a strong performance in continuous action
spaces [3]. We use this approach for low-level exploration.
Frontier exploration [4] samples points on the frontier of the
explored space and then navigates to these points. Instead of
sampling, Ramakrishnan et al. [16] predict a potential function
towards a target object. SGoLAM [17] combines mapping and a
goal detection module. If no goal object is detected, it explores
with frontier exploration and navigates directly to the goal
otherwise. This results in strong results without any learning
component. We include a similar exploration strategy as an
option in our hierarchical approach. Zheng et al. [18], [19]
leverage POMDP-solvers over an explicit belief representation
to plan next viewpoints.

Articulated object manipulation such as opening doors and
drawers requires control of both the base and arm of the
robot [20]. Existing approaches often separate both aspects
and execute sequential navigation and manipulation. In our
evaluation in simulation, we follow this approach and use
BiRRT [21] to generate a motion plan for the robot arm. Recent
works train an agent to control the base of the robot via
reinforcement learning to follow given end-effector motions [7],
[22]. We use this method in our real world evaluation as it
generalizes across different robots, tasks, and environments.

Hierarchical methods introduce layers of abstraction by decom-
posing the decision-making into higher and lower-level policies.
This shortens the time horizon of the Markov decision process
(MDP) for the higher-level policies and enables the agent
to combine different modules or skills at lower levels. At the
same time, joint training of low- and high-level policies is often
unstable and hard to optimize [23]. We focus on combining
pretrained subpolicies. Joint finetuning of these policies offers
a path to further performance improvements in the future.
Pretraining is a common approach to increase the stability of
the policy in hierarchical reinforcement learning [24]. While
naive skill-chaining of arbitrary skills often results in “hand-off”
failures in which the subsequent skill cannot start from the
current state [9], we resolve this issue by adding mobility to all
the low-level skills in the real world execution, without the need
for region-rewards [8]. A common navigation abstraction is to
learn to set waypoints [25], [26], however, these often end up as
very near points to the agent. In contrast, we propose instance
navigation that provides a prior on important locations and
action granularity. ASC [27] learns to combine navigation and
pick skills for given receptacle locations. In contrast, we learn
to search in unexplored environments with objects hidden in
articulated objects. Alternatively, behavior trees are often used
to decompose tasks hierarchically into a tree structure. These
trees can either be fully constructed manually or be used in
conjunction with a planner [28]. [29] learn values of tree nodes
for cluttered object relocation. In contrast to these approaches,
our proposed HIMOS learns high-level decision-making with
a two-layer hierarchy.

III. INTERACTIVE MULTI-OBJECT SEARCH

We propose an interactive object search task in which a
robotic agent with a mobile base and a manipulator arm is
randomly spawned in an unexplored indoor environment. The
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Fig. 2. Schematic overview of HIMOS. A semantic map Mt serves as a
central memory component and is used and updated across low- as well as
high-level modules. This map is extended to a partial panoptic map with
instance IDs of relevant objects. Given the remaining objects gt to find, the
robot state srobot,t, and the derived valid actions vt, the high-level policy
acts in an abstract action space consisting of local and global exploration,
navigation to mapped object instances, and a mobile manipulation policy.

agent receives a goal vector that indicates k objects out of
c categories that it has to find. The episode is considered
successful if the agent finds all k objects, where an object
is considered found when the agent has seen the object and
navigated within a distance of 1.3m of it. The episode is
terminated early if the agent exceeds 1,000 timesteps. To
succeed, the agent has to explore the space while opening
doors that block the way and opening the cabinets that contain
the target objects. This results in very long-horizon tasks with
complex shortest paths, as in contrast to previous multi-object
search tasks [1]–[3], [14], the agent needs to manipulate its
environment to achieve its goals.

The agent is acting in a goal-conditional Partially
Observable Markov Decision Process (POMDP) M =
(S,A,O, T (s′|s, a), P (o|s), R(s, a, g)), where S, A and O
are the state, action, and observation spaces, T (s′|s, a) and
P (o|s) describe the transition and observation probabilities
and R(s, a, g) is the reward function. The objective is to learn
a policy π(a|o, g) that maximises the discounted, expected
return Eπ[

∑T
t=1 γ

tR(st, at, g)], where γ is the discount factor.
In each step, the agent receives a visual observation o from an
RGB-D and semantic camera, together with its current pose in
the environment and a binary vector g indicating the objects it
has to find. The true state s of the environment is unknown
and can only be inferred from its observations.

IV. HIERARCHICAL INTERACTIVE MULTI-OBJECT SEARCH

The challenges introduced by this task require the robot to
master an increasing number of different behaviors and skills.
To stem this increase in complexity, we propose a hierarchical,
reinforcement-based learning approach and design efficient
abstractions over states and actions. The model consists of
three main components: a mapping module, a set of subpolicies
for exploration, navigation, and interaction, and a high-level
policy module to select the next low-level action to execute.
An overview of the approach is depicted in Figure 2.

Assumptions: The focus of this work is on learning long-horizon
decision-making, exploration, and search. We abstract from real-

world perception and assume to have access to the following:
(i) a semantic camera that produces accurate semantic object
labels, (ii) accurate depth and localization, (iii) an object
detection module to perceive object poses in the environment
and to detect whether an object interaction was successful.
In training and simulation, the object detection module uses
ground truth poses from the simulator while in real-world
experiments, we rely on AR markers placed on the respective
objects. Interaction failure is detected based on the change in
pose of these markers after the interaction. (iv) the environment
remains static except for the agent’s own interactions with it.
For example, objects are not being displaced by other people
during the search process.

A. Mapping Module

A semantic map of the environment serves as a central
memory component across all policies and modules. To
construct this map, we build upon our previously introduced
mapping module [3]. We extend this map to a partial panoptic
segmentation [30] map by labeling task-specific objects such
as doors and cabinets with an instance-specific color, which
is randomly assigned whenever a new instance is detected.
I.e. an instance’s color changes from episode to episode, but
remains consistent within an episode. The robot receives the
semantic masks and depth at a resolution of 128× 128 pixels,
generates a point cloud from this information, and projects the
points into a local top-down map, using the top-most point
for each cell. With the local map and its current localization,
the agent then updates an internal global map which is further
annotated with the agent’s trace and encoded into an RGB
image. Target objects are mapped as a special color, making
the approach agnostic to the underlying classes of the target
objects. After the agent has segmented and approached a target
object, it updates the object’s annotation with a fixed color
coding to mark the corresponding object as “found”. In the
simulation, the robot receives the semantic labels from the
simulator’s semantic camera. In the real world, we simulate
access to semantic labels as follows: we pre-build a map of
the environment using Hector SLAM [31] and annotate it with
labels for target objects, cabinets, and doors. All the other
occupied space is mapped to the wall category. At test time,
we then use the robot’s depth camera to build the same local
map as in the simulation and overlay it with this pre-annotated
semantic map. Localization in the real world is done on the
same pre-recorded map.

In each step, the agent then extracts an egocentric map from
the global map and passes two representations of this map to the
encoder: a coarse map of dimension 224×224×3 at a resolution
of 6.6 cm and a fine-grained map of dimension 84× 84× 3 at
a resolution of 3.3 cm. I.e., they cover 14.8m × 14.8m and
2.77m× 2.77m, respectively.

B. Subpolicy Behaviors

In this section, we describe the different subpolicy behaviors
that are available to the high-level policy.

Local Exploration: Object search requires smart movement for
local navigation and efficient exploration around corners and



corridors. For this, we use our previously introduced exploration
policy [3]. The policy receives the semantic map, robot state,
and target objects and predicts the direction to the next
closest target object. It then communicates this prediction to a
reinforcement learning agent which produces target velocities
for the base of the robot. The local exploration policy is
pretrained on the multi-object-search task [3] in the same
train/test split. However, we change the robot to Fetch, adapt
the collision penalty from −0.1 to −0.15, and include open
doors in the scenes. After the exploration policy is trained, it
is kept frozen during high-level policy training. We adjust the
panoptic labels provided by the mapping module on the fly to
match the simpler, instance-unaware, semantic map that this
subpolicy was trained with. In particular, doors and cabinets are
colored as obstacles for the subpolicy. This shields the subpolicy
from information that is not required to solve the downstream
task. During training, when selected by the high-level policy,
the exploration policy is executed for four time steps, giving the
high-level policy control to quickly react to new knowledge of
the environment. During the evaluation, we found it beneficial
to execute it for a longer period of 20 time steps.

Global Exploration: While the local exploration policy has
been shown to produce efficient search behavior, it can struggle
to navigate to faraway areas. This, however, is a strength of
frontier exploration [4], which samples points at the frontier to
(often far away) unexplored areas. While frontier exploration
on its own can lead to long inefficient paths, the high-level
policy can learn to select the appropriate exploration strategy
for the current context. In each iteration, the sampled frontier
point is drawn onto the map, allowing the high-level policy
to observe where it would navigate to before deciding which
subpolicy to execute. Frontier points that lie outside the range
of the agent’s egocentric map are projected onto a circle around
the agent and marked in a different color, indicating that it
is potentially a long-distance navigation. If selected by the
high-level policy, the agent uses its navigation policy described
below to navigate to the frontier point.

Instance Navigation: Learning navigation at the right level
of abstraction can be challenging. Approaches such as
setting waypoints are often difficult to optimize or decay to
only selecting nearby points, removing the benefits of the
abstraction. Instead, we leverage the acquired knowledge
about the environment by using object instances as navigation
points: the high-level policy can directly navigate to the
discovered object instances by selecting their instance ID (for
simplicity restricted to target objects, doors, and cabinets).
We implement this action space as a one-hot encoding that
maps to instance colors on its map (this assumes a maximum
number of instances). We furthermore find it beneficial for
learning speed [32] to only allow the agent to navigate to
doors or cabinets that have not been successfully opened yet
(cf. invalid action masking below). While less fine-grained than
arbitrary waypoints, this results in an efficient set of navigable
points across the map that, as we demonstrate in Section V,
is well optimizable and results in a strong final policy.

The respective navigation goals are set to a pose slightly
in front, or for the goal objects directly to the detected pose

of the corresponding object. This navigation goal is then fed
to an A∗-planner which produces a trajectory at a resolution
of 0.5m. For training speed, we do not execute the full path
in simulation, but set the robot’s base pose to the generated
waypoints and only collect observations from these points. In
the real world, we use the ROS navigation stack to move the
robot to the goal. The policy may fail in some situations, for
example, due to collision with obstacles or narrow doorways.
In this case, the agent returns to the last feasible waypoint,
and given the updated semantic map Mt, the high-level policy
has to make a new decision.

Object Interaction and Manipulation: If the high-level policy
chooses to navigate to a closed door or cabinet, this automati-
cally triggers an interaction action that is executed once the
navigation has been successfully completed. For fast simulation,
we train the agent with magic actions that either open the object
successfully or fail with a probability of 15% and leave the
object untouched, in which case the agent has to decide whether
to try to open it again. The training with failure cases enables
it to learn a re-trial behavior to recover from failed attempts.

At test time, the agent has to physically execute the
interactions. In the simulation, we replace the interaction
subpolicy with a BiRRT motion planner [21] and inverse
kinematics to execute a push-pull motion. The success of
these motions depends on the pose of the robot and the object.
Implementation details can be found in the supplementary
material. In the real world, we replace these subpolicies
with the N2M2 mobile manipulation policy [7]. Given the
pose of the object handle (based on an AR marker) and
the object label (door, drawer, or cabinet), it generates end-
effector motions learned from demonstrations to open the object
together with base commands that ensure that these motions
remain kinematically feasible. The model is pretrained without
additional retraining or finetuning. The agent returns a success
indicator to the high-level policy and in case of failure, the
agent again has to decide whether to repeat the interaction.

C. High-level Decision Making

Efficient high-level decision making requires the right level
of abstractions of states and actions. We hypothesize that object-
and instance-level decision making is such an efficient level
of abstraction for embodied search tasks. We design a high-
level policy around this idea. In particular: (i) We propose
an instance navigation subpolicy that leverages the agent’s
accumulated knowledge about the environment. It provides a
prior on important places and on the granularity of navigation
points, making it data-efficient and well-optimizable. (ii) As
objects are discrete instances, the resulting full action space
remains discrete, avoiding the complexities of mixed action
spaces. At the same time, all the subpolicies still act directly
in continuous action spaces, allowing for direct transfer to
real robotic systems. (iii) We abstract from reasoning about
exact robot placements in the real world by shifting the
responsibility of mobility into the subpolicies. This ensures that
the subpolicies can start from a large set of initial positions,
resolving the “hand-off” problem from naive skill-chaining [9]
and strongly simplifies the learning process for the high-level



policy. Furthermore, it enables us to change out the subpolicies
to unseen subpolicies in the real world. (iv) We incorporate
subpolicy failures into the training process, enabling the high-
level policy to learn a retrial behavior if execution fails.

Action Space: The high-level policy acts in a Semi-Markov
Decision Process (SMDP) in which the actions model temporar-
ily extended behaviors and act at irregular intervals [33]. It
makes a decision whenever the last invoked subpolicy returns,
successful or not. The high-level action space consists of
(i) invoking the local exploration policy [3], (ii) invoking
global frontier exploration [4], (iii) instance navigation with
subsequent object interaction (if available), where instance
IDs are selected through a one-hot vector mapping to fixed
colors. The current task instantiation assumes a maximum of
ten instances per episode, resulting in an overall 12-dimensional
discrete action space.

Adaptive Discounting: The high-level policy acts at irregular
intervals, as the duration of the subpolicies varies largely. We
correct for this time bias and accurately reflect the long-term
consequences of actions with adaptive discounting.

Invalid Action Masking: The availability of high-level actions
varies with the state of the environment, e.g. navigating to an
object instance depends on the instance being mapped, opening
a cabinet is only possible if it is mapped and closed. We infer
a valid actions vector vt from the agent’s observations and
incorporate it into the training by masking out invalid actions
as well as including it in the observation space of the agent.
As a result, the agent can learn more effectively, speeding up
the training process [32]. We implement this by replacing the
logits of the invalid actions with a large negative number.

Observation Space and Architecture: The observation space
of the high-level policy consists of the coarse semantic map
∈ R224×224×3, the c-dimensional target object vector gt and
the i-dimensional binary valid actions vector vt (see invalid
action masking), where i is the number of instances, and
a 22-dimensional robot state vector srobot,t. The robot state
consists of linear and angular base velocities, the last low-level
actions, sum of collisions over the last ten steps, a current
collision flag, and a normalized history over the last 16 high-
level actions taken. Following previous work [3], [10], the agent
first encodes the coarse semantic map with a ResNet-18 [34].
Then it concatenates these features with the other, structured
observations. The high-level policy is trained with Proximal
Policy Optimization (PPO) [35]. We report hyperparametersand
full network architectures in the supplementary material.

Reward Functions: The high-level policy is trained with
the accumulated rewards of the invoked subpolicies. The
subpolicies collect the following rewards: (i) A sparse positive
reward of +10 for finding a target object, (ii) A sparse positive
reward of +3 for opening a door, (iii) A penalty of -0.1
per collision for navigation policies, (iv) A negative traveled
distance reward to encourage the high-level policy to find
efficient compositions of the subpolicies. As the navigation
policy does not get physically executed during training, we set
it to −0.05 for each invocation of the local exploration policy

and to −0.05 ∗ number of waypoints for the navigation policy.
This results in a similar penalty per distance traveled.

V. EXPERIMENTAL EVALUATIONS

We extensively evaluate our approach both in simulation
and real-world experiments. We aim to answer the following:
I) Does the high-level policy learn to make decisions that lead
to efficient exploration of the environment, improving over
alternative decision rules?
II) What is the impact of the different subpolicies, in particular
the local and global exploration policies?
III) Does the learned behavior transfer to the real world and
to execution with different subpolicies?
IV) Is the overall system capable of successfully solving
extended tasks involving many physical interactions within
a single episode in the real world?

A. Experimental Setup

We instantiate the task in the iGibson simulator [36], which
builds on the PyBullet physics engine. Each scene contains
three cabinets placed randomly across a set of feasible locations.
All the doors in the scene are initially in a closed state. We
then construct tasks of finding 1-6 target objects, matching
the hardest setting in previous work [1], [3]. We randomly
place up to three target objects across the free space of the
entire apartment and up to three objects inside the cabinets.
We use the same eight training scenes as the iGibson challenge
and use the remaining seven apartments for evaluation. The
embodied agent is a Fetch robot, equipped with a mobile base
with a differential drive, a height-adjustable torso, and a 7-DoF
arm. We scale the robot’s size by a factor of 0.85 to navigate
the narrow corridors of all apartments. Its raw 10-dimensional
action space consists of a continuous linear and angular velocity
for the base together with the torso and arm-joint velocities.
The robot is equipped with an RGB-D camera with a field of
view of 79 degrees and a maximum depth of 5.6m.

B. Baselines

We compare our approach against different high-level
decision-making modules and ablations of the action space.
Greedy: A greedy high-level decision-making strategy that
immediately drives to any newly mapped task object (door,
cabinet, target object) if available and otherwise selects either
the local or global exploration policies with equal probability.
SGoLAM+: SGoLAM [17] combines non-learning based
approaches to achieve very strong performance on the CVPR
2021 MultiOn challenge. It explores the map with frontier
exploration until it localizes a target object, then switches to a
planner to navigate to the target. We reimplement the author’s
approach for continuous action spaces and directly use the
semantic camera for goal localization which further improves
the performance. We then modify the action execution to open
doors and cabinets when applicable.
HIMOS: The hierarchical approach presented in Section IV.
w/o frontier removes global exploration from the subpolicy set.
w/o expl removes local exploration from the subpolicy set.



Fig. 3. Example trajectories of HIMOS in unseen apartments. Black:
unexplored, blue: free space, green: walls, red: agent trace, grey: (found)
target objects, other colors: miscellaneous objects. Bottom right: the agent
failed to find the last object, marked by the red circle, in the given time.

w/o IAM removes the invalid action masking and instead
penalizes the agent with -2.5 for selecting invalid actions.

Metrics: We evaluate the models’ ability to find all the desired
objects using the success rate and we evaluate the optimality
of the search path with the success-weighted path length
(SPL) [37]. In the simulation, we evaluate 25 episodes per
scene, the number of target objects, and report the average
over three random training seeds. This results in a total of
25 · 6 · 8 · 3 = 3600 episodes for seen and 25 · 6 · 7 · 3 = 3150
episodes for unseen apartments for each approach.

C. Simulation Experiments

To test the models’ abilities to learn to complete the tasks,
we first evaluate them in the seen apartments for variable
numbers of target objects. The results are reported in Table I
(left). We find that all the compared models achieve good
success rates. All three high-level decision-making variations,
greedy, SGoLAM+, HIMOS, are able to make reasonable
decisions, demonstrating the benefits of the design of the high-
level abstractions discussed in Section IV-C. Furthermore, our
proposed method, HIMOS, further improves over the baselines,
consistently achieving the highest success rate and the most
efficient paths, as measured by the SPL metric.

We then evaluate the models in the unseen apartments. Note
that neither the low- nor high-level policies have seen these
scenes during training. The results are shown in Table I (right).
We find that the models learned to generalize without any clear
generalization gap. The performance is even slightly higher
than on the seen apartments, this is in accordance with previous
observations [3]. This may be due to the validation split
containing potentially simpler scenes than the training scenes.
The evaluations on unseen scenes confirm the observations
from the training scenes: HIMOS consistently achieves the
highest success rate and the best SPL across all the numbers of
target objects. Finally, we find that our hierarchical approach
scales very well to longer scenarios, with a very small drop
in success rates as the number of target objects increases. To
find all six objects, the agent often has to explore the majority
of the apartments and interact with a large number of objects.

D. Ablation Study

Exploration Subpolicies: To evaluate the impact of the explo-
ration policies, we compare HIMOS to w/o frontier and w/o
expl. We find frontier exploration to have a large impact on
success rates. Removing this component reduces the success
rate to 66.5%. Removing the local exploration policy leads to a
smaller, but nonetheless significant drop of 12.0 ppt in average
success rates as well as a clear drop in SPL. This indicates
the different strengths of the two exploration behaviors, as
well as that HIMOS learned to use the local exploration policy
to increase search efficiency. Again, we find this effect to be
consistent across both seen and unseen apartments.

Invalid Action Masking: We observe that removing the invalid
action masking also leads to a drop in both success rates and
SPL. Furthermore, we found that masking improves conver-
gence speed by up to 2.5 times. Note that the action masking
does not use any further privileged information beyond our
perception assumptions (Section IV) of inferring object states.

Qualitatively, we find that the agent learned sensible behav-
iors for the task at hand. Figure 3 depicts example episodes
in the unseen scenes. The agent learned to frequently invoke
the local exploration policy while the apartment is still largely
unexplored, to then use the global exploration policy to navigate
to unexplored corners where target objects could be hidden.
Generally, areas further away are being used in order to travel
faster to certain areas of interest. The high-level policy also
frequently uses frontier-based navigation when the exploration
policy is stuck in some area. When a target object lies on the
way to another relevant navigation point (a frontier, cabinet, or
door), the high-level policy learned to navigate directly to the
latter, instead of sequentially navigating to the target object
and then proceeding. This saves time and improves efficiency.

E. Real World Experiments

We transfer the trained policy to a Toyota HSR robot.
The robot has a height-adjustable torso and a 5-DoF arm
for environment interactions. It is equipped with an RGB-
D camera used for mapping and a 2D lidar employed for
localization in the pre-built map and object avoidance by the
ROS navigation stack. Both the local exploration policy and
the high-level behavior policy are transferred to this real-world
setting without any further retraining or fine-tuning. The agent
requires only minor adjustments to account for the differences
in robot geometry and subpolicies. See Section IV-B and the
supplementary material for details on the real-world subpolicies.

The experiments are performed in an office building covering
three rooms connected by a hallway with a total of three doors.
The operation space covers roughly 180 square meters. We
place three articulated objects, two cabinets with a revolute
door, and one drawer in the environment. These objects are
never seen during training. We evaluate runs with 1-6 target
objects in five different scenarios, for a total of 30 episodes.
Each scenario defines new positions for the three articulated
objects. We randomly chose which doors start in an open or
closed state, and start each episode from the room that the
last episode terminated in. We cover glass doors to prevent



TABLE I
EVALUATION OF SEEN AND UNSEEN ENVIRONMENTS, REPORTING THE SUCCESS RATE (TOP) AND SPL (BOTTOM).

Model Seen Unseen

1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg
1-6

1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg
1-6

Su
cc

es
s

Greedy 96.8 94.0 91.0 91.3 89.7 88.0 91.8 96.4 94.9 92.6 93.7 91.4 87.2 92.7
SGoLAM+ 96.0 93.7 90.2 85.8 88.0 85.3 89.8 95.6 94.1 94.7 90.5 91.6 91.6 93.0
w/o frontier 81.1 68.9 59.1 68.5 71.9 35.7 64.2 82.2 74.2 65.0 61.8 65.3 50.5 66.5
w/o expl 93.2 88.4 87.2 91.6 87.6 58.4 84.4 93.4 90.2 85.8 81.8 70.8 79.6 83.6
w/o IAM 95.1 95.1 90.3 89.5 84.0 87.2 90.2 96.5 94.3 92.1 82.7 85.4 78.2 88.2
HIMOS 96.8 96.5 94.0 94.8 93.5 91.7 94.6 97.5 97.9 95.6 95.6 93.5 93.5 95.6

SP
L

Greedy 43.1 45.3 48.6 50.8 54.1 56.9 49.8 45.0 49.5 51.8 57.9 60.6 62.0 54.5
SGoLAM+ 41.5 44.3 47.8 48.9 52.5 55.3 48.4 44.8 49.1 54.2 56.2 60.3 64.2 54.8
w/o frontier 41.0 41.2 42.9 44.9 58.0 47.4 45.9 32.0 45.2 50.9 46.3 49.6 47.2 45.2
w/o expl 43.3 45.7 45.4 41.6 48.8 44.9 44.9 40.9 43.1 56.1 54.7 45.7 52.3 48.8
w/o IAM 46.9 48.5 51.9 38.7 61.0 51.2 49.7 45.9 46.3 45.2 55.0 54.1 52.3 49.8
HIMOS 49.7 51.5 55.2 57.5 59.5 60.9 55.7 52.2 56.0 57.6 63.5 65.7 68.7 60.6

TABLE II
REAL WORLD EXPERIMENTS ON THE HSR ROBOT.

Model 1-
obj

2-
obj

3-
obj

4-
obj

5-
obj

6-
obj

Total

Success 5 4 4 3 4 3 23
Collision 0 0 1 0 0 1 2
Interaction failure 0 1 0 0 1 1 3
Navigation failure 0 0 0 2 0 0 2
Total Episodes 5 5 5 5 5 5 30

Fig. 4. Top: map of the real world environment. Initial door state and cabinet
positions are randomized between episodes. Below: example trajectory in the
real world. From top left to bottom right: the agent decides to look inside
a target object, then navigates to the hallway, opens a different cabinet and
finally opens and drives through a closed door.

the agent from directly looking through them. This evaluation
tests (i) the generalization abilities of both low- and high-level
behaviors to the real world, given accurate semantic perception,
(ii) the generalization abilities of the local exploration policy

and high-level policy to a different robot, and (iii) the high-level
policy’s generalization to unseen subpolicies, as we change
both the navigation and manipulation modules. This is an
important ability for transfers to different robot models and
execution requirements. Lastly, (iv) the map representation
enables easy transfer to different objects as it only requires a
mapping to known semantic and instance colors. Our aim is to
evaluate the transfer of decision making ability within our stated
assumptions. We leave full system evaluation with integrated
perception pipeline for future work. We provide details on how
this could be implemented in the supplementary.

The results of the experiments are summarized in Table II
and example episodes are shown in Figure 4 as well as in
the supplementary video. The agent successfully completes
76.7% of the episodes, requiring long sequences of autonomous
navigation and physical interactions. The high-level policy
proves robust to failures in the subpolicies. These include
navigation failures if the planner does not find a valid path to
a frontier point and manipulation failures in which the mobile
manipulation skill fails to grasp the handle of an articulated
object. In this case, the agent is capable of re-triggering the
interactions after detecting the failure. A few irrecoverable
failures occurred: reaching a safety limit of the wrist joint
during door opening, base collisions, and in two cases repeated
failures of the navigation stack.

VI. CONCLUSION

We introduced the interactive multi-object search task in
which the agent has to manipulate the environment in order
to fully explore it, resembling common household settings.
We proposed a novel hierarchical, reinforcement learning-
based approach capable of solving this complex task in both
simulation and the real world. By combining a high-level
policy on abstract action spaces with low-level robot behaviors,
we are able to perform long-term reasoning while acting
in continuous action spaces. Our approach decouples the
perception from decision making which allows a seamless
transition to unknown and real-world environments on a
differing embodiment. Tighter integration with perception
and active perception in the lower level are promising areas



for future work. In extensive experiments, we demonstrated
the capabilities of our approach and the importance of the
individual components in ablation studies. In future work, we
will investigate the benefits of jointly training the high- and low-
behavior and integrate more sophisticated mapping modules
directly based on the robot sensors. Further, additional low-
level behaviors could extend environment interaction options or
perform more goal-oriented active perception actions. Detection
of more finegrained failure-feedback could further help the high-
level decision making. Lastly, the current instance navigation
assumes a pre-specified maximum number of possible instances.
Regression-based instance selection is a promising avenue to
further scale this approach.
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In this supplementary material, we provide additional details
on the environment setup, the subpolicies as well as details on
the training and architecture. Examples of the learned behavior
are included in the video material.

I. ENVIRONMENT DETAILS

Figure 1 depicts an example simulation environment.

Doors: Doors leading out of the apartments are set to a locked
state and cannot be opened by the agent as they lead to a fall
into the abyss.

Cabinet positioning: In the simulation, we first mark feasible
areas along the walls of the apartment in which the cabinets
can be spawned without blocking doorways or narrow corridors.
We then uniformly sample poses from these areas and reject
any poses that would result in a collision with the environment.

Target object sampling: During training, we draw six objects
randomly with replacements. If the same object gets drawn
repeatedly, the resulting object slot is left empty, leading to
a distribution over 1-6 target objects. During the evaluation,
the desired number of target objects is drawn uniformly from
all target objects. Three out of the six target objects are set
to always be placed in a drawer if they get selected. Leading
to an average of half the target objects always being placed
within a drawer.

II. INTERACTION AND MANIPULATION MOTIONS

As discussed in the assumptions in Section IV, we assume
the capability to infer the poses of objects of interest. For doors
that can open to either side, this includes knowledge of the
direction in which they open. All manipulation motions start
with the agent navigating to a given offset point in front of
the respective object. The opening motions in the simulation
are then implemented in two variations: ”magic” actions for
fast training and physical execution based on a motion planner
during evaluation.

Magic actions: During training, the object joint positions are
slowly increased to their maximum collision-free value by
the simulator. These magic opening actions can fail with a
probability of 15%, in which case the joint positions are left
unchanged.

Motion planning: For realistic evaluation, at test time in
simulation these motions are replaced with actual execution.

∗These authors contributed equally.
Department of Computer Science, University of Freiburg, Germany.
Project page: http://himos.cs.uni-freiburg.de

Fig. 1. In order to explore unstructured environments, the agent has to
autonomously manipulate the environment which may include opening doors
or looking into articulated objects.

The manipulation motions are implemented based on a BiRRT
motion planner [21]. The motion planner creates a plan for
opening the doors toward a desired direction. It selects a
desired end-effector goal given the position and orientation
of the object and plans a trajectory towards this goal by
sampling collision-free arm joint configurations. Subsequently,
the joints are set according to the plan. In addition, the end-
effector closes to grasp the door knob. Finally, a push or pull
operation manipulates the door by using the desired direction
and computing the joint positions with inverse kinematics.

For interacting with the cabinets and drawers in the
real-world experiments we build upon a learning-from-
demonstration framework [38]. In this framework, the robot
observes trajectories of teacher hand demonstrations to ac-
complish the desired task. It then learns an encoding of a
dynamical system representation of the trajectory via a Gaussian
mixture model. We directly use these end-effector motions
and transform then into mobile manipulation motions for the
Toyota HSR with the neural navigation for mobile manipulation
approach (N2M2) [7]. N2M2 consists of a trained agent
that generates velocities for a mobile base given a motion
for the end-effector. This agent is trained on a random goal-
reaching task and maintains kinematic feasibility between the
end-effector and base while avoiding obstacles. The joint poses

http://himos.cs.uni-freiburg.de


of the robot arm are then generated with an inverse kinematics
solver based on the desired end-effector pose and the current
base position. An overview of this approach is shown in
Figure 2 (right). However, the details of these manipulation
policies are independent of our high-level reasoning approach,
and in principle other imitation learning methods, such as [2],
[3] could be used to learn and provide the required manipulation
behaviors.

III. NAVIGATION MOTIONS

As discussed in Section IV, the navigation policy moves the
agent along waypoints computed by an A* planning algorithm.
The algorithm computes the path based on a prior known
traversability map with an inflation radius of 0.2m. This map
is used simply to avoid recomputing the navigation graph at
every step. For frontier point selection, the semantic map is
first converted to an occupancy map and then convolved with
a 5× 5 kernel for a single iteration.

IV. REAL-WORLD ADAPTATIONS

In contrast to the Fetch robot that we trained in simulation,
the HSR has an omnidirectional drive. The pre-trained local
exploration policy still executes its commands as pure differ-
ential drive motions (sending forward and angular velocity
commands). The unseen N2M2 mobile manipulation policy
and the ROS navigation module can make use of the robot’s
omnidirectional movement, as the training procedure is agnostic
to their internal workings. To account for differences in the
robot geometry, we use a robot-specific inflation radius for the
navigation policies and adjust the instance navigation module
to select relative navigation goals that are further away from
the object instances.

V. DEPLOYMENT WITH A FULL PERCEPTION PIPELINE

In real-world experiments, we provide the agent with a pre-
annotated semantic map to match the assumption of accurate
semantic perception. While we consider evaluating the entire
system with a full perception pipeline as future work, this
section provides details on the requirements and a possible
implementation to facilitate the deployment.

Real-world deployment requires (i) an RGB-D sensor (ii)
visual localization and mapping (iii) semantic segmentation
and (iv) grasp pose detection. (i) and (ii) can be achieved with
modern RGB-D SLAM approaches such as RTAB-Map [4]. For
semantic segmentation, a wide range of models exists, including
older methods such as Mask R-CNN [5] as well as newer,
transfomer-based methods [6], [7]. The best model is use-case
dependent and should be chosen based on the available compute,
the required object categories, and the required accuracy. We
demonstrate in our real-world experiments that a model that can
accurately detect target objects, doors, and articulated objects
is sufficient, as we map all other categories simply to the wall
category and find that the model is robust to this remapping.
We hypothesize that further improvements can be achieved by
training the agent with the imperfect outputs from the semantic
model to condition it on the strengths and weaknesses of a
particular model, which we aim to evaluate in future work

For a possible implementation, users can follow the method
of [40]: deploy an RTAB-node for localization and mapping.
To extend it to semantic labels, deploy a second RTAB-node
that listens to the semantic masks. Then fuse the resulting point
clouds. Finally, for handle detection and grasp-pose detection,
[9] achieve accurate results with a retrained YOLO model on
a public handle-specific dataset.

VI. TRAINING DETAILS

Network architectures: The network architectures of the high-
level policy, the local exploration policy [3] and the N2M2-
policy [7] are shown in Figure 2. The coarse map is encoded
into a 256-dimensional feature vector with a ResNet-18 [34].
The fine-grained map is encoded into a 128-dimensional feature
vector using a simple three-layer CNN with 32, 64, and 64
channels and strides 4, 2, and 1. The local exploration policy
then concatenates the map encodings together with the robot
state and processes these features with fully connected layers,
following the author’s original architecture [3]. The high-level
policy only uses the coarse map encoder architecture (without
weight-sharing). Both the local exploration policy and the high-
level policy then use an actor and a critic parameterized by
a two-layer MLP network with 64 hidden units each. The
high-level agent learns a discrete, Categorical policy while the
local exploration policy is parameterized as a Gaussian policy.
The mobile manipulation policy receives a local occupancy
map created from its LiDAR scanner. It encodes the map at
two resolutions, then concatenates these features with the robot
state and passes it through three fully connected layers to
produce actions for the base and torso of the robot as well as
the norm of the end-effector velocities.

Hyperparameters: Table II lists the main hyperparameters used
during training. The agents were implemented based on a
public library [13]. Parameters not mentioned were left at their
defaults. The γadaptive parameter is calibrated to result in an
average discount factor of 0.99 for a high-level policy step.
This is done by setting γn

adaptive = 0.99 where n is the average
subpolicy duration. We set n to 7 for HIMOS and w/o frontier
and 10 for w/o expl based on average subpolicy lengths in a
training run. During training, we early terminate the episodes
if they exceed 500 steps.

VII. ABLATION: GEOMETRIC UTILITY BASELINE

In this section, we compare with recent work on semantic
object-navigation [18], [39], [40]. As our task definition
builds on previous work that focuses on random target object
placements [1], [3], there are no correlations between objects
that could be exploited. So to compare with these methods
we focus on the non-semantic components and implement
the geometric utility for frontier selection proposed by recent
work [40] within the global exploration subpolicy. This enables
us to extend this work, which focuses on non-interactive search,
to our proposed interactive search.

We evaluate all the models with this new frontier selection.
The results are reported in Table I, together with the results
for the original versions of each model for direct comparison.



Fig. 2. Network architectures of the high-level agent (left), the local exploration policy (middle) and the mobile manipulation policy (right). The Resnet-18 are
pretrained on Imagenet. The predictive head of the low-level policy is omitted for clarity. α̂t is a vector of the angular current and previous predictions, v⃗ee, v⃗b
and v⃗torso are end-effector, base and torso velocities r is a reward signal. Full details of the local and mobile manipulation policies can be found in [3] and [7].

TABLE I
EVALUATION OF EXPLORATION WITH AND WITHOUT GEOMETRIC UTILITY, REPORTING THE SUCCESS RATE (TOP) AND SPL (BOTTOM). THE MODELS

WITHOUT GEOMETRIC UTILITY ARE THE SAME AS IN TAB. I OF THE MAIN TEXT AND REPORTED HERE FOR DIRECT COMPARISON.

Model Seen Unseen

1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg
1-6

1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg
1-6

Su
cc

es
s

Greedy 96.8 94.0 91.0 91.3 89.7 88.0 91.8 96.4 94.9 92.6 93.7 91.4 87.2 92.7
Greedy geometric 95.5 95.5 93.0 88.3 88.8 85.5 91.1 97.0 95.4 94.3 95.2 91.4 92.6 94.3
SGoLAM+ 96.0 93.7 90.2 85.8 88.0 85.3 89.8 95.6 94.1 94.7 90.5 91.6 91.6 93.0
SGoLAM+ geometric 93.2 89.7 89.2 84.5 84.8 83.8 87.5 95.0 92.2 93.0 89.9 89.9 90.9 91.8
HIMOS 96.8 96.5 94.0 94.8 93.5 91.7 94.6 97.5 97.9 95.6 95.6 93.5 93.5 95.6
HIMOS geometric 96.8 93.5 96.5 91.8 91.0 90.3 93.3 97.9 97.1 96.2 94.3 95.0 90.5 95.2

SP
L

Greedy 43.1 45.3 48.6 50.8 54.1 56.9 49.8 45.0 49.5 51.8 57.9 60.6 62.0 54.5
Greedy geometric 41.9 44.7 48.2 49.2 52.3 53.2 48.2 44.4 46.4 52.3 55.0 58.9 61.0 53.0
SGoLAM+ 41.5 44.3 47.8 48.9 52.5 55.3 48.4 44.8 49.1 54.2 56.2 60.3 64.2 54.8
SGoLAM+ geometric 42.5 41.7 44.3 46.8 48.8 52.1 46.0 44.0 46.6 50.6 52.7 58.7 62.1 52.5
HIMOS 49.7 51.5 55.2 57.5 59.5 60.9 55.7 52.2 56.0 57.6 63.5 65.7 68.7 60.6
HIMOS geometric 47.8 47.9 54.7 54.0 54.8 58.6 53.0 49.2 51.3 55.9 58.8 64.2 65.1 57.4

TABLE II
HYPERPARAMETERS USED FOR TRAINING.

Parameter Value Parameter Value

clip param 0.1 γ adaptive
ppo epoch 4 learning rate 0.0005
num mini batch 128 optimizer Adam
entropy coef 0.005

While the geometric utility leads to small improvements on
a subset of the tasks, most notably it increases the average
success rate for the greedy model on unseen scenes, overall it
leads to a small decrease in both the success rate and the SPL
across all other settings.

REFERENCES

[1] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered environ-
ments,” Robotics and Autonomous Systems, vol. 68, pp. 1–11, 2015.

[2] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[3] M. Koskinopoulou, S. Piperakis, and P. Trahanias, “Learning from
demonstration facilitates human-robot collaborative task execution,”
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